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ABSTRACT The fitness-dependent optimizer (FDO), a newly proposed swarm intelligent algorithm,
is focused on the reproductive mechanism of bee swarming and collective decision-making. To optimize the
performance, FDO calculates velocity (pace) differently. FDO calculates weight using the fitness function
values to update the search agent position during the exploration and exploitation phases. However, the FDO
encounters slow convergence and unbalanced exploitation and exploration. Hence, this study proposes a
novel hybrid of the sine cosine algorithm and fitness-dependent optimizer (SC-FDO) for updating the
velocity (pace) using the sine cosine scheme. This proposed algorithm, SC-FDO, has been tested over
19 classical and 10 IEEECongress of Evolutionary Computation (CEC-C06 2019) benchmark test functions.
The findings revealed that SC-FDO achieved better performances in most cases than the original FDO and
well-known optimization algorithms. The proposed SC-FDO improved the original FDO by achieving a
better exploit-explore tradeoff with a faster convergence speed. The SC-FDO was applied to the missing
data estimation cases and refined the missingness as optimization problems. This is the first time, to our
knowledge, that nature-inspired algorithms have been considered for handling time series datasets with low
and high missingness problems (10%-90%). The impacts of missing data on the predictive ability of the
proposed SC-FDO were evaluated using a large weather dataset from 1985 until 2020. The results revealed
that the imputation sensitivity depends on the percentages of missingness and the imputation models. The
findings demonstrated that the SC-FDO based multilayer perceptron (MLP) trainer outperformed the other
three optimizer trainers with the highest average accuracy of 90% when treating the high-low missingness
in the dataset.

INDEX TERMS Fitness dependent optimizer, sine cosine algorithm, missing data, high missing rates,
imputation, metaheuristic algorithms, optimization, neural network.

I. INTRODUCTION
Nature-inspired algorithms, also known as metaheuris-
tic algorithms, have received great attention from tech-
nology, engineering, management, and different areas of
study to solve problems with optimization. Nature-inspired
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algorithms include particle swarm optimization (PSO) [1],
differential evaluation (DE) [2] and genetic algorithm
(GA) [3]. Some of the recent nature-inspired algorithms
are sine cosine algorithm (SCA) [4], [5], fitness dependent
optimizer (FDO) [6], wingsuit flying search (WFS) [7],
whale optimization algorithm (WOA) [8], [9], butterfly
optimization algorithm (BOA) [10], [11], dragonfly algo-
rithm (DA) [12], [13], grey wolf optimizer (GWO) [14],
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moth-flame optimization algorithm (MFO) [15]–[18], root-
based optimization algorithm [19], coot algorithm [20] and
colony predation algorithm [21].

This paper focuses on the fitness-dependent opti-
mizer (FDO) proposed by Abdullah and Rashid [6]. The FDO
is inspired by the reproductive mechanism of bee swarming
and collective decision-making. The FDO has been evaluated
withwell-known benchmark test functions and achieved good
performance than other nature-inspired algorithms, namely
DA, PSO, GA, andWOA. The FDO has been effectively opti-
mized the controller of a multi-source interconnected power
system [22], [23]. Meanwhile, an adaptive FDO (AFDO)
algorithm based on the first fit (FF) heuristic approach is
proposed to handle the problem of one-dimensional bin
packing [24]. The AFDO has effectively explored the search
space with the lowest fitness values within an acceptable time
for the discrete optimization problems.

Furthermore, Muhammed et al. [25] developed an
improved fitness-dependent optimizer (IFDO) algorithm
based on alignment and cohesion strategy to update the scout
bees’ location. The introduction of a random weight factor
(wf ), alignment and cohesion features in the IFDO improved
the convergence speed of the FDO. Still, the enhancement
features increased the algorithm’s space complexity and led
to slower exploitations in some cases. Additionally, Daraz
et al. [26] has successfully adopted the IFDO to optimize
the automatic generation controller of a multi-source inter-
connected power system in the restructured environment.
Next, Mohammed and Rashid [27] embedded chaos theory
into the original FDO. The chaotic fitness-dependent opti-
mizer (CFDO) has successfully improved the search capabil-
ity and prevented the algorithm from falling into local optima;
however, it is not always accurate in some cases when the
problem is highly complex. The comparison of the FDO and
its variations is discussed in Table 1.

Recently, many researchers have proposed several
improved fitness-dependent optimizers from different per-
spectives to improve the original FDO. According to the
No Free Lunch (NFL) theorem [28], a single optimization
approach is impossible to manage all optimization problems
adequately. Although the FDO and FDO variants outper-
formed several optimization algorithms, in some cases, they
encounter slow convergence, poor exploitation and explo-
ration, and memory wastage as a result of inefficient memory
allocation.

In addition, the FDO lacked exploitability and suffered
from slow convergence. Nevertheless, the most significant
advantages of the FDO are its power of exploration and sim-
plicity. The FDO’s exploration and exploitation are mainly
influenced by the fitness weight mechanism that guides
scout bee decision-making. The fitness weight mechanism
increased the diversity of solutions and strengthened the
exploration ability of the FDO. For simple optimization prob-
lems, the fitness weight mechanism increased the exploration
level of the FDO and escaped the search from local optima.
However, the convergence speed of the FDO would increase

and it is easily trapped into local optima if the optimization
problems are complex. Therefore, the motivation of this work
was to propose a balanced and straightforward way of gain-
ing a better exploit-explore tradeoff algorithm with a faster
convergence speed.

Based on the shortcomings of the FDO and its variants,
we introduce an enhanced version of the FDO and hybrid
it with SCA, a recent efficient population-based optimiza-
tion algorithm. The enhancement of FDO is called a sine
cosine-fitness dependent optimizer (SC-FDO). The key ben-
efit of SCA is its high exploitation potential in the search
solution [4]. Hence, the exploitation ability of the FDO is
enhanced by incorporating SCA features to refine the best
neighboring search and the FDO to explore the entire search
space for promising solutions.

Additionally, in the related literature, a comprehensive
position-updating strategy is commonly valuable to boost the
efficiency of the swarm intelligent algorithms in the search
space [29]–[34]. Inspired by this, a modified pace-updating
equation is introduced to substitute the pace equation in
the FDO. Another improvement is the proposed SC-FDO
employs a global fitness weight (fw∗) that is best in earlier
iterations to tune the random weight factors (wf ) adaptively
during the search process. Moreover, a conversion parameter
is suggested for balancing the exploration and exploitation
of the search spaces. The proposed SC-FDO also uses the
best solution-updating strategy for reducing the computa-
tional time of the original FDO. The proposed SC-FDO is
tested over well-known benchmark test functions and eval-
uated with existing nature-inspired optimization algorithms
to verify the algorithm’s efficiency. The numerical results
and statistical analysis indicated that the proposed SC-FDO
obtained the global best solution with higher accuracy than
the compared optimization algorithms. Furthermore, the pro-
posed SC-FDO has been extended to handle the problems of
high missing values in datasets. The results revealed that the
proposed SC-FDO achieved higher imputation accuracy and
lower computational time compared to the FDO and IFDO
imputation.

The contributions of this paper are:

1. A modified pace-updating equation, random weight
factor (wf ) and global fitness weight (fw∗) strat-
egy, conversion parameter strategy and the best
solution-updating strategy are introduced to boost the
performances of the original FDO.

2. The numerical experiments and statistical analysis have
shown the superior capability of the proposed SC-FDO
on the benchmark test function, compared with well-
known nature-inspired algorithms.

3. The missing data estimation experiments demonstrated
that the SC-FDO based multilayer perceptron MLP)
trainer can impute missing data for a low and large pro-
portion of missingness with higher prediction accuracy
while consuming lower computational time than to the
original FDO and IFDO.
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TABLE 1. The comparison of the FDO and its variations.

The remainder of this paper is described as follows:
Section II reviews the fundamentals of the FDO. The pro-
posed SC-FDO is presented in Section III. Section IV
discusses the numerical experiments and analysis of the
SC-FDO on the benchmark test function. Section V provides
the missing data imputation technique based on SC-FDO in
solving high missing rates datasets. Section VI concludes the
findings of this study, and Section VII describes the limitation
and future works.

II. FITNESS DEPENDENT OPTIMIZER
The FDO is a newly designed swarm intelligent algorithm
presented by Abdullah and Rashid [6], which was inspired by
bee swarming characteristics during reproduction. The FDO
is a PSO-based algorithm that imitates the position updat-
ing mechanism of the PSO. However, the FDO calculates
velocity (pace) in a different strategy. It employs a fitness
function to produce appropriate weights, and these weights
will facilitate the search agents to balance exploration and
exploitation.

In nature, bees live in groups (colonies) called hives, con-
taining queen bee, worker bee, and scout bee. The queen bee
is a decision-maker to keep the hive under control and lays all

the eggs to maintain the hive population. The worker bees are
responsible for all the works in the hive except reproducing.
Meanwhile, the scout bees are responsible for finding a new
home for future swarms.When a bee colony growsmassively,
the available space becomes smaller. Thus, the colony tries to
solve the space problem by swarming, in which one colony
becomes two colonies. The scout bees will find a nearby
location for the swarm during swarming, approximately a
few meters from the hive. The bees will leave the hive and
temporarily cluster around their queen in the new place for
one to few days. Then, the scout bees will travel in a small
group, about 20 to 50 bees, to search for new hives. After
finding the new hives, the scout bees communicate bymoving
their legs and wings to determine the most suitable hive.
When the decision is taken, the rest of the bees fly off and
move to the hive, where it begins its new colony life.

Inspired by the bee collective decision-making process,
the FDO uses fitness weight (fw) to guide the search agents in
identifying the best solution. Each hive represents a possible
solution exploited by a search agent (artificial scout bee),
and the best hive is defined as the global optimum solution.
The hive specifications include volume, location, and size,
represent the fitness function of the solution.
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The FDO algorithm starts by assigning the scout bees
population with random solutions, using the upper and lower
boundaries. The scout bees search for hives using a combi-
nation of a random walk and fitness weight mechanism. The
scout bees change their position by adding pace to the cur-
rent position. The movement of the scout bees is calculated
as:

xi,t+1 = xi,t + pace (1)

where i is the current search scout bee (search agent), t is the
current iteration, x is the scout bee, and pace is the movement
rate and direction of the scout bee. The pace is dependent on
the value of fitness weight fw. The fw is calculated according
to (2).

fw =

⌊
x∗i,tfitness
xi,tfitness

⌋
− wf (2)

where wf is the weight factor (either 0 or 1), x∗i,tfitness is the
fitness function of the global best solution and xi,tfitness is the
fitness function of the current solution. Further, the conditions
for fw are expressed as below:

fw = 1orfw = 0orxi,tfitness = 0, pace = xi,t ∗ r
fw > 0 and fw < 1 (3)r < 0, pace =

(
xi,t − x∗i,t

)
∗ fw ∗ −1 (4)

r ≥ 0, pace =
(
xi,t − x∗i,t

)
∗ fw (5)


where r [−1, 1] is Levy random number, the Levy flight
from [35] has been employed due to its good distribution
curve. The pseudocode of FDO is presented in Fig. 1 [6].

III. THE HYBRID SINE COSINE-FITNESS DEPENDENT
OPTIMIZER (SC-FDO)
In this section, the proposed hybrid sine cosine-fitness depen-
dent optimizer (SC-FDO) is presented. The sine cosine
algorithm is partially embedded into the FDO algorithm to
improve the performance of the original FDO in terms of con-
vergence speed, searching accuracy and balance of exploita-
tion and exploration ability in the search space. The proposed
SC-FDO is illustrated in Fig. 2. In this approach, four modifi-
cations are applied: (1) the modified pace-updating equation
in search phase, (2) random weight factor (wf ) and global
fitness weight (fw∗) strategy, (3) the conversion parameter
strategy, and (4) the best solution-updating strategy.

A. MODIFIED PACE-UPDATING EQUATION
The use of the fitness weight (fw) mechanism in the FDO
inevitably leads to slow convergence. Due to the strong
exploration ability of the FDO, the pace-updating strat-
egy in (3)-(5) may increase the diversity of solutions that
cause difficulty in finding the global optimum solution.
Thus, the concept of modified pace-updating is introduced
in this section to improve the convergence speed and bal-
ance of exploitation and exploration ability of the original
FDO.

FIGURE 1. The pseudocode of FDO [6].

FIGURE 2. The proposed SC-FDO.

In [4], the work shows that the sine cosine algo-
rithm (SCA) has high exploitation of the search space. SCA
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is a population-based algorithm introduced by Mirjalili [4].
We introduce a sine cosine scheme into the pace-updating
mechanism of the original FDO. First, the modified pace-
updating mechanism starts the search process to explore dif-
ferent promising solutions and foster the search to exploit the
prominent regions. In addition, the modified pace-updating
mechanism guides the search agents to achieve exploration
and exploitation balancing. The modified pace-updating
equation is calculated based on the following equations:

fw = 1, pace = xi,t ∗ r (6)
fw = 0, pace = xi,t + r1 ∗ cos (r2)
∗ (r3 ∗ x∗i,t − xi,t ) ∗ r (7)

fw > 0 and fw < 1

r < 0,
pace = (x i,t + r1 ∗ sin(r2)
∗ (r3 ∗ x∗i,t − xi,t ) ∗ fw) ∗ −1 (8)

r ≥ 0, pace = xi,t + r1 ∗ sin (r2)

∗

(
r3 ∗ x∗i,t − xi,t

)
∗ fw (9)


where r is Levy random number, r1, r2 and r3 are random
variables, x∗i,t is the global best solution that has been discov-
ered (up until now), xi,t is the current solution, and fw ∈ [0, 1]
is the fitness weight of the scout bees.

If the current solution and the global best solution have the
same fitness value, the pace is calculated as expressed in (6).
In (7)-(9), r1 ∗ cos (r2) or r1 ∗ sin(r2) guides the scout bees
toward exploration or exploitation. If the value of cos (r2) or
sin(r2) is greater than 1 or less than−1; the scout bees explore
the diversity of solutions. However, if the value of r1∗cos (r2)
or r1 ∗ sin(r2) is in the [−1, 1] range, the scout bees exploit
the search solution.

In terms of mathematical complexity, the proposed
SC-FDO has the same time complexity as the original FDO.
For each iteration, the time complexity of the SC-FDO
is O (p ∗ dim+ p ∗ COF), where dim is the optimization
problem’s dimension, pis the population size, and COF
is the cost of the objective function. For all iterations,
the space complexity of SC-FDO is O(p ∗ COF + p ∗
pace(include sine cosine functions)). Meanwhile, the origi-
nal FDO’s space complexity is O (p ∗ COF + p ∗ pace) for
all iterations. Another FDO’s variant, the IFDO’s space
complexity is O

(
p ∗ COF + p ∗ pace + (alignment ∗

1/cohesion)
)
. Thus, the space complexity of the SC-FDO

is slightly increased compared to FDO but lower than the
IFDO’s space complexity.

B. RANDOM WEIGHT FACTOR AND GLOBAL FITNESS
WEIGHT STRATEGY
To further improve the search performance of the proposed
SC-FDO, a random weight factor (wf ) and global fitness
weight parameter (fw∗) are embedded into the searching pro-
cess. The proposed SC-FDO also incorporates an improved
fitness weight (fw) calculation to increase the convergence
and quality of the solutions. The calculation of the improved

fitness weight (fw) follows this formula [25].

fw =

⌊
x∗i,tfitness
xi,tfitness

⌋
(10)

where x∗i,tfitness is the fitness function of the global best
solution and xi,tfitness is the fitness function of the current
solution. The fw value is calculated according to the following
equations: {

fwt > wf t , nfwt = fwt − wf t (11)

fwt ≤ wf t , nfwt = fwt (12) (12)

where fwt is the current fitness weight, nfwt is the new fitness
weight at the t th iteration and wf t is the current weight factor
in the [0, 1] range. The work of [6] recommended that the
values of weight factor parameter, wf in (2) be fine-tuned
manually for each optimization problem. If wf is equal to 1,
it represents a high level of convergence and a low chance of
converge. If wf is equal to 0, the search is more stable, and
it is not affecting the value of fitness weight (fw). However,
this may cause bias with respect to unknown optimization
problems.

Therefore, the proposed SC-FDO introduces a random
weight factor (wf ) that permits the wf value to be uniformly
distributed across the scout bee population. To further opti-
mize the random weight factor (wf ), this study proposes a
global fitness weight parameter (fw∗). The fw∗ represents the
value of fitness weight for the global best solution obtained
so far by any search agents over all the iterations. The fw∗ is
used to fine-tuning the randomweight factors (wf ) adaptively
during the search process. For example, if the current fitness
weight is greater than the global fitness weight, then a new
weight factor is generated. The mathematical calculation is
according to the following (13).

fw∗ < fwt , wf t = wf t−1 ∗ r0 (13)

where fw∗ is the global fitness weight of the global best solu-
tion, wf t is the current weight factor in the [0, wf t−1] range,
t is the iteration and r0 [0, 1] is the uniformly distributed
random number. It implies that each iteration has a different
weight factor parameter in the [0, 1] range. The values of
random wf decreased from wf to 0 throughout iterations to
obtain a stable search.

C. CONVERSION PARAMETER STRATEGY
In the modified pace-updating equation, parameter r1, r2
and r3 convert search from exploration to exploitation at
the promising areas. The parameter r1, as expressed in (14)
determines the region of the next solution. A large r1 value
encourages global exploration, meanwhile a smaller r1
value encourages local exploitation towards the destination.
To achieve a balanced exploration and exploitation, r1 is
linearly decreased from ato 0 and expressed as follow:

r1 (t) = a ∗
(
1−

t
tmax

)
(14)
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FIGURE 3. Sine and cosine in [−2, 2] range.

where t is the current iteration, tmax is the maximum iteration
and a is a constant. In this study, the constant a has the
same value as the several previous studies [4], [16], [32]–[34],
in which a is equal to 2.

Furthermore, the parameter r2 [0, 2π ] in (7)-(9) defines
the direction of the movement, either towards or outwards the
destination and r3 [0, 2] is the random weight of the global
best solution (x∗i,t ) with the uniform probability distribution,
either stochastically emphasize (r3 > 1) or deemphasize
(r3 < 1) the impact of distance on the movement. In addition,
the movement of the scout bees is defined as follow:

distance from bee scout = r3 ∗ x∗i,t − xi,t (15)

The impacts of sine, cosine, and the parameters
in (7)-(9) are presented in Fig. 3. If the value of r1 is greater
than 1, the solutions allow the search agents to explore
the outside spaces between their corresponding destinations.
Meanwhile, the sine and cosine functions enable a solution
to be repositioned relative to another solution by exploiting
the neighboring space if the value of r1 is less than 1. Hence,
the conversion parameter strategy is employed to enhance the
scout bees’ exploration and exploitation balancing.

D. BEST SOLUTION-UPDATING STRATEGY
Another improvement is the best solution-updating strategy
used in the proposed SC-FDO. The existing FDO finds the
best solution at the beginning of each iteration, consuming
more computational time when searching for the global best
solution. In contrast, the SC-FDO improves FDO by periodi-
cally updating the position around the global best solution (up
until now) to obtain the best search region during exploration
while exploiting and updating the global best solutions found
by each iteration. Consequently, the searchmoves towards the
global best solution over all previous iterations.

For example, if the current search agent position is superior
to the previous position, the search agent will be updated with
the current position as the global best solution. Hence, the
SC-FDO takes less time to achieve better results than the orig-
inal FDO and finally reduces the execution time of the pro-
posed SC-FDO.

In conclusion, we introduce the modified pace-updating
equation, the random weight factor (wf ) and global fit-
ness weight parameter (fw∗), the conversion parameter strat-
egy, and the best solution-updating strategy in the proposed

FIGURE 4. The pseudocode of the proposed sine cosine-fitness
dependent optimizer (SC-FDO).

SC-FDO algorithm. By integrating the strength of SCA to
exploit the refine search area for the best solutions, the
efficiency of the SC-FDO is improved. The pseudocode of
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SC-FDO is presented in Fig. 4, while the flowchart of
SC-FDO is illustrated in Fig. 5.

IV. NUMERICAL EXPERIMENT AND RESULTS
The proposed SC-FDO is implemented and evaluated over
a group of 29 benchmark test functions, as listed in Table 2
[4], [6] and Table 3 [6], [36].

A. EVALUATION CRITERIA
The following measures are applied to access the results of
the benchmark test functions.

1) STATISTICAL MEAN
The statistical mean is the average values of the optimal solu-
tion that are obtained by executing the optimization algorithm
for N number of times, and it is computed according to (16).

mean =
1
N

∑N

i=1
Ai (16)

where Ai is the optimal solution of the run time i.

2) STATISTICAL STANDARD DEVIATION (STD)
Statistical standard deviation (std) measures the differences
of each optimal solution from the mean, as defined in (17).
It computes the stability and robustness of the optimization
algorithm.

std =

√
1

N − 1

∑N

i=1
(Ai − mean)2 (17)

3) STATISTICAL MEAN EXECUTION TIME
Statistical mean execution time is the average computational
time taken by the optimization algorithm executing each
benchmark test function.

4) WILCOXON RANK SUM TEST
Wilcoxon rank-sum test is a non-parametric test for two
independent groups [37], and it is used to assess whether
the distributions of observations obtained between the pro-
posed algorithm and benchmark algorithm are systematically
different.

B. BENCHMARK TEST FUNCTIONS
The proposed SC-FDO was compared with six well-known
nature-inspired algorithms, namely FDO [6], IFDO [25],
SCA [4], WOA [8], PSO [1], and BOA [10]. The test func-
tions for the benchmark can be categorized into unimodal
functions (BF1-BF7), multimodal functions (BF8–BF13),
and composite functions (BF14-BF19), listed in Table 2.
The remaining BF20-BF29 test functions from CEC-C06
2019 [6], [36] are employed to evaluate the proposed
SC-FDO further, as shown in Table 3.

For each benchmark test function, all the algorithms were
tested with 30 runs. In the work of [4], [6], [25], a total
of 30 search agents and a maximum number of 500 iter-
ations were used in the experiments. Thus, the population

size was fixed to 30, and the maximum number of itera-
tions was 500. The experiments were conducted in a test
environment, equipped with a Windows 10 operating system,
an Intel (R) Core (TM) i7 processor with 16 GB RAM, and a
programming tool of MATLAB R2018a.

The algorithm parameter settings are set the same as the
original compared algorithms. For the parameter settings in
the FDO [6], the wf parameter was equal to 0 for all the test
functions except BF2 and BF6, in which wf was equal to 1.
The other parameters settings are as the followings: SC-FDO:
a = 2, wf [0, 1] and IFDO wf [0, 1].
Each algorithm was evaluated by three indexes: average

value, standard deviation, and execution time. Tables 4, 5,
and 6 show the comparison results in average values, standard
deviation, and execution time of each algorithm for all the test
functions.

C. COMPARISON OF SC-FDO WITH EXISTING
OPTIMIZATION ALGORITHMS
This section evaluates the proposed SC-FDOwith six existing
nature-inspired algorithms, such as FDO, IFDO, SCA,WOA,
PSO, and BOA.

As seen in Table 4, the proposed SC-FDO has the first
rank as it outperformed well in 15 test functions compared
to the other six optimization algorithms in BF1, BF2, BF3,
BF4, BF5, BF8, BF9, BF10, BF11, BF14, BF20, BF21,
BF22, BF25, and BF29. The IFDO, FDO, andWOA have the
second, third, and fourth ranks, respectively in average value.
However, the BOA recorded the lowest ranking in the perfor-
mance comparison. The following is the rank of algorithms
for generating values that are close to the theoretical optimal
average values: (1) SC-FDO (2) IFDO (3) FDO (4) SCA (5)
WOA (6) PSO (7) BOA.

For the evaluation of exploitation (BF1-BF7), the results
indicated that the proposed SC-FDO achieved the theoreti-
cally optimal average values of 0 in the test functions: BF1,
BF2, BF3, and BF4. The study proved that the proposed
SC-FDO is effective in exploitation and convergence because
it has high searching precision of unimodal test functions in
BF1, BF2, BF3, BF4, and BF5 test functions than the IFDO,
FDO, WOA, SCA, PSO, and BOA. Hence, the modified
pace-updating strategy is beneficial for enhancing the exist-
ing FDO and IFDO’s exploitation ability and subsequently
improved the exploitation and convergence speed of the pro-
posed SC-FDO.

For the evaluation of exploration (BF8-BF19), the pro-
posed SC-FDO outperformed the other six optimization algo-
rithms in most test functions (BF8, BF9, BF10, BF11, and
BF14). Specifically, the proposed SC-FDO could obtain the
theoretically optimal average value of 0 for the BF9 and
BF11 test functions. In addition, the SC-FDO has com-
parative results with the other algorithms in BF15, BF16,
BF17, BF18, and BF19. The results also evinced that the
proposed SC-FDO has significantly improved the original
FDO and IFDO. Hence, the modified pace-updating and
conversion parameters enhancements greatly eliminated local
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FIGURE 5. The flowchart of the proposed SC-FDO.
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TABLE 2. Benchmark test function [4], [6].
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TABLE 2. (Continued.) Benchmark test function [4], [6].

TABLE 3. The 100-digit challenge: CEC-06 2019 benchmark [6], [36].

128610 VOLUME 9, 2021



P. Chan Chiu et al.: Hybrid Sine Cosine and FDO for Global Optimization

TABLE 4. The average values of the proposed SC-FDO and other algorithms for the 29 benchmark test functions.

optima problems and optimized the balance of exploitation
and exploration in the proposed SC-FDO.

For CEC-C06 2019 (BF20-BF29) evaluation, the proposed
SC-FDO performed better than the other algorithms in BF20,
BF21, BF22, BF25, and BF29 tests functions. The results
also revealed that the proposed SC-FDO has significantly
improved the original FDO, in which the proposed improve-
ments in SC-FDO have successfully enhanced the ability to
avoid local optima and converge towards the global optimum
during optimization.

Furthermore, Table 5 indicates that the SC-FDO topped
the standard deviation ranking among all the optimization
algorithms. The IFDO and FDO shared the second-ranking,
followed by WOA and SCA. The SC-FDO outperformed
well in 15 functions (BF1, BF2, BF3, BF4, BF5, BF9, BF10,
BF11, BF14, BF20, BF21, BF22, BF25, BF26 and BF29).
For BF1, BF2, BF3, BF4, BF9, and BF11 test functions, the
SC-FDO achieved the theoretical optimal standard deviation,

in which the values were 0. In addition, the standard deviation
values of the proposed SC-FDO on most test functions are
within small ranges and ranked first in standard deviation,
indicating that the SC-FDO algorithm has better stability and
is able to search optimal solutions in a smaller range than the
original FDO and IFDO. The reason is that the adaptation of
the global fitness weight (fw∗), random weight factor (wf )
and conversion parameter strategies, which balance explo-
ration and exploitation of the search space, have led to a
convergence on the global optimum. However, the PSO and
BOA did not perform well in standard deviation. The BSO is
at the bottom of the ranking, while PSO is the lowest standard
deviation in the test cases.

For all the test functions, the average execution time used
by each algorithm over 30 runs is shown in Table 6. The
PSO has the minimum execution time, followed by theWOA,
BOA, SCA, SC-FDO, FDO and IFDO. The average exe-
cution time used by the SC-FDO is higher than the PSO,
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TABLE 5. The average standard deviation of the proposed SC-FDO and other algorithms for the 29 benchmark test functions.

WOA, BOA, and SCA; however, it revealed that the pro-
posed SC-FDO has lower average execution time than the
original FDO and IFDO. Although the space complexity of
the SC-FDO is slightly higher than the original FDO’s space
complexity, the introduction of the best solution-updating
approach has significantly decreased the computing time of
the proposed SC-FDO. Specifically, there is a significant
reduction of the average execution time in the SC-FDO,
approximately 87% and 89% of the original FDO and IFDO,
respectively. Hence, the findings proved that the proposed
SC-FDO has successfully reduced the original FDO and
IFDO’s computational time and substantially enhanced the
efficiency of the original FDO and IFDO.

Furthermore, a comparison between the convergence
curve of the SC-FDO and other algorithms on twelve
representative test functions is presented in Fig. 6. For the
BF1, BF2, BF3, BF4, BF5, BF9, BF11, BF20, and BF25 test
functions, the SC-FDO converged faster than the other algo-
rithms, consequently reduced the exploration and exploita-

tion time when finding the optimal global solution. This
finding shows that the effect of the proposed conversion
parameter and adaptive sine and cosine functions can signifi-
cantly optimize the exploration and exploitation ability of the
SC-FDO.

However, the SC-FDO converged less quickly than other
algorithms at the beginning of the iteration for BF10, BF14,
and BF29 in Fig. 6. Interestingly, the SC-FDO significantly
increased the convergence rate and accuracy as the itera-
tions approached 80, 466 and 220 iterations. The SC-FDO
eventually converged closer to the optimal global solution.
Therefore, this study concluded that the SC-FDO achieved
better results than the existing FDO, IFDO, SCA,WOA, PSO,
and BOA in terms of convergence precision and speed.

Therefore, it can be concluded that the proposed SC-FDO
is superior to the other optimization algorithms as it ranked
first among all the compared optimization algorithms in terms
of average values and standard deviation for the benchmark
test function.
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TABLE 6. The average execution time in seconds obtained by the proposed SC-FDO and other algorithms for the 29 benchmark test functions.

D. WILCOXON RANK SUM TEST
In the Wilcoxon rank-sum test, it is assumed that there is no
difference among the compared algorithms in the null hypoth-
esis, Ho. The alternative hypothesis, H1 assumes that there is
a difference between the compared algorithms for the average
values of the test functions in Table 4. The Wilcoxon rank-
sum tests indicated that the null hypothesis Ho is rejected,
and the results of SC-FDO are different from those com-
pared algorithms, at the 0.05 significance level. Therefore, the
SC-FDO results are statistically significant compared with
the benchmark algorithms, as presented in Table 7.

V. SC-FDO BASED MULTILAYER PERCEPTRON TRAINER
The SC-FDO is employed as a trainer to train and optimize
multilayer perceptron (MLP) network, abbreviate as SC-FDO
based MLP trainer.

Fig. 7 shows the structure of the multilayer percep-
tron (MLP) neural network. This network is also called a

feedforward neural network (FFNN). It is the most frequently
applied learning technique inMLP due to its stability and ease
of use [38], [39].

The weighted sums of inputs are computed according
to (18).

pj =
∑n

i=1

(
wij ∗ xi

)
+ bj, j = 1, 2, . . . , h (18)

where n is the number of the input nodes,wij is the connection
weight from the ith input node to the jth hidden node, xi is the
ith input and bj is the bias of the jth hidden node.
The output of each hidden layer is defined as follows:

Pj = tansig
(
pj
)
=

2(
1+ exp

(
−2 ∗ pj

))
− 1

,

j = 1, 2, . . . , h (19)
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FIGURE 6. Convergence curves of the SC-FDO and other algorithms on ten representative test functions.
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FIGURE 6. (Continued.) Convergence curves of the SC-FDO and other algorithms on ten representative test functions.
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TABLE 7. The P-value of Wilcoxon rank sum test between the proposed SC-FDO and other algorithms.

FIGURE 7. Multilayer perceptron (MLP) neural network.

The final output of the output layer is calculated using (20).

yk =
2(

1+ exp
(
−2 ∗ (

∑h
j=1

(
wjk ∗ pj

)
+ bk )

))
− 1

,

k = 1, 2, 3, . . . ,m (20)

where yk is the k th output, wjk is the connection weight from
the jth hidden node to the k th output node and bk is the bias
of the k th output node.

Furthermore, the SC-FDObasedMLP trainer will optimize
the neural network with a set of optimal values for the weights
and biases as described in (18)-(20). In the SC-FDO trainer,
each variable indicates the total of weights and biases and
defined as follows [39]:

v={W , b}=
{
w1,1,w1,2, . . . ,wn,h, b1, . . . , bh, w1,wh,bi

}
(21)

All the weights and biases variables need to converge
until the optimum solution is reached that provides the high-
est prediction accuracy. The evaluation metric of the neu-
ral network is the mean square error (MSE), as indicated
in (22).

MSE =
1
N

∑N

i=1
(y− ỹ)2 (22)

where N is the number of outputs,y is the actual value, and ỹ
is the predicted value by the SC-FDO based MLP trainer.
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A. CASE STUDY: MISSING WEATHER DATA IMPUTATION
This section further verifies the performance of the pro-
posed SC-FDO based MLP trainer by solving real-world
application problems. Rainfall data are essential components
of the hydrological cycle to assess flood risk [40] and predict
rainfall forecasting [41]. However, missing rainfall values in
the weather dataset reduces the accuracy and robustness of
the hydrological data analysis. In the real-world, the data
could go missing on more than 50% missing rates of the
variable (s) in the dataset due to the equipment malfunctioned
and measurement errors. Therefore, this section attempts to
compare the predictive ability of the proposed SC-FDO based
MLP trainer in handling high missing rates on the time series
dataset with benchmark approaches. In addition, the results of
the proposed SC-FDO based MLP with random weight fac-
tor, abbreviated as SC-FDO and SC-FDO with fixed weight
factor, abbreviated as SC-FDO (fixed wf ) were compared to
evaluate the effect of the proposed random weight factor in
imputation.

1) DATASET
The dataset used in this study was historical weather data
for Basel, Switzerland and downloaded frommeteoblue web-
site [42]. This study analyzed the daily historical weather
data from January 1985 to September 2020 with no missing
attribute values. We performed the principal component anal-
ysis method to find the most important features. The results
showed that the most important features are the rainfall,
average soil moisture, minimum soil moisture, max soil mois-
ture, minimum temperature, maximumwind speed, low cloud
cover low, medium cloud cover, high cloud cover, total cloud
cover, relative humidity, maximum relative humidity, and
minimum relative humidity. Furthermore, the daily weather
data were split into training and testing datasets. The size
of each training and testing dataset is 80% and 20% of the
daily weather dataset, respectively. The data were randomly
removed from the testing dataset in nine missing rates: 10%,
20%, 30%, 40%, 50%, 60%, 70%, 80% and 90% [43], [44].
Themissing valueswere categorized asmissing completely at
random (MCAR) [45], [46] because the presence of missing
values is not affected by the other variable values in the
dataset.

2) EXPERIMENT SETTINGS
The experiments were conducted using MATLAB R2018a.
The computer settings were set the same as the sub-section
of Benchmark Test Function settings at Section IVNumerical
Experiment and Results. All the experiments were executed
for 30 independent runs over each missing rate. The popula-
tion size was fixed to 30, the number of hidden neurons was
15, the maximum number of iterations (tmax) was 1100, and
the maximum number of epochs was 1000 on all simulations.
The parameter settings of the algorithms were presented
in Table 8.

TABLE 8. Parameter settings for algorithms.

3) PERFORMANCE MEASURES
The performances of the SC-FDO and the benchmark
approaches were measured as follows:
•Mean absolute error (MAE)

MAE =
1
N

∑N

i=1
|Oi − Ti| (23)

• Root mean square error (RMSE)

RMSE =

√∑N
i=1 (Oi − Ti)

2

N
(24)

• Correlation coefficient (R)

R =

∑N
i=1

(
Ti − T̄

) (
Oi − Ō

)√∑N
i=1

(
Ti − T̄

)2 (Oi − Ō)2 (25)

where N is the total number of observations, 0 is the actual
values of observations and T is the imputed values.

4) RESULTS AND DISCUSSIONS
The effects of missing data on the imputation ability of the
SC-FDO based MLP trainer and the benchmark approaches,
SC-FDO (fixed wf ), FDO, IFDO based MLP trainers are
shown in Fig. 8. The boxplots in Fig. 8 show a summary
of the distribution of imputation results based on minimum,
first quartile (Q1), median, third quartile (Q3) and maximum
values. First, the missing data imputation methods were eval-
uated for the low proportion of missing values, from 10%
until 40% missing rates, as depicted in Fig. 8(a)-8(c).

The FDO imputation method was the most sensitive to the
percentage of missing rates. The results indicated that FDO
has the lowest performance in the presence of low missing
values. The highest median of MAE in mm (10%: 0.179,
20%: 0.3904, 30%: 0.6324 and 40%: 0.8731) and the highest
median of RMSE in mm (10%: 0.7715, 20%: 1.3814, 30%:
1.6969 and 40%: 2.3070) but the lowest median of R (10%:
0.9889, 20%: 0.9630, 30%: 0.9442 and 40%: 0.8946) were
observed for the FDO imputation.

The IFDO imputation slightly performed better than the
FDO imputation. The MAE results indicated that IFDO was
less sensitive to the amount of low missingness than the
FDO imputation, in which the IFDO has the second-highest
median of MAE and RMSE. For the SC-FDO (fixed wf )
method, the MAE, RMSE, and R results show better model
performance than IFDO and FDO for all the low missing
cases.
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FIGURE 8. Missing data imputation on high-low missingness.
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In addition, the results showed that the SC-FDO imputation
achieved the lowest median of MAE (10%: 0.1149 mm,
20%: 0.3098 mm, 30%: 0.5253 mm and 40%: 0.7324 mm),
the lowest median of RMSE (10%: 0.6130 mm, 20%:
1.2784 mm, 30%: 1.5685 mm and 40%: 2.1431 mm), how-
ever the highest median of R (10%: 0.9929, 20%: 0.9691,
30%: 0.9527 and 40%: 0.9105) for the low proportion of
missingness cases. With the implementation of the random
weight factor (wf ) and global fitness weight parameter (fw∗),
the imputation results of SC-FDO showed improvements in
the three performance measures compared to the SC-FDO
(fixed wf ), FDO, and IFDO imputation. The shorter dis-
tributions of MAE, RMSE, and R in SC-FDO, indicating
that the SC-FDO is substantially better than SC-FDO (fixed
wf ), FDO, and IFDO imputation. Thus, the SC-FDO impu-
tation is the preferred method in the presence of low miss-
ingness compared to the SC-FDO (fixed wf ), FDO, and
IFDO.

Furthermore, this study revealed the effects of missing data
imputation for high missingness from 50% to 90%, as shown
in Fig. 8(d)-8(f). For the large proportion of missing data, two
imputation methods stood out as the median R values of the
SC-FDO and SC-FDO (fixed wf ) were higher than the other
two imputation methods. The SC-FDO (fixed wf ) was the
highest median R (R = 0.8481 mm) for the missing rates of
70%. Meanwhile, the SC-FDO obtained the highest median
of R values for the high missingness of 50%, 60%, 80%,
and 90%. The median R values indicated that overall, the
SC-FDO has higher accuracy than the SC-FDO (fixed
wf ), IFDO, and FDO imputation. The underlying rea-
son is the SC-FDO enables the scout bees to converge
more accurately than the SC-FDO (fixed wf ), FDO,
and IFDO compared to the equations (10)-(13) with (2)
respectively.

In addition, the FDO imputation generates the highest
median of MAE and RMSE values for all the high missing-
ness, with the MAE values, range between 1.0737 mm to
1.9363 mm and the RMSE values range between 2.4760 mm
and 3.2274 mm, respectively. On the other hand, the SC-FDO
demonstrated the best performances compared to the FDO
imputation. The median MAE and RMSE values of the
SC-FDO decreased by an average range between 0.18 mm
and 0.31 mm, and an average range between 0.17 and
0.25 mm, respectively. Meanwhile, the median MAE and
RMSE of SC-FDO (fixed wf ) and IFDO imputation laid
between the SC-FDO and FDO imputations.

Overall, the SC-FDO imputation outperformed the three
imputation methods with the highest average accuracy
of 90% when treating the low and high missingness in the
dataset.

Furthermore, a comparison of average execution time for
SC-FDO, SC-FDO (fixed wf ), FDO, and IFDO based MLP
trainers is plotted in Fig. 9. The proposed SC-FDO opti-
mizer trainer has the lowest average execution time. Mean-
while, the IFDO optimizer trainer took the longest average
execution time to perform missing data estimation for all

FIGURE 9. Comparison of average execution time (seconds) for SC-FDO
based MLP trainer and the benchmark approaches at different missing
rates.

the missingness. Overall, the average execution time of the
proposed SC-FDO was slightly less time than the SC-FDO
(fixed wf ). However, the FDO and IFDO optimizer train-
ers took more computational time to perform missing data
estimation than the proposed SC-FDO. The SC-FDO opti-
mizer trainer reduced the computational time up to an average
of 77% and 87% compared to the original FDO and IFDO,
respectively.

5) ANALYSIS OF IMPUTATION RESULTS
The proposed SC-FDO imputation-based MLP trainer
demonstrated the best performance for most levels of miss-
ingness than the other three optimizer trainers. This study
revealed that the proposed SC-FDO imputation method
achieved an improvement in prediction accuracy than the
SC-FDO (fixed wf ), FDO, and IFDO optimizer trainers. The
adaptation of the random (wf ) and global fitness weight (fw∗)
strategy improved the performance of the SC-FDO imputa-
tion. The global fitness weight (fw∗) parameter helped the
SC-FDO finds appropriate random wf over the iterations for
stable search.Without the global fitness weight (fw∗) strategy,
the small value of wf results in less exploration, whereas the
high value of wf may result in premature convergence. Addi-
tionally, the two strategies (the modified pace-updating equa-
tion and the conversion parameter) in the proposed SC-FDO
also enhanced the balance of exploratory and exploitative
characteristics of the original FDO. Consequently, the pro-
posed SC-FDO imputation produces consistently good impu-
tation results than the SC-FDO (fixed wf ), FDO, and IFDO
optimizer trainers.

In addition to that, the proposed SC-FDO also improved
the efficiency of the original FDO and IFDO imputation. The
SC-FDO has significantly shortened the computational time
of the FDO and IFDO, approximately 77% and 87%, respec-
tively. Themain reason is the proposed best solution-updating
function in the SC-FDO could positively reduce the time
taken to find the best search region by periodically updat-
ing the position around the global best solution during
optimization.

Furthermore, this study found that the performances of
the four imputation methods decreased as the missing rates
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increased. The level of imputation sensitivity depends on
the percentages of missingness and the imputation models.
The FDO imputation was the most sensitive for the growing
ratios of missingness in the dataset among the four methods.
The accuracy of the FDO imputation was reduced to 78%
when the missing rate is 90%. Similar distributions are also
observed for the SC-FDO (fixed wf ) and IFDO imputations.
However, the proposed SC-FDO imputation is less sensi-
tive as the fraction of missing data increased. The proposed
SC-FDO obtained an accuracy of 81% at the missing rate
of 90%. Our findings are consistent with the work done by
Gill et al. [47], Kim et al. [48], and Chiu et al. [49] that
the effect of missingness is significant when the fraction of
missing data grows larger. Therefore, the proposed SC-FDO
was the best method for the low and high proportions of
missingness.

VI. CONCLUSION
This study demonstrated the effect of the modified pace-
updating equation, the random weight factor (wf ) and global
fitness weight (fw∗) strategy, the conversion parameter strat-
egy, and the best solution-updating strategy in the proposed
SC-FDO. The benchmark test results revealed that the pro-
posed SC-FDO performed better than the existing FDO and
several well-known optimization algorithms in terms of con-
vergence precision and speed. The SC-FDO has significantly
obtained theoretically or approximately optimal solutions for
most of the benchmarking test cases. The results also proved
that the proposed SC-FDO has successfully balanced the
FDO’s exploitation and exploration, improved the conver-
gence speed, avoided the local optima, and moved towards
optimality. Furthermore, the Wilcoxon rank-sum test results
proved that the proposed SC-FDO was systematically differ-
ent from the benchmark algorithms at the 0.05 significance
level. Additionally, the proposed SC-FDO basedMLP trainer
demonstrated encouraging results than the SC-FDO (fixed
wf ), FDO and IFDO based MLP trainers in solving the prob-
lems of low and high missingness in the time series dataset.
The missing value cases were refined as optimization prob-
lems, where the four optimizer trainers were used to predict
missing values in the time series datasets at different missing
rates from 10% to 90%. The SC-FDO trainer outperformed
the other three optimizer trainers with the highest average
accuracy of 90% for all the missing rates. The SC-FDO
trainer also obtained a computational time reduction of 77%
and 87% inmissing data estimation compared to the FDO and
IFDO optimizer trainers, respectively. Therefore, the findings
of the proposed SC-FDO support its use to optimize the real-
world missing data problems.

VII. LIMITATION AND FUTURE WORKS
The SC-FDO requires parameter tuning for constant a in
the conversion parameter strategy. Since parameter tuning
is typically computationally expensive, particularly for real-
world applications, an automatic parameter tuning method
needs to further explore in the future. The researchers can

also investigate multi-objective parameter tuning and cost
effectiveness on the SC-FDO. In addition, the hybridization
of the SC-FDO with other metaheuristic algorithms such
as coot algorithm [20] and colony predation algorithm [21]
could be of interest to the researchers.
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