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Abstract. Parametric instability condition is an important consideration in design process as it 

can cause failure in machine elements. In this study, parametric instability behaviour was 

studied for a simple shaft and disk system that was subjected to axial load under pinned-pinned 

boundary condition. The shaft was modelled based on the Nelson’s beam model, which 

considered translational and rotary inertias, transverse shear deformation and torsional effect. 

The Floquet’s method was used to estimate the solution for Mathieu equation. Finite element 

codes were developed using MATLAB to establish the instability chart. The effect of 

additional disk mass on the stability chart was investigated for pinned-pinned boundary 

conditions. Numerical results and illustrative examples are given. It is found that the additional 

disk mass decreases the instability region during static condition. The location of the disk as 

well has significant effect on the instability region of the shaft. 

1. Introduction 

Work by Bolotin [1] has well presented the general theory of parametric instability and nowadays the 

subject of parametric instability is going through a period of intensive development. Accurate 

predictions of parametric instability behaviour become important in design process of high-speed 

turbo machines, drive train system and any types of rotating machinery as failure to do so may result 

in fatigue failure of rotating components earlier than expected. In engineering applications, machines 

may be subjected to periodically changes of stiffness, which can become the source of the parametric 

excitation.   

In order to model and simplified the structure of the rotating machine, beam theory has been used with 

different geometries and boundary conditions according to their applications. This model can 

accurately estimate the characteristic and behaviour of the machine. Thus, Chen and Ku [2] has 

modelled a shaft using Timoshenko beam theory to investigate the effect of gyroscopic towards 

parametric instability. It was found that rotary inertia and transverse shear deformation contribute to 

dynamic instability of rotating shaft. Chen and Peng [3] suggested that unstable condition was more at 

higher mode compare to lower mode. Yim and Yim [4] stated that for shaft and disk system, the size 

of instability region depended on location of disk. Pei [5] explained that the increase of instability 

region was due to the width of disk centre orbit of the system growth as axial force fluctuating.  

Numerical and analytical methods have been used to estimate the instability condition that could occur 

in shaft system due to parametric excitation. Finite element method (FEM) is one of numerical method 

that has been used to estimate the instability region [2], [3], [6], [7]. However, only few studies have 
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been conducted to show the effect of disk location towards dynamic instability of the shaft system in 

torsional motion condition. 

Thus, the main idea of current work is to estimate and compare the instability region of shaft-disk 

system under axial load for different locations of disk. In order to model the shaft in torsional motion, 

Nelson’s beam theory has been used. The FEM model is used to establish the Mathieu‘s equation. 

Floquet’s theory has been applied to estimate the dynamic instability region. Then, the effect of disk 

location towards dynamic instability region can be investigated. 

2. Material and Method 

The parametric instability of shaft using FEM is developed based on theory that stiffness changes as 

load is applied onto the system. Fig. 1 shows a uniform shaft-disk of length L that is exposed to an 

axial load P(t). 

 
Fig.1. Shaft-disk system subjected to axial load. 

Table 1. Geometric of shaft-disk system. 

Shaft Disk Steel Properties 

Length = 300 mm Diameter, d = 100 Young Modulus, E = 20x1010 

Diameter, d = 10 mm Thickness, t = 3 mm Density, ρ= 7833 kg/m3 

 

In this study, the FEM model of shaft is based on the Nelson’s model [8] that consists of five degrees 

of freedom (DOF) per node i.e. two translations, two rotations about y-axis and z-axis and another 

torsional rotation about x-axis. The kinetic energy for system in Fig. 1 under bending and torsional 

mode is shown as[10][9]; 
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ID and IP are the diametric and polar mass moments of inertia per unit length of the shaft element 

respectively. The potential energy including the shear deformation, bending moment, torsional 

deflection and axial compression load are represented as;  
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where symbol ' denotes the differentiation with respect to axial length, k’ is the shear correction factor, 

A is the cross-sectional area, G is the shear modulus, E is the elastic modulus and I is the cross 

sectional second moment of inertia. Eq.1 and Eq.2 were transformed into FEM equation. Then 

Lagrangian theory was applied to establish the equation of motion in FEM that includes the buckling 

load P;  

 

[ ]{ } [ ]{ } ([ ] ( )[ ]){ } 0gM q G q K P t K q                                                         (3) 
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The periodic axial compression load is expressed as fundamental static buckling load P*; 

 

                           ( ) * *cosP t P P t                                                      (4) 

 

where  ,  and  are the axial compress frequency, static and dynamic load factors respectively. 

Mathieu type is established by inserting Eq. 4 into Eq. 3. 
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Eq. 6 is used to estimate the solution of Eq. 5 which lead to non-trivial solutions that show by linear 

homogenous equations as Eq. 7. 
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In order to estimate the stability boundaries, the eigenvalue for the determinant equation in Eq. 7 is 

obtained. Reference [11] explained the step for solving the eigenvalue for quadratic matric equation. 

3. Results and Discussion 

In order to validate current FEM work, the first four natural frequency of the disk-shaft system were 

compared with Hili et.al [12] as shown in Table. 2. The comparison was for simply supported steel 

shaft-disk system in static condition as Fig. 1. Geometry and material properties of the system are 

shown in Table. 1. MATLAB coding was established to obtain the numerical result of the model. Fig. 

2 shows relative error between current work and reference [12]. For mode 1, mode 2 and mode 4 the 

relative error is below 10%, which is reasonable for the current model. However, at mode 3, the 

relative error is around 22 % that is still in reasonable condition. The models start to converge at 30th 

elements as number of elements increased. Therefore, the result at 30 elements has been used for FEM 

analysis in this paper.  
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Table 2. Comparison of natural frequency 

(rad/s) between reference [12] and current 

work (at 30   number of elements) 
 

Mode Current 

work 

Reference 

[12] 

1 951.15 948.76 

2 3728.46 3845.30 

3 5731.10 7376.45 

4 12428.60 13552  
Fig. 2. Convergence of relative error with 

reference [12] 

 

On the other hand, there are slightly different readings of relative error between Timoshenko beam 

represented by 4 DOF and Nelson’s beam element represented by 5 DOF. It indicated that torsional 

motion has significant effect on natural frequency of the shaft.  

Fig. 3 shows the effect of additional rigid disk towards parametric instability region of shaft system 

under axial load. The dynamic instability region shifted inwards as additional disk was applied. This 

condition was expected since in general natural frequency decreased as mass increased and instability 

region location depends on natural frequency of the system. Chen and Peng [3] stated that parametric 

instability region occur in between of natural frequency for non-rotating shaft. On the other hand, the 

instability region slightly narrow especially at higher mode as disk was attached. This showed that 

shaft-disk system was more stable compared to system with shaft only. 

In general, the instability region shifted as location of disk changed. Fig. 3 shows that, at 50% of 

shaft length, the instability region shifted outwards compared to 75%. Furthermore, the instability 

region narrowed especially at higher mode as the location of disk is getting nearer to end of the shaft. 

This showed that shaft system was more stable as disk is located nearer to the end of the system. This 

results is in line with Yim and Yim [4]. In addition, there are very small different between 4 DOF and 

5 DOF model in term of instability region. This condition may due to torsional motion has slightly 

effect especially on simply supported boundary condition. 

 
50%. 

 
75%. 

Fig.3. Parametric instability region comparison for different disk location from end. 

4. Conclusion 

The parametric instability region of shaft-disk system with different location of disk has been 

estimated using FEM and Floquet’s theory. This study shows that the location of the disk has 

significant effect on the parametric instability region of shaft-disk system. The next study will 

consider the system in rotating condition. 
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