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ABSTRACT 

 

Polyamide-6 (PA6), acrylonitrile-butadiene-styrene (ABS) and their blends are 
an important class of engineering thermoplastics that are widely used especially for 
automotive industries. Many efforts have been taken to improve the properties of both 
pure components and the blends. It was for this reason that the dynamic mechanical and 
rheological properties of PA6/ABS blend systems compatibilised by acrylonitrile-
butadiene-styrene–maleic anhydride (ABS-g-MAH) was studied. The compatibiliser 
level was kept up to 5wt. % in the blends. Short glass fibre (SGF) was used to improve 
the stiffness of the compatibilised blends and the concentration was varied from 10 to 30 
wt. %. Therefore, the reason behind of blending the PA6/ABS blends with short glass 
fibre was to balance the toughness and stiffness. The blends and corresponding 
composites were compounded using a co-counter twin srew extruder. Tensile, flexural 
and impact properties were determined using the injection moulded test samples 
according to ASTM standards. Dynamic mechanical analyses (DMA) were carried out 
to investigate the dynamic mechanical behaviour of the blends and composites. 
Rheological properties were carried out using dynamic and capillary rheometer. In 
general, the mechanical strength either dynamic (refer to DMA) or static conditions were 
improved by incorporation of compatibiliser to the PA6/ABS blends. The incorporation 
of SGF into the PA6/ABS blends enhanced the mechanical strength however, reduced 
the toughness of the composites. The rheological measurements confirmed the increased 
in interaction between the blend components with the incorporation of compatibiliser 
The compatibiliser has no favourable effect on the mechanical properties of the 
composites although it has significant effect on the blends of PA6/ABS. ABS-g-MAH 
increases the melt viscosity of the blends. The SGF increased the rheological properties 
especially viscosity and flowability of the composites. The optimum ratio compatibiliser 
and SGF concentration were successfully determined using power law and consistency 
index analysis. From the analysis the optimum ratio obtained was 1.5 wt. % for 50/50 
and 60/40 PA6/ABS blends and 3 wt. % for 70/30 PA6/ABS blends.  When the SGF 
introduced at 20 wt. % concentration, the values of n drastically decreased indicating 
more pseudoplastic nature for the composites and concluded that, the optimum 
concentration of SGF was about 20 wt. %. 
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ABSTRAK 

 

Poliamida-6 (PA6), akrilonitril-butadiena-sterina dan adunan keduanya 
merupakan satu bahan kejuruteraan termoplastik yang penting dan sangat luas 
penggunaanya terutama dalam industri automotif. Pelbagai usaha telah diambil untuk 
memperbaiki sifat-sifat kedua-dua komponen dan adunannya, Ini menjadikan alasan 
kajian terhadap sifat-sifat dinamik mekanikal dan reologi sistem adunan PA6/ABS yang 
telah diserasikan oleh akrilonitril-butadiena-sterina-melaik anhadrida (ABS-g-MAH). 
Aras penserasi dalam adunan PA6/ABS telah ditetapkan sehingga 5 wt. %. Gentian kaca 
pendek (SGF) telah digunakan untuk mempebaiki kekakuan adunan yang telah 
diserasikan dan kandungan SGF dalam adunan diubah dari 10 hingga 30 wt. %. Oleh 
yang demikian, ini adalah alasan disebalik campuran adunan PA6/ABS dengan gentian 
kekaca pendek mengimbangkan kekakuan dan kekukuhan adunan. Adunan dan 
komposit telah diadun dengan menggunakan penyemperit skru berkembar arah 
berlawanan. Sifat-sifat ketegangan, kelenturan dan hentaman telah ditentukan dengan 
sampel yang dibentuk dengan menggunakan acuan penyuntikan berdasarkan piawaian 
ASTM. Analisis dinamik mekanikal (DMA) telah dilakukan untuk menyiasat kelakukan 
dinamik mekanikal adunan dan komposit.  Sifat-sifat reologi telah dikaji menggunakan 
alatan reologi rerambut dan pengayun. Secara umumnya, kekuatan mekanikal sama ada 
dinamik (rujuk kepada DMA) atau kekautan mekanik statik telah diperbaiki dengan 
penambahan penserasi ke dalam adunan PA6/ABS. Penambahan SGF pula ke dalam 
adunan telah mempebaiki kekuatan mekanikal bahan, walau bagaimanapun menurunkan 
kekukuhan komposit. Kajian reologi telah menentukan peningkatkan interaksi antara 
komponen adunan dengan penambahan SGF. Penserasi tidak mempunyai kesan terhadap 
sifat-sifat mekanik komposit, walaupun ada kesan yang ketara terhadap adunan 
PA6/ABS. Di mana juga, ABS-g-MAH meningkatkan kelikatan leburan adunan. SGF 
pula meningkatkan sifat-sifat reologi komposit terutamanya kelikatan dan keboleh-
alirannya. Pecahan penserasi dan kepekatan SGF yang optimum telah berjaya ditentukan 
dengan menggunakan analisis indek hukum kuasa dan ketetapan. Dari analisis pecahan 
kandungan optimum yang telah didapati adalah 1.5 wt. %  untuk adunan PA6/ABS 
50/50 dan 60/40 PA6 dan 3 wt. % pulak untuk adunan PA6/ABS 70/30.  Apabila SGF 
telah ditambahkan pada kepekatan 20 wt. %, nilai indek hokum kuasa menurun sceara 
mendadak menunujukkan komposit mempunyai sifta-sifat pseudoplastik yang jelas dan 
disimpulkan bahawa 20 wt. % adalah kepekatan optimum bagi komposit PA6/ABS 
60/40. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 Introduction 

 

Polyamides (PA)s are a particularly attractive class of polymers due to their 

good strength and stiffness, low friction and excellent chemical and wear resistance. 

The beneficial properties have led to the wide range of usage especially in 

automotive, electrical and mechanical application. However, PAs has some 

disadvantages associated with their processing instability – high mould shrinkage 

and dimensional stability – due to inherent properties of rapid crystallisation (Jang 

and Kim, 2000) and high moisture sensitive because their hygroscopic nature 

(Acierno and Puyvelde, 2004). These characteristics significantly limit to their 

utility. Fortunately, the inherent chemical functionality of PA makes them an 

attractive for modification. Therefore, several efforts have been put forth to minimise 

the drawbacks by blending with appropriate polymer or material. 

Polyamide 6 (PA6) is often blended with suitable elastomers with chemical 

functionality that can react with PA chain ends. PA6 also can be blended with other 
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copolymers and reduce water absorption ability. Many authors discussed the 

approaches of improving the toughness by reacting polymers which contain 

appropriate chemical functionalities with acid or amine end groups of the PA during 

melt processing and also blended with elastomers such as Acrylonitrile Butadiene 

Styrene (ABS) (Kudva et al., 2000; Araujo et al., 2002; Araujo et al., 2003), 

Ethylene-Propylene-Diene (EPDM), Poly(phenylene oxide), polyolefin elastomer 

(Wahit et al., 2005; Wahit et al., 2006), ethylene copolymer (Triacca et al., 1991)  

and natural rubber (NR) (Carone et al., 2000).  

The strong reasons behind the blending of ABS with PA6 is that the relatively 

lower price of ABS compared to PA6, good processibility, low water absorption and 

high impact strength (Howe and Wolkowicz, 1987). ABS is also stronger than PA6 

and low mould shrinkage, even if other mechanical and thermal properties are not as 

good as PA6. However, blends of PA6 and ABS are immiscible throughout the 

whole range of compositions and exhibit low impact toughness because large 

butadiene particles formed during the melt blending process reduce the interfacial 

adhesion (Tjong et al., 2002). In absence of compatibiliser, such blends lack the 

interfacial adhesion and generally exhibit poor mechanical properties. Therefore, 

reactive compatibilisation is the most promising way to enhance the interfacial 

adhesion and improve the compatibility of PA6 and ABS blends. Few types of 

compatibiliser have been used in the previous studies of PA6/ABS blends, however, 

very little literature reported on using ABS-grafted-maleic anhydride as 

compatibiliser of PA6/ABS blends. Therefore, in this research, a desirable 

combination of toughness of ABS and rigidity of PA6 will be realised by adding 

ABS-g-MAH as compatibiliser to enhance the phase adhesion of the blends.  

Compatibilised PA6/ABS blends still have a few weaknesses, even though 

other properties could be improved. It has been shown that the strength of PA6/ABS 

blend especially tensile strength is lower than the virgin PA6 (Meincke et al., 2004; 

Kudva et al., 2000) and depending on the ratio of PA6 added into the blends (Cho 

and Paul, 2001), impact property became poorer when the proportion of PA6 in the 

system was decreased (Chiu and Hsiao, 2004). The PA6 blends can be ‘supertough’ 

that is, having Izod impact strength higher than 800 J/m (Cho and Paul, 2001) 
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however; it is believe that, the incorporation of a rubber phase in PA6 reduces the 

strength and stiffness relative to virgin PA6. Consequently, the blends of PA6 with 

ABS are still not a right answer to become an alternative material and will not 

contribute synergistic effects for the both properties. Reinforcement by inorganic 

(Tjong and Xu, 2001) or short glass fibre (Nair et al., 1997) can restore the required 

strength and stiffness of rubber toughened PA6s, leading to the formation of ternary 

or hybrid composites. 

The additions of rubber or elastomeric materials such as ABS into PA6 lead 

to a reduction of strength and stiffness. In contrast, reinforcing thermoplastics by 

short glass fibre (SGF) will improve both strength and high mechanical stiffness 

(Tjong et al., 2000; Fu et al., 2000) but a high content of glass fibres are necessary to 

achieve high strength and high stiffness (Fu and Lauke, 1998; Fu et al., 2000; Bader 

and Collins, 1983; Biolzi et al., 1994). Unfortunately, there was considerable loss in 

toughness and ductility when these short glass fibres were incorporated to the 

composite (Ahn and Paul, 2006). As a result, the combination of reinforcement and 

ABS will balance the impact and stiffness of the materials.  

Some questions would arise; will this composite be easily processed through 

injection moulding process or any other thermoplastics processing conditions? Will 

this composite material be easily moulded to form small and critical part especially 

in automotive? Most of the composite materials containing fibres are difficult to 

produce by injection moulding due to its high viscosity. The composite materials are 

then processed either by using compression moulding or extrusion. Thus, in order to 

investigate the processibility, the rheological properties of the composite have to be 

thoroughly investigated by using rheological apparatus such as dynamic and 

capillary rheometer. 
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1.2 Problem statements 

 

The important reason in polymer blend either reinforced or non-reinforced 

development is to achieve a good combination set of properties and processibility. 

Since, only a few literature reviews have been reported on short glass fibre 

reinforced PA6/ABS composites, it is the objective of the present research to 

investigate specifically the dynamic mechanical and rheological properties of the 

composites. Until the present time, the rheological properties of non-reinforced 

PA6/ABS blends have only been studied for a narrow range of compositions (Jafari 

et al., 2002).  

Followings are the current problem to be investigated, discussed and 

explained in the present study. 

i. How the composition of SGF affects the thermal properties of the composites? 

ii.  Does the dynamic mechanical and mechanical properties of the composites 

improved by incorporation of SGF? 

iii.  What is the rheological behaviour of the composites when the amounts of SGF 

vary from 0 up to 30%? 

iv. What is the optimum composition of short glass fibre, referring to the dynamic 

mechanical and rheological properties? 
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1.3 Objectives 

This present study has three stages of sub-study. First is to study the effect of 

ABS in PA6 blends without compatibiliser. This study focuses on mechanical 

properties and thermal properties. The study on the effect of compatibiliser in the 

blends will be conducted in the second stage.  

 The study on the dynamic mechanical and rheological properties of polymer 

blends is of great theoretical and practical importance that will help to understand the 

dynamic mechanical behaviour of the blends and the rheological properties of 

polymer blends and composites.  

While prior research has been performed on the rheology and dynamic 

mechanical properties of PA6/ABS blends, more extensive analysis on the glass fibre 

reinforced PA6/ABS composites is still quite necessary due to many questions still 

unanswered. This study dealt on the dynamic mechanical, processing, thermal, and 

morphology of the PA6/ABS blends and compositions. Direct outcomes of this 

research may lead to factors that may or enhance desired properties in automotive 

parts. Overall, the objectives of this study are: 

i. To study the effects of incorporating various composition of SGF on 

PA6/ABS composites on thermal properties. 

ii.  To investigate the improvement with introduction of glass fibre into 

PA6/ABS composites on dynamic mechanical and mechanical properties of 

automotive parts. 

iii.  To explore the rheological behaviour of the composites by increasing the 

amount of SGF from 0 to 30 wt. %. 

iv. To determine the optimum composition of SGF, referring to the dynamic 

mechanical and rheological properties.  
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1.4 Scopes of Study 

 

In order to achieve the objectives, the scopes covered are as follows: 

1. Sample preparation of PA6/ABS blends 

o In this work, sample was prepared using melt intercalation method which 

was carried out using a twin-screw extruder over the set range of 

compositions between ABS, PA6 and ABS-g-MAH. This was followed 

by the injection moulding process to prepare test specimen according to 

the ASTM testing standard. 

o There were two set of samples with the set of range composition prepared 

for testing and analysing: uncompatibilised PA6/ABS blends and 

compatibilised PA6/ABS blends. 

o The PA6 contents in PA6/ABS blends range from 70% - 50% weight 

ratio. While, the ABS-g-MAH percentage as compatibiliser was varied 

from 1, 3 and 5 wt. %. 

2. Sample preparation of PA6/ABS composites 

o The composite samples were prepared using melt intercalation method.  

o The PA6, ABS and ABS-g-MAH composition were selected based on the 

optimum ratio which was obtained from the study of polymer blends.  

o The amounts of glass fibre were added into PA6/ABS blends gradually 

from 0 to 30 wt. %. 
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3. The entire samples specimens were tested in order to study the mechanical and 

dynamic mechanical properties: - tensile, flexural and impact for automotive 

parts according to ASTM standard as well as dynamic mechanical analysis 

(DMA). 

4. Differential Scanning Calorimetery (DSC) was used to investigate the 

compatibility of the sample by obtaining thermal properties; the glass transition 

temperature, melting temperature and degree of crystallinity.  

5. Rheological studies – capillary and rotational rheometer were used to investigate 

the rheological parameters of polymer composites and blends.  

6. Scanning electron microscopy analysis was carried out to evaluate the 

morphology of the blends and composites. 

7. Fourier transforms infrared analysis was carried out to confirm the reaction 

during melt intercalation process. 

8. Scanning electron microscopy was carried out to investigate the morphological 

structure of the samples. 



 

CHAPTER 2 

 

 

LITERATURE REVIEW AND THEORY 

 

 

2.1 Polymer Blends 

 

Polymers blends play an important role in widen the plastics application because 

of their ability to produce new products with a wide range of properties interest with 

minimal investment (Paul, 1978) and became one of the fastest growing segments of 

polymer technology in commercial applications and developments (Utracki et al, 1989). 

The term polymer blend can be used to describe a mixture of at least two 

macromolecular substances, polymers or copolymers (Utracki, 2002). Another word is a 

polymer alloy; it can be described as an immiscible polymer blend with a distinct phase-

morphology (Utracki, 1990) or with stabilised morphologies (Utracki et al., 1989). An 

interpenetrating polymer network is also a polymer blend in which one or more 

components undergo polymerization or crosslinked in the presence of the other (Utracki 

et al., 1989). Another term being adopted in this study is compatible polymer blends, 

which indicate commercially useful materials, a mixture of polymer without strong 

repulsive forces that is homogenous to the eye (Utracki et al., 1989). Other terms can be 
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used to describe polymer blends for example compatibilised polymer blends and these 

primarily relate to state of miscibility of the blend. 

The polymer blends are classified as either miscible and immiscible; the former 

defined as homogenous down to the molecular level, having the negative free energy of 

mixing: and a positive value of the second derivative: 

, where ,  and   are the volume fraction of the dispersed 

phase, Gibbs energy of mixing and heat of mixing, respectively. Most polymer pairs are 

immiscible (Kumar and Gupta, 1998; Utracki, 1990) and need to be compatibilised to 

achieve a stable morphology and set of performance characteristics. The blending 

process of two polymers can be melted-blending in an extruder or dissolved in a 

common solvent and then removing the solvent, however, the procedure does not ensure 

that the two polymers will mix on a microscopic level. It is well known that the 

production of miscible, immiscible binary and ternary blends of polymers can lead to 

composite materials with special chemical, thermal, mechanical and rheological 

properties. These materials normally have more favourable properties than those of their 

pure constituents. These properties include reduced viscosities; improved moduli and 

tensile strength (Sridan et al., 1998; Shonaike et al., 1995; Fayt et al., 1982) induced by 

processing (Pellerin et al., 2000; Doi and Ohta, 1991) and enhanced crystallinity (Guschl 

et al., 2002; Chen and Porter, 1993). Typical polymer blends consists of two or more 

dissimilar materials such that the resultant blend will have combined properties of each 

constituent. The blending of a semicrystalline polymer (ductile) with an amorphous 

polymer (brittle) also will end up with a material with both elastic and rigid 

characteristics, depending on the amount/composition/proportions of the blending 

constituents.  

 

 



 

 

11

2.2 Overview of polymer composite 

 

Introduced over 50 years ago, composites are fibre-reinforced plastics used in a 

variety of products, applications and industries. The term "composite" can apply to any 

combination of individual materials consisting two or more distinct phases with an 

interface between them (Karger-Kocsis, 2000). Composites focus on fibres, primarily 

glasses that have been impregnated with a plastic resin matrix. Combining glass fibres 

with resin matrix is resulted in composites that are strong, lightweight, corrosion-

resistant and dimensionally stable. They also provide good design flexibility and high 

dielectric strength, and usually require lower tooling costs. Because of these advantages, 

composites are being used in a wide variety of applications, such as sport and leisure and 

as replacement of automotive part. Their tremendous strength-to-weight and design 

flexibility make them ideal in structural components for the transportation industry. 

High-strength lightweight premium composite materials such as carbon fibre and 

epoxies are being used for aerospace applications and high performance sporting goods. 

Their superior electrical insulating properties also make them ideal for appliances, tools 

and machinery. Tanks and pipes constructed with corrosion-resistant composites offer 

extended service life over those made from metals. 

The roles of matrix in the composite are as follows:-  

• for transferring the load from the matrix to the reinforcement 

• for distributing the stress among the reinforcement’s elements 

• for protecting the reinforcement from environmental attack 

• for positioning the reinforcing material 

Meanwhile, the reinforcement functions is to carry the load and interface (2 

dimensions) or interphase (3 dimensions) is a negligible or finite thin layer with its own 
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properties, and to transfer the stress from the matrix to the reinforcement (Karger-

Kocsis, 1996). 

One of composite main advantages is how their components for example glass 

fiber and resin matrix complements each other. While thin glass fibres are quite strong, 

they are also susceptible to damage. Certain plastics are relatively weak, yet extremely 

versatile and tough. Combining these two components together, however, results in a 

material that is more useful than either is separately. With the right fibre, resin and 

manufacturing process, designers can tailor composites to meet final product 

requirements that could not be met by using other materials. The purpose of 

reinforcement in the polymeric material is aimed to improve the toughness of the 

composites, and achieving the desired balance between stiffness and toughness, also to 

reduce the brittleness of matrix and inhibits notch sensitivity. The goals of the polymer 

composite also are to improve the heat distortion temperature and reduce some 

environmental effects such as water susceptibility and reduce the cost of materials and 

processing. The mechanical performance of the related composites also can be tailored 

by adding a coupling agent, compatibiliser and impact modifier. As a result, these added 

materials improve the interfacial adhesion between the reinforcement and matrix.  

Factors affecting the mechanical performance of reinforced thermoplastics 

blends are summarised in Figure 2.1: - 
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Figure 2.1 : Factors influencing the mechanical performance of reinforced polymer 
blends (Karger-Kocsis, 2000). 

 

2.3 Compatibilisation of Polymer Blends and Composites 

 

Compatibility is affected by the nature and extent of the wetting and absorption 

phenomena which is associated with adhesion. Compounds that are used in promoting 

adhesion in polymer blends are known as “coupling agents”, “compatibiliser”, “filler” 

and interfacial agents”. The common word being used in this field of study is 

compatibilisation. Compatibilisation is a process of modifying the interfacial properties 

of immiscible polymer blend, resulting in reduction of the interfacial tension coefficient, 

formation and stabilization of the desired morphology (Utracki, 2002). Therefore, the 
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compatibilisation is an essential process that converts a mixture of polymer into alloy 

that has the desired set of performance characteristics.  

Blending of two different polymeric materials involves several steps that could 

produce blends with stable and reproducible properties. Since the material performances 

depend on morphology, so it must be optimized for the desired performance, i.e., during 

forming to be either stable or reproducibly modifiable.  

The compatibilisation methods can be divided into two categories (Utracki, 

2002): 

a) By addition of : (i) a small quantity of a third component which is miscible 

with both phases (co-solvent); (ii) a small quantity of copolymer which will 

miscible into both polymer phases; (iii) a large amount of a core-shell, multi 

purpose compatibiliser-cum-impact modifier. 

b) By reactive compatibilisation, which uses these strategies; (i) trans-reactions; 

(ii) reactive formation of graft, block or lightly crosslinked copolymer; (iii) 

formation of ionically bonded structures; and (iv) mechano-chemical 

blending that may lead to chain’s breakage and recombination. 

As have been mentioned by many researchers, that most of polymer pairs or blends 

are immiscible and therefore must be compatibilised by means of either one of the above 

method before they can be rendered “useful”. According to Utracki (2002) the goals of 

compatibilisation process are as follows: 

a) To adjust the interfacial tension, thus engender the desired dispersion 

b) To ensure that the morphology generated during the alloying stage will yield 

optimum structure during the forming stage 
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c) To enhance adhesion between the phases in the solid state, facilitating the 

stress transfer hence improving performance 

 

2.4 Overview of polymer rheology 

 

The science of deformation and flow is called rheology, and the flow properties 

of polymer are called rheological properties. The word rheology is derived from the 

Greek word, “rheos” meaning flow. Rheology is used to measure, describe, explain and 

apply the phenomena of plastics deformation and flow occurring in bodies on being 

deformed (Kirschke, 1976; Han, 1976). Another definition of rheology that can be found 

in most rheology textbooks is the science of flow and deformation of matter (Gupta, 

2000; Carreau et al., 1997; Barnes et al., 1989; Cogswell, 1981). Definition by Morrison 

(2001) stated the rheology is the study of the flow of materials that behave in an 

interesting or unusual manner.  

All the definitions do not specify whether the material is a solid or fluid because 

it can be applied to both materials. Like fluids, solids also undergo deformation and flow 

such as that occur in metal forming and stretching of rubber. Sometimes the flow of 

solids is very slow and unnoticeable for example creeping flow of polymer solids and 

soil movement. However, mostly the term of rheology is most commonly applied to the 

study of fluids or fluid-like materials such as paint, oil well drilling mud, blood, polymer 

solutions and molten polymers in which flows are more pronounced. Accordingly, the 

two key words in the definition of rheology are deformation or flow and force (Dealy 

and Wissbrun, 1990). Rheology is concerned with the description of the deformation of 

the material under the influence of stresses (Shenoy, 1999). In order to learn anything 

about the rheological properties of material, one must either measure the deformation 
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resulting from a given force or measure the force required to produce a given 

deformation. 

Polymeric materials like any other materials are in need of forming process in 

order to make them useable. Regardless of the materials, any forming process involves 

deformation and flow, which transform them into shapes that are desired or required. 

Examples of forming processes for polymeric materials are injection moulding, 

extrusion, compression moulding and blow moulding. Generally, the polymeric 

materials are subjected to deformation induced by parameters such as pressure and 

temperature and are forced to flow in confined geometries such as barrels, runners, dies 

and moulds which directly or indirectly contribute to the final shapes. The flow that 

occurs inside these geometries can strongly influence the physical nature of the product. 

Therefore, it is important to understand the flow characteristics or patterns in which 

polymeric material flows, i.e. polymer rheology. A better understanding of polymer 

rheology is an essential step to the successful processing of polymeric materials. 

Success in achieving good properties in a polymer system depends on 

understanding the behaviour of the polymer during processing and preparation 

(Borgaonkar, 1998). Most of polymer processing, including reshaping or forming are 

done in the molten phase. Therefore, amorphous polymer exhibits softening temperature 

range in which all the random chain entanglements slowly unwind, and flow of the 

polymer chains past each other occur, depending on the direction of the shear force.  

In the 1970s, there has been a steadily growing interest, among both academic 

and industrial communities, in applying the fundamental concepts of rheology to 

polymer operations (Dealy and Wissbrun, 1990). The true interplay between rheology 

and polymer processing seems to have just started, and there are a number of 

challenging and difficult questions to be answered in many polymer operations of 

industrial importance.  
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 The mechanical properties of multi-component polymer materials are first 

determined by the properties of the constituent polymers. However, to a high degree, 

they are influenced by the blend morphology, which in turn it depends on the 

thermodynamic interactions between the two polymers; the rheological behaviour of the 

constituents and the processing conditions (Xu et al., 1999). Rheological studies can 

give access to information pertaining to the structure, morphology and processing of the 

materials (Utraki, 1993). Rheology is a key in polymer research, being an important link 

in the so-called ‘chain of knowledge’ reaching from the production of polymers to their 

end-use properties (Markus, 2001). So, the understanding of polymer rheology is the key 

to effective design material plus process selection, to efficient fabrication, and 

satisfactory service, yet few engineers make adequate use of what is known and 

understood in polymer rheology (Lenk, 1978).  

 

2.5 Significance of rheological properties studies 

 

A very common reason for the study of rheological properties is for the purpose 

of quality control where the raw materials must be consistent from batch to batch as such 

as flow behaviour is an indirect measure of product consistency and quality. Therefore, 

rheological properties are very important in quality control line during production or to 

process control in predicting and controlling a host of raw material and product 

properties, end-use performance and material behaviour. 

Another reason for study of flow behaviour is that a direct assessment of 

processibility can be obtained. Knowing its rheological behaviour of polymer is useful 

when designing the process and usage of the polymeric materials for automotive 

application.  It has also been suggested that rheology testing is the most sensitive method 
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for material characterization because flow behaviour is closely associated to properties 

such as molecular weight and molecular distribution. 

Having a rheological knowledge is important in providing understanding of a 

forming process, which is considered as the heart of product fabrication. In polymer 

processing, an understanding of polymer rheology is the key to effective design, material 

and process selection, efficient fabrication and satisfactory service performance (Lenk, 

1978). Usually, rheological data is used in determining whether or not a type of polymer 

can be extruded, moulded and shaped into a practical and useable product. In 

commercial processing, molten polymer is forced to flow through orifice or die as well 

as into cavities that may have various shapes. If the viscosity of the molten polymer is 

not suitable with processing conditions, defects may occur during a pre and post-

processing.  

Other than polymer processing, one of the main fields in polymer studies 

concentrates on the end properties and applications of polymer products where 

properties such as mechanical and physical properties are very important. Of course, 

these properties are influenced by rheological behaviour. Deformation and flow result in 

molecular orientation, which has dramatic effects on physical and subsequently 

mechanical properties of moulded parts, profile extrudates and films. The kind and 

degree of molecular orientation are largely determined by rheological behaviour of the 

polymer and the nature of the flow in the fabrication process (Gupta, 2000).  

The extent of understanding rheology relies on the individual’s needs and 

desires. Brydson (1981) has concluded that rheological study can lead to many benefits, 

as follows: 

a) It is possible to understand processing faults and defects which are of 

rheological origin and hence make logical suggestions for adjusting the 

processing conditions for either minimizing or completely removing the 

fault. 
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b) It is possible to make a more intelligent selection of the best polymer or 

polymer compound to use under a given set of circumstances. 

c) It can lead to quantitative and to some extent quantitative, relationship 

between such factors as output, power consumption, machine dimensions, 

material properties and operational variables such as temperature and 

pressure. 

d) There are some, limited, use in providing information on molecular 

structure. 

 

2.6 Application of rheology to polymer processing 

 

Polymer processing operations resemble those of classical mechanical or 

chemical unit operations, which involve momentum, energy and mass transport of 

polymeric materials. Some representative polymer operations of industrial importance 

are extrusion, injection moulding, blow moulding and thermoforming (McKelvey, 1962; 

Pearson and Richardson, 1983; Tadmor and Gogos, 1979). However, because of the 

special characteristics (i.e. viscoelasticity) those polymeric materials posses, polymer 

processing operations are usually more complex than mechanical or chemical 

engineering unit operations. A good understanding of polymer operations requires 

knowledge of several branches of science and engineering, such as polymer chemistry, 

mechanics of non-Newtonian viscoelastic fluids and macromolecular behaviour under 

deformation, which is often accompanied by heat and mass transfer and/or chemical 

reactions. 
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The study of polymer operations demands the knowledge of the relationship 

between processing variables, mechanical properties and molecular parameters with the 

flow or rheological properties as shown in Figure 2.2.  

 

Figure 2.2. Rheological parameters acting as a link between molecular structure and 
final properties a polymer (Markus Gahleitner, 2001) 

 

Figure 2.2 further shows that there are a number of areas where a better 

understanding of rheology can assist polymer processing operations. One such area is 

the characterisation of polymeric materials in terms of their viscoelastic properties either 

by using existing rheometers or developing new rheometers (Cogswell, 1981; Barnes et 

al., 1989). Better understanding of the rheological properties would help in determining 

the molecular weight and molecular weight distribution of a polymer in order to provide 

optimum processing condition or achieve desired properties in the final product.. 

Rheology also help in determining optimal design of processing equipment, such 

as extrusion die, extrusion screws, various moulds for injection moulding and mixing 
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devices (Tadmor and Gogos, 1979; Micheali, 1992). A proper design of processing 

equipment requires information of flow properties of the material under consideration. 

For instance, in an extrusion operation, geometrical factors such as die entrance angle, 

the screw length-to-diameter ratio and the reservoir-to-capillary diameter ratio may 

significantly affect processing conditions and subsequently the mechanical and/or 

physical properties of the final product. 

Besides experimental or practical assistance, rheology also helps to polymer 

processing in carrying out theoretical analysis of the flow mechanics of rheologically 

complex polymeric materials in various kinds of processing equipment. Theoretical 

analysis requires a rheological model, which describes reasonably well the flow 

behaviour of the material under consideration. Hence, given a flow field of a particular 

material, the development of an acceptable rheological model is very important to the 

success of the theoretical study of flow problems. Such a theoretical study should be 

useful for designing better processing equipment and determining optimal processing 

conditions (Han, 1976). Therefore, understanding the relationships between the 

rheological properties and processing conditions is essential to develop criteria for 

evaluating the prosessibility of the plastics and optimizing the process (Bargaonkar, 

1998). 

 Besides of the explanation above, in a composite technology, polymer scientists 

are interested because of the need to develop and process new composite materials with 

desired physical and mechanical properties. Therefore, the rheological behaviour of 

composite materials is not only governs the performance of end-products but also 

controls the fluid and heat transfer characteristics during polymer processing (Hscich, 

1982).  
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2.7 Rheometers 

 

2.7.1 Introduction 

 

Rheology includes almost every aspect of the study of deformation of materials 

under the influence of imposed stress; and rheometric techniques help to define the flow 

properties of materials from a practical view. Commercial interest in synthetic polymers 

has been the greatest impetus to the science of rheology. The rheology of a material 

dictates whether or not the polymer can be processed, shaped, and formed into desired 

product in an efficient and economical manner, at the same time maintains dimensional 

stability and high quality. 

Rheometers are instrument designed to measure the rheological properties of 

materials. Most rheometers are built on the principle of shear deformation; the quantity 

measured by rheometers either force, pressure drop or torque that is directly related to 

the shear stress. The simplest type of shear deformation is “simple shear”, which is the 

deformation generated when a material is placed between two parallel flat plates and one 

of the two plates is then translated, while the gap between the plates is kept constant. If 

the gap is y and the linear displacement of the moving plate is ∆x , then the deformation 

generated is the “shear strain”, γ , given by (see Figure 2.3):  



 

 

23

 

Figure 2.3: Shear flow results when plates move past one another 

 
 

           (2.1) 

If the plate moves at a constant velocity, , then the “shear rate”,   is 

           (2.2) 

The quantity measured is the shear stress, τ, defined, as the force required to 

move the plate, divided by the area of the plate wetted by the material being deformed. 

          (2.3) 

Such an arrangement can be used to measure rheological properties by displacing 

the moving plate in some prescribed way and measuring the resulting shear stress, τ. The 

F 
A 

τ =
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rheological behaviour can then be described by giving the relationship between the 

stress and the shear strain or the shear rate. 

Materials consisting of a single liquid phase and containing only low molecular 

weight, mutually soluble components, are usual Newtonian fluids under normal 

conditions. For a Newtonian fluid, the shear stress, τ, is proportional to the shear rate, γ& . 

This can be expressed quantitatively by the following equation: 

τ ηγ= &           (2.4) 

where η is the viscosity of the fluid. For a Newtonian fluid the viscosity depends on 

composition and temperature but not on the shear rate. Many materials processed 

commercially are multiphase fluids, which include fermentation broths, mineral slurries, 

paints and foodstuffs. Another important category of materials is polymeric liquids, 

either polymer solutions or molten resins. All these materials can be non-Newtonian. 

The simplest manifestation of non-Newtonian behaviour is that the viscosity varies with 

the shear rate in steady simple shear, thus the relationship between them can be written 

as follows, 

( )
τ η γ
γ

= &
&

           (2.5) 

where η is the viscosity. The most common type of non-Newtonian behaviour is that the 

viscosity decreases as the shear rate increases, and such a material is said to be “shear 

thinning” or pseudoplastics. Some concentrated suspensions can exhibit the opposite 

type of behaviour with η increasing withγ&  , known as “shear thickening” or dilatants 

fluid. A simple empirical equation, the “power law” viscosity model for describing the 

dependence of viscosity on shear rate over a certain range of shear rates is shown below: 
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         (2.6) 

where n and k are the power law index and consistency index, respectively. When n = 1 , 

Newtonian behaviour is indicated, while n < 1 implies shear thinning behaviour, and n > 

1 implies shear thickening behaviour.  

Polymeric liquids exhibit a combination of elastic and viscous flow and called as 

“viscoelastic”. Consequently, their rheological properties are also time dependent. The 

viscoelastic properties of polymeric fluids, in particular the storage and loss moduli 

defined below, can be very useful for measuring of the extent of dispersion of particular 

filler. Polymer viscoelasticity is usually described in terms of response of fluid to a 

sinusoidal shearing, where the shear strain is given by 

          (2.7)  

where ω is the frequency of the oscillatory strain, δ is the phase angle or mechanical loss 

angle and oγ  is the strain amplitude. If the strain amplitude is sufficiently small, the 

shear stress is also sinusoidal and is given by 

         (2.8) 

where oτ  is the stress amplitude. oτ  at a given frequency is proportional to oγ  , if the 

strain is sufficiently small. This type of behaviour is called linear viscoelasticity. The 

linear viscoelasticity could be described using trigonometric identity as follows: 

       (2.9) 

where is the storage modulus and  is the loss modulus, which are functions 

of frequency. Both are linear viscoelastic material functions. 



 

 

26

Another term of importance is the ratio of loss to storage modulus defined as  

Loss tangent:         (2.10)   

It is also possible to define a dynamic complex viscosity in terms of G’ and G” as 

follows: 

Dynamic viscosity :     

"( )
'( )

G ωη ω
ω

=
   (2.11) 

Imaginary part of the complex viscosity :  

'( )
"( )

G ωη ω
ω

=
   (2.12) 

Complex viscosity function :   *( ) '( ) "( )i iη ω η ω η ω= −   (2.13) 

In the same manner as above, a complex modulus can be defined as below : 

Complex viscosity function :   * ( ) '( ) "( )G i G iGω ω ω= +   (2.14) 

The storage modulus G’(ω) and imaginary part of the complex viscosity η”( ω) , 

are to be considered as the elastic contributions to the complex functions. They are both 

measures of energy storage. Similarly, the loss modulus G”( ω) and the dynamic 

viscosity η’(ω)  are the viscous contributions or measures of energy dissipation. 
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2.7.2 Measuring the Rheological Parameters 

 

2.7.2.1 Capillary Rheometer 

 

Capillary rheometers are the most popular of all rheometers, because of their 

simplicity in design and use. The basic principle of a viscosity measurement is the 

measurement of the pressure drop of a given flow rate. Alternatively, one can fix the 

pressure drop and measure the flow rate. They are broadly categorized as constant speed 

rheometers and constant pressure rheometers. 

For fully developed flow in a tube, i.e. far from the entrance, both the pressure 

gradient and the velocity profile do not change with distance, z, along the tube. By 

carrying out a force balance on a length, ∆z , of tube, it can be shown that the shear 

stress at the wall, wτ , is related to the pressure  , , at the upstream and downstream 

ends, of this length, and to the radius, R, of the tube. 

         (2.15)

  

This schematic of a rheometer is shown in Figure 2.4. 
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Figure 2.4 : Sketch of Capillary Rheometer Geometry 

 

However, the common practice is to measure only the driving pressure Pd, in the 

reservoir feeding the tube rather than measure pressure at the two points in the fully 

developed flow region. If the pressure at the exit of the tube,  i.e. at z = L, is 

atmospheric, and this is assumed to be small compared to Pd, an apparent wall shear 

stress, aτ , can be calculated  

2
d

a

p R

L
τ =           (2.16) 

For a Newtonian fluid, the velocity profile is parabolic, and the shear rate at the 

wall is expressed as 

           (2.17) 
3 

4
w 

Q 

R 
γ 

π 
=' 
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Thus, if Q is flow rate and fixed and Pd is measured, the viscosity can be 

calculated from Hagen-Poiseuille equation 

4

8
w d

w

R p

LQ

τ πη
γ

= =
&

          (2.18) 

If the fluid is non-Newtonian, i.e. if the viscosity depends on the shear rate, there 

is a technique to determine the true wall shear rate in such a case, but it requires the 

differentiation of pressure data for a number of flow rates. In this case it is convenient to 

define an apparent wall shear rate as follows: 

3

4
a

Q

R
γ

π
=&           (2.19) 

For the power law n, fluid, the true wall shear rate is given by: 

3 1

4w a

n

n
γ γ+=& &            (2.20) 

The value of n can be significantly different from 1 for many materials, so the 

difference between aγ&  and wγ&  can be large. Most capillary viscometers give as an 

output signal an “apparent viscosity” calculated as follows: 

4

8
a d

a
a

R p

LQ

τ πη
γ

= =
&

         (2.21) 

 



 

 

30

2.7.2.2 Rotational Rheometer 

 

This flow geometry is illustrated in Figure 2.5. The shear rate varies linearly with 

radius, r, and is given by 

          (2.22) 

where h is the gap between the disks, and Ω is the rotational velocity. For a Newtonian 

fluid, the viscosity is related to the torque as follows: 

4

2Mh

R
η

π
=

Ω           (2.23) 

where R is the radius of the disk and M is the measured torque. 

The cone-and plate rheometer is of special interest because the shear rate is 

approximately constant between the fixtures and is given by  

          (2.24) 

Where θ is the cone angle, usually less than 5°, and Ω is the angular velocity. For the 

ideal geometry shown in Figure 2.6, the apex of the cone just touches the plate without 

transmitting torque to it. 

γ 
θ 

Ω=' 

r 

h 
γ Ω=' 
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Figure 2.5 : Sketch of parallel disk rheometer geometry 

 

 

Figure 2.6 : Sketch of Cone and Plate Geometry. 

 

R 

R 
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The shear stress is therefore approximately uniform and is given by 

3

3

2

M

R
τ

π
=            (2.25) 

where M is the torque to turn the cone and R is the radius of the plate. Thus, the 

viscosity is 

3

3

2

M

R

θη
π

=
Ω            (2.26) 

Because of the uniformity of the shear rate, it is valid for non-Newtonian fluids.  

 

2.8 Dynamic Mechanical Analysis (DMA) 

 

Dynamic mechanical analysis (DMA) is becoming more commonly seen in the 

analytical laboratory as a tool rather than a research curiosity. This technique is still 

treated with reluctance and unease, probably due to its importation from the field of 

rheology. DMA does not require a lot of specialised training to use for material 

characterisation. It supplies information about major transitions as well as secondary and 

tertiary transitions not readily identifiable by other methods. It also allows 

characterisation of bulk properties directly affecting material performance. 

DMA can be described as applying an oscillating force to a sample and analyzing 

the material’s response to that force. Therefore, the tendency to flow (called viscosity) 

from the phase lag and the stiffness (modulus) from the sample recovery can be 

calculated. These properties are often described as the ability to lose energy as heat 
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(damping) and the ability to recover from deformation (elasticity). One way to describe 

is the relaxation of the polymer chains (Matsuoka, 1992). Another way would be to 

discuss the changes in the free volume of the polymer that occur (Brostow, 1986). Both 

descriptions allow one to visualize and describe the changes in the sample. 

The applied force is called stress. When subjected to a stress, a material will 

exhibit a deformation or strain. The stress–strain curves are common to researchers who 

are working with materials. These data have traditionally been obtained from 

mechanical tensile testing at a fixed temperature. The slope of the line gives the 

relationship of stress to strain and is a measure of the material’s stiffness, the modulus. 

The modulus is dependent on the temperature and the applied stress. The modulus 

indicates the suitability of the material in applications. If the polymer is heated, it passes 

through its glass transition and changes from glassy to rubbery; the modulus will often 

drop significantly. This drop in stiffness can lead to serious problems if it occurs at a 

temperature different from expected. 

The modulus measured in DMA is, however, not exactly the same as the 

Young’s modulus of the classic stress–strain curve. Young’s modulus is the slope of a 

stress–strain curve in the initial linear region. In DMA, a complex modulus (E*), an 

elastic modulus (E’), and an imaginary (loss) modulus (E” ) (McCrum et al., 1991) are 

calculated from the material response to the sine wave as seen in Figure 2.8. DMA 

measures the amplitudes of the stress and strain as well as the phase angle (δ) between 

them. This is used to resolve the modulus into an in-phase component - the storage 

modulus, E’ - and an out-of-phase component - the loss modulus, E" and a useful 

quantity is the damping factor or loss tangent (tan δ) which is the ratio E"/E’ and is the 

amount of mechanical energy dissipated as heat during the loading/unloading cycle. The 

relationship between these quantities and the dynamic (or complex) modulus (E*) are 

represented by the diagram as shown in Figure 2.9:  
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Figure 2.7 : Plot of dynamic stress-strain 

 

Figure 2.8 : Dynamic mechanical analysis relationship 
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DMA always used to study the miscibility and compatibility of the polymer 

blends and composites due to highly sensitivity to temperature (Gnatowski and Koszkul, 

2006; Hong et al., 2007; Aoki et al., 1999; Kader and Bhowmick, 2003). Therefore, 

DMA is often used in detecting Tg in blends than DSC (Stoeling et al., 1970). The 

important parameter for this Tg analysis is tan δ. Tan δ used to detects changes in 

molecular motion or relaxation process. Araujo et al., (2004) analysed the immiscibility 

of PA6/ABS blends produced by metyl methacrylate grafted maleic anhydride (MMA-

MAH) using DMA. They confirmed that, PA6/ABS blend was immiscible for all the 

range of constituent composition. This was due to the presence of MMA-MAH did not 

affect significantly the Tg of the SAN phase in ABS phase. Beside of tan δ, the storage 

and loss moduli also can be used to investigate the phase behaviour of the blends.  

 

2.9 Polyamide 6 (PA6) polymer 

 

PAs contain the -CONH- amide group as a recurring part of the chain. The most 

popular PAs are PA6,6 and PA6 which are made by polymerisation of caprolactam. 

Other semicrytalline PAs include PA4,6, PA6,9, PA6,10, PA 6,12, PA11 and PA12 

(Patel, 1998) as shown in Figure 2.10. 

The amide group in PA creates hydrogen bonding, and hence the polymers are 

very strong with high melting points. After melting, the viscosity is low: thus PAs are 

easier to process. Sometimes PA6 and PA6,6 are copolymerized, which leads to a more 

amorphous polymer, yielding a tough, flexible and reasonably transparent polymer. 

Typical properties of PAs are high strength and stiffness. PAs have excellent resistance 

to fatigue and repeated impacts. PAs show low coefficient of friction on contact with 

other materials. They have a good abrasion resistance, and have excellent resistance to 

hydrocarbon fuels, lubricants and other non-polar organic solvents. PAs biologically 
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inert but absorb moisture due to their high polar nature. Moisture acts as a plasticiser, 

reducing PA strength. It is also make PA a poor electrical insulator; but generally, well 

compounded PAs are resistant to ordinary power frequency and voltage. 
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Figure 2.9 : Typical molecular structure of polyamide series 
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Major uses of PAs are in automotive parts where they are used as electrical 

connectors and light-duty gears. Glass reinforced resins are used for engine fans, 

radiator heaters, brake-fluid reservoir, valve covers and hydraulic hoses. They are also 

used as hammer handles, gears and sprockets, bushing and cams. Electrical applications 

include wiring devices, plugs, connectors, power-tool housing, washers and small 

appliances. They are also used in ski boards, roller skater, bicycle wheels and fishing 

lines. Biaxially oriented PA film is extremely tough and is used for meat and cheese 

packaging, cook-in-bags and vacuum-fill pouches. Blow moulded containers are also 

popular. 

 

2.10 Acrylonitrile Butadiene Styrene (ABS) polymer 

 

ABS is one of the most versatile families in thermoplastics, processing unique 

balance of properties. The ABS is made up of three monomers – acrylonitrile, butadiene 

and styrene, the molecular reaction is shown in Figure 2.11. Various grades of ABS with 

optimum properties can be tailor-made by varying the ratio of the three monomers 

varying the polymer structure and molecular weight. The most important properties 

varied include impact resistance, hardness, elastics modulus, gloss and melt viscosity. 

 

 



 

 

39
N

p rq

butadiene arylonitrile styrene  

Figure 2.10 : Molecular structure of acrylonitrile-butadiene-styrene (ABS) 

 

The first commercial ABS plastics, cycolac® was introduced in 1954 by Borg 

Warner Chemicals. The initial work was started in 1948. When styrene acrylonitrile 

(SAN) copolymer was blended with Buna N rubber, which is a copolymer of butadiene 

and acrylonitrile, the resultant material had much better impact strength than SAN 

plastics. The impact strength at low temperatures for the blend was still poor. Then, 

Borg Warner tried the use of polybutadiene (PB) rubber, which remains rubbery at lower 

temperatures than Buna N. Initial ABS plastics commercialised were physical blends, 

which soon gave way to much improved latex-grafted ABS polymers. Styrene and 

acrylonitrile are polymerised in the presence of PB in a reactor, causing formation of 

SAN grafted to rubber particles. The existence of PB as a separate phase, and its domain 

size are critical to the impact strength of ABS plastics. As a result, ABS consists of three 

elements that contribute with different properties; butadiene contributes impact strength, 

toughness and low temperature property retention; whilst acrylonitrile contributes to the 

heat resistance, chemical resistance and surface hardness of the system and the styrene 

component improves the processibility, rigidity and strength (Brydson, 1999).  

Several different approaches are commercialised to produce ABS. In most cases, 

unsaturated PB rubber is first made by emulsion or solution polymerisation. In second 

stage, SAN polymer matrix is formed; and during that reaction, some SAN is grafted 

onto the unsaturation in the rubber. The reaction stage can occur by emulsion 

polymerization or by mechanical blending of highly-grafted, emulsion-made, high-

rubber-content ABS with SAN.  
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The general properties of ABS vary, depending upon the additives, monomer 

ratios and molecular weight. Usual additives are UV stabilizers and internal lubricants. 

ABS electrical insulation properties are usually good. The chemical resistance of ABS is 

generally good, as it resist weak acids, strong and weak bases; but resistance to polar 

solvents like eters, ketones and halogenated hydrocarbons is poor. Usually, the 

mechanical properties are high, with tensile strength from 3000 to 9000 psi and yield 

strain 2 – 5% (Brydson, 1999). Flame retandancy in ABS is usually imparted by 

halogenated additives or by alloying it with PVC and CPE. Heat resistance grades of 

ABS are made by partly replacing styrene with alpha-methyl styrene and also by adding 

maleic anhydride or alloying it with polycarbonates. Transparent grades are made by 

adding acrylics as a fourth comonomer. ABS can be formed by almost all the 

thermoplastic forming methods, but injection moulding, extrusion and rotational 

moulding are the most popular methods. ABS can be hot stamped, painted, vacuum 

metallised, printed and electroplated to give a variety of finishes. 

 

2.11 Role of Compatibiliser 

 

As discussed in the first chapter, immiscible blends often exhibit poor 

mechanical properties and have unstable phase morphology during processing. Adding a 

proper compatibiliser is an effective way to solve the problem associated with 

incompatible polymer mixtures (Qi et al., 2003). Functionalised polymers have been 

widely used as reactive compatibilisers of polymer blends in various applications. In 

general, functionalised polymers can be obtained by graft polymerization of functional 

monomers with some commercially available polymers such as polybutadiene, styrene-

butadiene block copolymers and ABS terpolymer.  
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Polymer alloys or blends may have up to six polymeric ingredients. If the 

number of components, mi, is increased, it means the number of interfaces, N, between 

them becomes large, N = mi(mi-1)/2 (Utracki, 2002). Thus, compatibilisation of 

multicomponent polymer blends may pose serious problems – improperly designed 

interface may cause premature fracture. Therefore, two strategies may be adopted. The 

first addition of at least one ingredient has functional groups that react with several 

polymeric components; for example, a multicomponent copolymer that plays the dual 

role of compatibiliser and impact modifier, or a low molecular weight additive that at 

different stages of reactive blending binds to different components. The second, but 

more frequently applied strategy is the sequential reactive processing, where the blend(s) 

that is/are to form the dispersed phase(s) are compatibilised first, before combining them 

into the final composition. One of the common compatibiliser is maleic anhydride 

(MAH) reacted with rubber or rubbery like materials. MA groups can react with amine 

end group and form a graft copolymer at rubber-matrix interface, which reduces 

interfacial tension slow down particle coalescence forming during mixing (Carone et al., 

2000) 

The driving force for blending ABS with PA6 is that ABS is lower price 

compared to PA6 and has good processibility, low water absorption and high impact 

strength. On the other hand, PA6 has excellent oil resistance, high water absorption and 

high toughness. By combining PA6 with ABS, the drawbacks of both components can 

be eliminated, and the resulting blend has outstanding performance. However, PA6 and 

ABS are poor compatibility. By incorporating of various compatibilisers can improve 

the compatibility. According to the above fact, the use of compatibiliser in GF 

reinforced PA6/ABS is also essential in order to eliminate the drawbacks and improve 

the poor compatibility. It is because glass fibre (GF) has high tensile strength and high 

chemical resistance, however, its unidirectional reinforcement makes to uneven 

shrinkage and warpage (Karger-Kocsis, 1999). Obviously, the type of GF sizing (PA –

or– ABS compatible) determines the properties of PA6/ABS blends. The GF sizing and 

concentration must be matched to the matrix forming polymer in order to achieve 

optimum performance (Ozkoc, 2005; Thomason, 1999).  
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Few types of compatibiliser have been used in the previous studies of PA6/ABS 

blends such as poly(methyl methacrylate-co-maleic anhydride) (Araujo et al., 2003), 

polybutadiene-grafted-maleic anhydride (Lai et al., 2005), imidized acrylic polymer 

(Kudva et al., 2000), glycidyl methacrylate-methyl methacrylate copolymers (Araujo et 

al., 2005), maleic anhydride grafted polyethylene-octene elastomer (Chiu and Hsiao, 

2004), styrene-acrylonitrile-maleic anhydride (Kudva et al., 1999), polystyrene 

copolymerised with 25 wt. % maleic anhydride (Liu et al., 2002), styrene-maleic 

anhydride (Misra et al., 1993) and poly(N-phenyl-maleimide-styrene-maleic anhydride) 

(Lee et al., 1997). Some of these compatibilisers were not fully miscible with the blends, 

due to the unsimilarity in molecular structure to ABS. Consequently, the final properties 

of the blends could not be achieved to the desired level. In addition, it was found very 

little literature reported on the use of ABS-grafted-maleic anhydride as a compatibiliser 

in PA6/ABS blends.  

 

2.12 Glass fibre (GF) Reinforcement 

 

A glass fibre was first produced in the 1920’s, become popular after substituting 

the asbestos in the 1950’s, when some of the deleterious health effects from asbestos 

were first becoming apparent.  The diameter of the glass fibre based on single filaments 

is ranging from 3 to 19 micrometers. Single filaments are produced by mechanically 

drawing molten glass streams. The filaments are usually gathered into bundles called 

strands or rovings. The strands may be used in continuous form for filament winding; 

chopped into short lengths for incorporation into moulding compounds or use in spray-

up processes; or formed into fabrics and mats of various types for use in hand coatings 

with a material known as a coupling agent, which serves to promote adhesion of the 

glass to the specific resin being used.  
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At present there are five major types of glass used to make fibres. The latest 

designation is taken from a characteristic property (Bader, 2001):  

i. A-glass is a high-alkali glass containing 25% soda and lime, which offers 

very good resistance to chemicals, but lower electrical properties.  

ii.  C-glass is chemical glass, a special mixture with extremely high chemical 

resistance.  

iii.  E-glass is electrical grade with low alkali content. It manifests better 

electrical insulation and strongly resists attack by water. More than 50% of 

the glass fibres used for reinforcement is E-glass.  

iv. S-glass is a high-strength glass with a 33% higher tensile strength than E-

glass.  

v. D-glass has a low dielectric constant with superior electrical properties. 

However, its mechanical properties are not so good as E-or S-glass. It is 

available in limited quantities.  

Glass fibres coated with nickel, by the electron beam deposition process, are 

used in moulding compounds and as reinforcements for electrically conductive parts. 

The major disadvantage of glass fibre is its unidirectional reinforcement leads to uneven 

shrinkage and warpage.  

 

2.13 Glass Fibre Reinforced Polymer Composite 

 

Polymer composites are prepared by mixing polymers with organic or inorganic 

materials such as reinforcing fibres (glass, carbon, aramid etc.) and particulate solids 

(talc, carbon black, calcium carbonate, mica etc.). Such composites exhibit physical 

properties synergistically derived from both the organic and inorganic components, for 
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example, they show superior mechanical properties and higher heat deflection 

temperature compared to the pristine polymers while maintaining processibility 

(Manson, 1976). Fibre reinforced polymer (FRP) composites were first developed in the 

1940’s mainly for military applications. Polymer composites since then have replaced 

metals and have found applications in diverse areas like construction, electronics and 

consumer products.  

However, the improvement in properties is typically achieved at the expense of 

optical clarity and surface gloss, and often results in increased part weight. This is 

because high loading level of greater than 10-wt % of conventional reinforcing agents 

and fillers must be added in order to achieve significant improvement in the properties. 

Nowadays, the traditional composites being replaced with a new class of more effective 

composites using nano-fillers, and becoming an active field of industrial and academic 

research.  

Short glass fibre (SGF) reinforced thermoplastics are attracting much interests 

because of their ease of manufacturing, good mechanical properties and economical. The 

traditional and most widely used methods of production of such materials are extrusion 

compounding and injection moulding. The performance and properties of these 

structural materials depend on not only the properties of individual components but also 

on the strength of interphase formed between them (Hamada et al., 2000; Park et al., 

2000). Generally, SGF became widely used fillers to modify the modulus, strength, 

stiffness, and chemical properties of the virgin thermoplastics. 

The fibre reinforced polymer composites are classified into the continuous fibre 

and discontinuous fibre composites. Fibre orientation, fibre length and fibre matrix 

adhesion play different important roles in the performance of both continuous and 

discontinuous fibre composites.  The continuous fibre in a composite offers a strength 

and modulus properties in the fibre direction, while polymer dominates the properties of 

the composites in transverse direction to fibres. 



 

 

45

Polymer composites are manufactured in two stages: the first stage include 

impregnation of the fibres by polymer, while the second stage includes consolidation 

using melt blending process [Nair et al, 1997; Ozkoc et al, 2004; Seema and Kutty, 

2006]. Uniform distribution of the polymer and the fibres are achieved by the 

application of heat and pressure during the consolidation stage. Therefore, understanding 

of the polymer structure-property relationship and fibre-polymer interactions are 

important facts in order to achieve the desired properties of the fibre reinforced 

composite. In addition of the above facts, processing history of the composite structure 

can controls the final properties of the composite. 

 

2.14 Uncompatibilised PA6/ABS blends 

 

There are a lot of literatures describing toughed PA6 blends with various type of 

ABS. As already known, that PA6s are particularly exhibit good strength and resistance 

to hydrogen. PA6 is also brittle as compared to ABS. Therefore, in order to retain 

desirable properties from each blend constituents; melt blending is the answer. In 

another word is reactive blending or reactive compatibilisation. However, very limited 

publications discussed on uncompatibilised PA6/ABS blends due to unfavourable final 

properties.  

Borg-Warner Chemicals introduced a new engineering material called Elemid®, 

which was an ABS/PA alloy. ABS/PA has a synergistic improvement in impact strength, 

modulus and excellent toughness at room temperature, and the blend was claimed to be 

superior to polycarbonate, acetals, PBT, PC/ABS, PBT/PC and PPO/PS. PA/ABS blends 

have lower equilibrium moisture content compared to PA6. PA/ABS blends are also 

resistant to aggressive agents like gasoline, antifreeze, diotyl phthalate, engine oil, brake 

fluid, grease and cleaner/degreaser.  
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Howe and Wolkowicz (1987) have studied the structures and physical properties 

of PA6/ABS near the midpoint compositions. They found that the physical properties of 

the blends were dependent on the fundamental properties of ABS and PA6 components. 

A sufficient interaction between the phases made the ductility of ABS phase penetrated 

into PA6 phase and reduced the notch sensitivity of the PA6 and lead to synergistic 

enhancement of the Izod impact strength of the blend.  

The uncompatibilised PA6/ABS blends study was carried out by Bhaddwaj et al., 

(1990). They have proved that melt flow index and density data indicated better physical 

and flow characteristics in blends compared to neat PA6. They also investigated the 

thermal properties of the blends and observed that blend ratios such as 50/50, 40/60, 

25/75 and 15/85 of PA6/ABS were more compatible in comparison with other 

compositions.  

Lavengood and Silver (1987) investigated the effects of PA6/ABS composition 

on properties using compatibilised alloys PA6 and ABS. They found that very high Izod 

impact strength achieved over a broad range of composition, tensile and flexural strength 

changed monotonically with composition. In order to improve the properties, Lavengood 

and Harris (1998) cooperated with Monsanto Chemical Company introduced a based 

blends of ABS and PA6 with a trade name Triax. ABS itself contributes melt strength 

and reduces the mould shrinkage, the blends tougher than polymer component. This first 

generation of uncompatibilised blends produced materials with high Izod impact values, 

but Triaxial stressed in thicker sections precipitated failures in field applications.  

Again, tensile and impact properties of uncompatibilised PA6/ABS blends have 

been studied over the entire range of compositions by Mamat et al., (1997) and related to 

the morphological investigation. The excellent mechanical performance has been 

observed when the composition was around 70% and this composition was found to 

have phase inversion resulting continuous morphology. As a conclusion, without a 

compatibiliser, PA6/ABS blends could achieve better properties especially impact 

properties with a proper combination, however, exhibited poor tensile properties. 
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2.15 Compatibilised PA6/ABS blends 

 

Several approaches to the reactive compatibilisation of PA/ABS blends have 

been reported in the literatures (Majumdar et al., 1994). Aoki and Watanabe (1992) 

studied the morphological, thermal and rheological properties of compatibilised 

PA6/ABS blends. Initial blends were simple mechanical blends and as a result, some 

rheological properties were anomalous at low concentration of each component. The 

PA6/ABS blends showed very high Izod impact strengths over a broad composition 

range. In fact, the most important characteristics of commercial PA6/ABS blends are 

synergistic improvement in impact strength. In their study, maleic anhydride modified 

ABS was used to improve the compatibility. Rheological investigation showed that 

below 30 wt. % ABS the PA6 is continuous phase; and above 70 wt. % ABS the ABS 

became a continuous phase. Therefore, the final properties of the blends will always 

dependent on ratio of its constituent. 

Another PA6/ABS blend systems were investigated by Misra et al., (1993) on 

the mechanical and morphological properties, and, styrene-maleic anhydride (SMA) 

copolymer was used as compatibiliser. They found that, the strength, modulus, and 

impact properties improved upon the addition of SMA. Further morphological studies 

using small angle light scattering, polarizing microscopy and scanning electron 

microscopy, showed that SMA surely acts as a compatibiliser for the blend system.  

Similar results have been done by Kim and Lee (1993); they have blended PA6 with 

ABS using two different strategies; grafting SMA with ABS before blending with PA6 

and grafting SMA with PA6 before ABS being melt blended. Lee et al., (1997) studied 

the effect of reactive compatibiliser [poly(N-phenylmaleimide–styrene–maleic 

anhydride)] on the morphological changes of blends of PA6/ABS blends as a function of 

viscosity ratio of the components and concentration of compatibiliser  and the feed rate. 

The blending process has been done by using an intermeshing co-rotating twin screw 

extruder.  
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Kudva et al., (2000) have studied on the mechanical, morphological and 

rheological properties of compatibilised PA6/ABS blends. Two types of compatibiliser 

were used; imidized acrylic (IA) and styrene/acrylonitrile/maleic anhydride (SANMA). 

They examined the mechanical properties, morphology and rheology of the blends as a 

function of processing history. They found that IA was miscible with SAN phase in ABS 

polymer, but SANMA was not fully miscible with SAN phase in ABS. However, both of 

compatibiliser improved the toughness of the blends as super-tough materials at room 

temperature using broad range of compatibiliser contents. Furthermore, when the 

parameter of processability and processing history were considered, the blends based on 

SANMA terpolymer had more desirable properties than those blended with IA. 

Previously, studied on glycidyl methacrylate/methyl methacrylate (GMA-MMA) 

copolymers as a compatibiliser showed that the compatibiliser failed to improve the 

mechanical, morphological and rheological properties of PA6/ABS blends (Kudva, 

1998). They also found, GMA-MMA caused of poor ABS dispersion due to 

disfunctionality of the PA6 end groups with respect to the epoxide group of GMA, 

which leads to crosslinking-type reactions.   

Kudva et al., (2000) also studied the morphological, rheological and mechanical 

behaviours of the blends of PA6 blended with four type of ABS over a range of 

compositions using IA as a compatibilising agent at a fixed percentage about 5 wt. %. 

They found that ABS which is low melt viscosity has a monodispherse population of 

butadiene rubber particles generated blends with superior low toughness compared to 

those with broad particle size distributions and higher viscosity. However, using very 

small (0.5 wt %) amount of IA on the fixed ratio of PA6 to ABS blends resulted 

generating super tough materials.  

Araujo et al., (2003) studied the compatibilisation of PA6 with ABS using 

poly(methyl methacrylate-co-maleic anhydride) [MMA-MA] as a compatibiliser. This 

MMA-MA has PMMA segments that appear to be miscible with the SAN phase of ABS 

and the anihydride groups can react with amine end groups of the PA6 to form graft 

copolymers at the interface between PA6 and ABS rich phase. Tensile and impact were 
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enhanced by ABS domains were finely dispersed in PA6 matrix and led to the lowest 

ductile-brittle transition temperatures and highest impact properties. They reported that 

the MMA-MA became an alternative compatibiliser. They also conducted another study 

using different compatibiliser, poly(methyl methacrylate-co-glycidyl methacrylate) 

(MMA-GMA). They found, the incorporation of the MMA-GMA copolymer did not 

promote effective toughening of PA6/ABS. They believed due to the crosslinking-type 

reactions of this copolymer with both the acid and the amine groups of PA6 and ABS 

hindered the domains dispersion of ABS in PA6. That was not the case if the addition of 

MMA-MA copolymer to PA6/ABS blends, that significantly improved the impact 

properties and mechanical properties due to better interaction between two phases 

(Araujo et al., 2003). 

A study by Monsanto (Lacasse and Favis, 1999) on morphological and 

mechanical of PA6/ABS blends. Their study on the composition examined the impact 

strength performance of ABS/PA6 for an optimized interface fully saturated with 

compatibiliser. The maximum impact strength is obtained at a composition of 50 wt. % 

ABS for a system prepared using 10 wt. % of modifier (based on the dispersed phase). 

The scanning electron microscope demonstrates the presence of a co-continuous 

morphology at this concentration. This impact strength is fifteen times greater than 

polyamide-6 and four times greater than ABS, demonstrating exceptional synergistic 

effects. 

Jang and Kim (2000) have studied on thermal, mechanical and water absorption 

properties of the blends of PA6 and ABS with and without MA as a compatibiliser. They 

found that the incorporation of MA in the PA6/ABS systems enhanced considerably the 

mechanical properties such as tensile, impact, flexural strength and hardness. A 

synergistic effect in the tensile and flexural properties was found when the weight 

fraction of ABS was about 20%. However, there was no significant effect on thermal 

properties such as melting and degradation temperature, and on water absorption 

properties. They found only the tensile and flexural were improved by the addition of 

MA into PA6/ABS blends. 
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Seung and Kim (2000) investigated the thermal, mechanical and water 

absorption properties of PA6 and ABS copolymer with and without MA as the 

compatibiliser, MA. They found that tensile and impact properties, hardness, heat 

deflection resistance and dimensional stability were enhanced by the incorporation of 

MA. Again, synergistic effects were observed for tensile elongation and flexural 

properties. However, the melting temperature and thermal stability were not 

significantly affected by the incorporation of MA.  

Giusti et al., (2003) reported the morphology and mechanical properties of PA 

6/ABS blends compatibilised with functionalised acrylic copolymer. They explained that 

the incorporation of ABS is somewhat similar to independently dispersing rubber and 

rigid phases in the PA6 matrix; the rubber phase improved low temperature toughness to 

the blend, while the rigid phase provided stiffness. In their work the poly (methyl 

methacrylate-co-maleic anhydride), MMA-MA, was used to compatibilise the PA6/ABS 

system. The binary blend (70/30) was brittle at all temperatures. Ternary blend with 5 

wt. % of MMA-MA became super tough with impact strength values of above 800 Jm-1 

and the ductile brittle transition temperature was 8°C. The tensile properties such as 

tensile yielding and modulus did not change significantly with compatibiliser addition. 

However the elongation at break improves from 24% for more than 100% with the 

addition of 5% of MMA-MA in blend. Previously, Ohishi and Nishi (2001) did similar 

study on morphological and mechanical properties of PA6/ABS, which focuse on 

investigation of Izod impact strength, and SAN random copolymer (SAN) and 

polyarylate (PAr) block copolymer were applied as a reactive compatibiliser. Chiu and 

Hsiao (2004) have studied the effect of incorporation POE-g-MA as impact modifier on 

impact strength of PA6/ABS blends and their results showed that ABS particles 

dispersed uniformly in the PA6 phase and improved the interfacial bonding of the blends 

resulting a drastically improvement of impact strength. 

Sun et al., (2005), used epoxy-functionalised ABS as compatibiliser and modifier 

for PA6/ABS blends. This study showed the morphological observation that crosslinking 

reactions existed in the blends and resulted in the formation of grafted copolymer at the 
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interface, which promoted the dispersion of the minor phase and inhibited 

agglomeration. In other words, the tensile and impact properties of the blends were 

improved. A different compatibiliser and different type of PA6 were used in this similar 

method study (Lai et al., (2005)). They blended polybutadiene-g-maliec anhydride (PB-

g-MAH) into nano-PA6/ABS blends and found that the impact strength slightly 

increased as compared to PA6/ABS blends. These discrepancies were attributed by the 

degree of reaction sites amine end group at nano-PA6 and PA6 and the rigidity of clay in 

deteriorating toughness, which is nano-PA6, had higher reaction sites. Wang et al., 

(2003) studied the PA6/ABS blends by using dynamic vulcanization of PA6/SAN/NBR 

blends. This was the new method of compatibilisation of PA6/ABS blends and resulting 

to the improvement of the toughness of the blends.  

Fengmei Cheng et al., (2006) studied two different type of compatibilisers – 

maleic anhydride-grafted polypropylene (MAP) and solid epoxy resin (bisphenol type-

A) as compatibiliser for PA6/ABS blends. The results showed that the addition of epoxy 

and MAP into PA6/ABS blends has enhanced the compatibility of PA6 and ABS blends, 

and this led to the improvement of mechanical properties of the blends and reduced the 

size of the ABS particles in the PA6 continuous phase. 

The rheological study of PA/ABS is very important in order to understand the 

relationship between properties of the material before and after processing. It also helps 

the researchers to understand the right application of the material. However, most of the 

rheological study particularly focused on the relationship between the reactions that take 

place during blending process and the viscosity instead of on the relationship between 

processing and flowability. All of the rheological studied reported found that the 

viscosity of the blends tend to increase with increasing of compatibiliser. Currently, 

there are very few reports on rheological properties of PA/ABS.  Jafari et al., (2002) 

investigated the rheological properties of the blends where the composition of PA6 was 

about 50 wt. %. The blend exhibited co-continuous structure and the viscosity and the 

elasticity was increased to be due to ABS has much higher viscosity than virgin PA6. 
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The also found that the increase of viscosity was caused by rubber particles in ABS 

phase.  

 

2.16 Ternary Blends of PA6/ABS 

 

The discussion of ternary blending of PA/ABS blends with reinforcement started 

two decades ago. Tjong and Jiang (2004) studied the structure-property relationship of 

ternary PA6/ABS/liquid crystalline polymer (LCP) blends compatibilised with 

anhydride-grafted polypropylene (MAP). They found that the incorporation of MAP and 

epoxy resin compatibiliser into PA/ABS/LCP blend improved its tensile strength, 

stiffness and impact toughness considerably.   

Sawhney et al., (1996) studied the effects of thermotropic liquid crystalline 

polymer (LCP) as a third component as well as reinforcement filler to commercial 

compatibilised PA6/ABS blends (Triax 1180). They studied the effect of LCP on 

mechanical and morphological properties of Triax 1180. It was found that the 

incorporation of LCP enhanced the mechanical properties of the blends and 15 – 20 wt. 

% was the appropriate level of LCP for self reinforcing blends. They also found that 

processing conditions play a vital role in determining the mechanical properties and 

morphology of the polyblends. 

Lai et al., (2003) investigated the impact behaviours of nanoclay filled PA6 

(Nano-PA6) blended with ABS and mixed with metallocene polyethylene grafted maleic 

anhydride (POE-g-MA) as compatibiliser. They found that impact strength increased 

slightly for compatibilised nano-PA6/ABS blend system, and increased remarkably for 

the conventional PA6/ABS blends. These discrepancies could be attributed by a 

different degree of available reaction sites from amine group on Nano-PA6 and PA6. 
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Meincke et al., (2004) studied the ternary blends of PA6/ABS with carbon 

nanotubes as reinforcement, which were prepared using co-rotating twin screw extruder. 

The transmission electron microscopy (TEM) showed that the carbon nanotubes were 

well dispersed homogeneously in the PA6 matrix and carbon nanotubes were selectively 

located in the PA6. Consequently, the carbon nanotubes blends showed superior 

mechanical properties in the tensile tests and in Izod notched impact tests as compared 

to without nanotubes.  

 

2.17 Glass Fibre Reinforced Polymer Composite 

 

2.17.1 Introduction 

 

Glass fibre reinforced polyamides are widely used in many applications, such as 

stressed functional automotive parts (fuel injection rails, steering column switches) and 

safety parts in sports and leisure (snowboard bindings). These materials are known for 

their stiffness, toughness and resistance to dynamic fatigue. 

Fibre reinforced thermoplastics compounds may be processed by conventional 

methods, such as injection moulding, and offer improvement in mechanical properties 

over unreinforced ones. These composites compete with metals in many engineering 

applications because of their ease of fabrication, light weight and economy. However, 

there are problems concerning material defects such as voids or cracks that may be 

present or initiated in one of three regions: the matrix, the fibre or the fibre/matrix 

interface (Akay et al., 1995). Therefore, the thermoplastic composites containing short 

fibres have become the subject of much attention. The present of thermoplastics in the 
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composite reduce the void and prevent the crack and finally improve the mechanical 

properties. These properties are resulted from a combination of the fibre and the matrix 

properties and the ability to transfer stresses across the fibre/matrix interface. It is also 

depend on the injection conditions such as screw and barrel parameters, mould 

temperature and design (Takrej et al., 1996; Guerrica-Echevarria et al., 2001; Ota et al., 

2005; Gu’Lu’ et al., 2006).  

According to the studies led by Thomason (1999) and Shao-Yun Fu et al., 

(1996), other variables such as fibre ratio, diameter, length, orientation and the 

interfacial strength are also prime importance to the final properties of the thermoplastic 

composites. Therefore, the final properties could be influenced by many factors during a 

composites preparation, processing and finally the applications.  

 

2.17.2 Glass Fibre Reinforced Polyamide Composites 

 

There are several studies of glass fibre reinforced polyamide composite that will 

be discussed. Shao-Yun Fu et al., (2006) studied the effects of incorporating short glass 

fibre reinforced on various PA6,6/PP ratio and rubber toughened PA6,6/PP blends. The 

glass fibre content was fixed at 40 wt. %. The polymer blends containing various 

PA6,6/PP ratios, plus a mixture of 10 wt. % styrene–ethylene–butylene–styrene (SEBS) 

and 10 wt. % maleic anhydride (MAH) grafted SEBS (SEBS-g-MAH). Two types 

(123D and 146B) of E-glass fibres were used to examine the influences of PA6,6/PP 

ratio on the mean fibre length and critical fibre length and in turn on the mechanical 

properties. The PA6,6/PP ratio was found to have significant effects on both the mean 

fibre length and the critical fibre length in the final samples, and then on the mechanical 

properties. It was shown that the composite strength increased while the elastic modulus 

decreased with increasing PA6,6/PP ratio. The elongation at break was higher for the 
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glass fibre-reinforced SEBS/SEBS-g-MAH toughened PA6,6/ABS blends than for glass 

fibre-reinforced toughened PA6,6/PP composites. However, the notched Charpy impact 

energy of the reinforced blends at 75/25 of PA6,6/PP ratio was exhibited to be higher 

than the reinforced rubber-toughened PA6,6/PP composites. It was concluded that 

control of the PA6,6/PP ratio would be effective way to produce composites with 

optimal combination of superior overall mechanical properties. 

Benderly et al., (1998) studied on dynamic rheological behaviour of PP/PA6/GF 

blends. The results indicated that the addition of PA6 to PP increased the principal 

relaxation time of the binary blends and addition of GF to the blends gave further 

increase in the principal relaxation time. Malchev et al., (2005) studied an immiscible 

PE/PA6 thermoplastic and added to a conventional short fibre reinforced and investigate 

the effect on the mechanical properties. The results showed unexpectedly higher values 

of the tensile modulus of the ternary composites (PE/PA6/GF) as compared to without 

glass fibre. However, the upper limit of the ‘applicability’ of the material was 

determined by the melting point of the minor component. A simple model was derived 

to describe the mechanical properties of the composite (three phase system) because 

DMA model developed for the two systems failed to describe the mechanical data for 

the whole range of measured temperature. The simple model showed a good agreement 

with the experimental data. 

 

2.17.3 Glass Fibre Reinforced PA6/ABS composites 

 

Study on mechanical and morphological properties of SGF reinforcement PA6 

and ABS blends was started by Kannan and Misra (1994). They investigated 70:30 

blend of PA6/ABS as a matrix and styrene-grafted-maleic anhydride (SMA) as a 

compatibiliser, and the composition was kept to about 5 % by weight. The mechanical 
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properties results showed an improvement with the addition of GF to the blends matrices 

and increased with increasing GF content. However, the SMA has no significant effect 

on the mechanical of PA6/ABS composite and only for compatibilising purpose for PA6 

and ABS phase. The SMA increased the viscosity of the blends and results a greater 

damage to the fibres in the composite. They concluded that the fibre matrix adhesion 

appears to be better in the absence of SMA. 

Nair et al., (1997) studied the fracture resistance of fibre reinforced PA6,6/ABS 

composites. They discovered that GF promoted shear yielding and as a result, enhanced 

both the fracture initiation as well as fracture propagation resistance of PA6,6/ABS 

composites. They also found that the role played by GF in the composites to be critically 

related to fibre/matrix interfacial strength.  

The introduction of rubber phase into PA6, resulting a reduction of the strength 

and stiffness. GF became a right reinforcement filler to be introduced in order to restore 

the mechanical properties of PA6/ABS blends. Therefore, Cho and Paul (2001) studied 

GF reinforced PA6 composites toughened with ABS and ethylene-propylene-rubber-

grafted-maleic anhydride (EPR-g-MA) as a compatibiliser. They investigated the 

mechanical properties and morphology of the composites. The mechanical properties 

showed that the balance of the impact strength and stiffness for both types of systems 

can be significantly improved by incorporation of GF. 

The mechanical performance of GF reinforced polymer composites depend not 

only on the properties of individual components but also on the interfacial interactions 

established between the reinforcing agent and the matrix material (Frenzel et al., 2000; 

Laura et al., 2002; Bikiaris et al., 2001). Therefore Seema and Kutty (2005) studied the 

effect of an epoxy-base bonding agent on the mechanical properties of short PA6 fibre 

reinforced ABS composites. They found that epoxy resin became a good interfacial-

bonding agent resulting in increasing the modulus and tensile strength with increasing of 

the composition of the resin.  
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GF reinforced PA6/ABS composites can be considered as a new composite 

material therefore, the processing properties are very important. Ozkoc et al., (2005) 

studied the effects of SGF concentration and extrusion conditions, such as the screw 

speed and barrel temperature profile, on the mechanical properties of the composites. 

Increasing the SGF concentration in the ABS matrix from 10 wt. % to 30 wt. % has 

resulted in improving tensile strength, tensile and flexural moduli, but drastically 

lowered the strain-at-break and the impact strength.  

 However, very limited numbers of researchers have carried out the study on 

processibility and flowability of the GF reinforced PA6/ABS composites. Thus, the 

study on the rheological properties is considered to be important. Understanding the 

rheological properties can help the polymer technologist to predict the processing and 

end use performance of the PA6/ABS composites. 



 

 

CHAPTER 3 

 

 

 

METHODOLOGY 

 

3.1. Introduction 

 

The preparation steps as shown in Figure 2.1, involved drying of all the raw 

materials followed by mechanically mixed to form polymer blends and composites: 

uncompatibilised PA6/ABS, compatibilised PA6/ABS and SGF reinforced PA6/ABS 

composites.  The blends were injection moulded to form standard test specimens. 

Tensile, flexural, impact and dynamic mechanical analyser (DMA) were carried out to 

study the mechanical properties of all the materials either in static and dynamic 

conditions. Differential scanning calorimetry (DSC) was conducted to investigate the 

thermal properties. The most crucial or significant part of this work is the rheological 

study. The rheological properties were investigated using melt flow index, capillary and 

oscillatory rheometer.  
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Laboratory and Materials 

1 - Sample preparation of 
PA6/ABS Blend 

Melt Extrusion and 
Injection Moulding 

Data Analysis 

Satisfy 
(Synergistic) 

2 - Sample preparation of 
SGF reinforced PA6/ABS composites 

Melt Extrusion and 
Injection Moulding 

Data Analysis 

Satisfy 

Dynamic Mechanical 
Analysis (DMA) 

Mechanical testing 
(Tensile/flexural/impact) 

Thermal analysis using DSC Rheology 
(Rotational/Capillary) 

FTIR Analysis 
(Reaction confirmation) 

SEM Analysis 

Dynamic Mechanical 
Analysis (DMA) 

Mechanical testing 
(Tensile/flexural/impact) 

Thermal analysis using DSC Rheology 
(Rotational/Capillary) 

SEM Analysis 

Result and discussion 
 

Figure 3.1: Research Flow chart 
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3.2. Raw Materials 

3.2.1 PA6 and ABS 

Both super high impact ABS (100-X01) and PA6 (Amilan CM1017) were 

supplied by Toray Plastics (Malaysia) Sdn.  Bhd. They were originally in the pellet 

form. Their materials properties are listed in Table 3.1 and Table 3.2 respectively. 

 

Table 3.1:  Material Properties of Super High Impact ABS (100-X01) (Toray Industries, 

2006) 

Typical Resin Properties Unit Value Test Method 
Specific Gravity - 1.04 ASTM D792 
Water absorption at 23°C after 24 hours % 0.3 ASTM D570 
Melt Flow Rate at 220°C (10kg ) g/10min 14 ISO 1113 
Tensile Strength at Yield MPa 42 ASTM D638 
Tensile Elongation at Break % >50 ASTM D638 
Flexural Yield Strength MPa 64 ASTM D790 
Flexural Modulus MPa 1960 ASTM D790 
Notched Izod Impact Strength (23°C) J/m 274 ASTM D256 
Rockwell Hardness R scale 108 ASTM D785 
HDT at 18.56 kg/cm² °C 91 ASTM D648 
Thermal Conductivity W/K.m 0.15 ASTM C177 
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Table 3.2:  Material Properties of PA6 (Amilan CM1017) (Toray Industries, 2006) 

Typical Resin Properties Unit Value Test Method 
Melt Flow Index at 230°C (2.16kg) g/10 min 35 ISO1113 
Specific Gravity - 1.13 ASTM D792 
Water absorption at 23°C after 24 hours  % 1.8 ASTM D570 
Tensile Strength at Yield MPa 85 ASTM D638 
Elongation at Yield % 7 ASTM D638 
Elongation at Break % 150 ASTM D638 
Flexural Strength MPa 120 ASTM D790 
Flexural Modulus MPa 3000 ASTM D790 
Notched Izod Impact Strength  J/m 50 ASTM D256 
Rockwell Hardness R-scale 119 ASTM D785 
Compressive strength MPa 85 D695 
Temperature Melting Point °C 225 DSC Method 

 

3.2.2 Compatibiliser 

 

In this study, the compatibiliser was obtained from Polyram, Ram-O Industries 

Limited with a brand name Bondyram® 6000. This compatibiliser is a maleic anhydride 

grafted ABS (ABS-g-MAH) recommended as coupling agent for styrene compound and 

composites with glass or other minerals. The melt index and density of compatibiliser 

are 8g/10min (at 220°C and 2.16kg load) and 1.05 g/cm3 respectively. 
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3.2.3 Short Glass Fibre (SGF) Reinforcement  

 

Glass fibres were obtained from Taiwan Glass Industries Corporation, named as 

chopped strand TG183 with a filament diameter of 10µm and an average length of, 

3.2mm. These fibres were provided by manufacturer with a propriety surface condition 

deemed to PA6. This SGF is an E-type glass fibre. 

 

3.3 Samples Preparation 

 

3.3.1 Blends Formulation 

 

  The basis of formulation was based on the percentage weight ratio between 

PA6 and ABS, PA6/ABS blends with ABS-g-MAH and compatibilised PA6/ABS with 

short glass fibres.  The weight ratios of blends are shown in Table 3.3 (a) - (c). 

 

Table 3.3 (a): Blends formulation for polyamide 6 and ABS blending process without 

compatibiliser. 

Designation PA6 (%) ABS (%) 
50PA650ABS 50 50 
60PA640ABS 60 40 
70PA630ABS 70 30 
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Table 3.3 (b): Blends formulation for polyamide 6 and ABS blending process with MA-

g-ABS as compatibiliser. 

No. PA6 (%) ABS (%) ABS-g-MAH (%) 
1 49.5 49.5 1 
2 59.4 39.6 1 
3 69.3 29.7 1 
4 49 49 2 
5 58.8 39.2 2 
6 68.6 29.4 2 
7 48 48 3 
8 57.6 38.4 3 
9 67.2 28.8 3 
10 47.5 47.5 5 
11 57 38 5 
12 66.5 28.5 5 

 

Table 3.3 (c): Blends formulation for compatibilised PA6/ABS blends and SGF blending 

process 

No Compatibilised PA6/ABS (%) Short Glass fibre (%) 
1 100 0 
2 90 10 
3 80 20 
4 70 30 

 

 

3.3.2 Preparation of Blends 

 

The PA6, ABS and MA-g-ABS resins were obtained in the form of pellets. To 

remove moisture, PA6 was dried in a hopper dryer at 80 °C for 24 hours whereas ABS 
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and ABS-g-MAH were dried for 6 hours at 85 °C in vacuum desiccators for not longer 

24 hours before blending. This is an important step before processing. All the materials 

were premixed in sealed container and shaken manually for 5 minutes.  

 

3.3.3 Melt Extrusion Blending 

 

PA6 and ABS blends were prepared according to Table 3.3 (a), (b) and (c). All 

the raw materials were blended using Brabender Plasticorder 2000, counter-rotating twin 

screw extruder with L/D = 36 at a speed of 80 rpm and the temperature profile was 

220/230/240/250°C for the barrel zone temperatures.  Then, the extruded strands were 

air-dried and palletised.  

 

3.3.4 Injection Moulding 

 

After the blends were compounded, the blends were injection moulded using an 

injection-moulding machine, JSW Model NIOOB II.  The moulding machine was first 

preheated and each blend with the stated blend formulations were injection moulded into 

the mould.  The barrel temperature ranged from 220-265 °C.  The temperatures of the 

four zones of the injection moulding were: feed zone 220 °C; compression zone 230 °C; 

metering zone 240 °C and die zone 250 °C. All the pallets were dehumidified in a 

hopper dryer (82°C for 24 hours) and stored in desiccators for 24 hrs before testing for 

the relevant test. 
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3.4 Mechanical Testing and Analysis Procedures 

 

In this research, only three compositions of PA6 were chosen and blended with 

ABS that was 50, 60 and 70 wt. %. This is because according to, Aoki and Watanabe 

(1992) and Lacasse and Favis (1998), the maximum mechanical strength of PA6/ABS 

blends could be obtained as compared to its constituent polymer at the PA6 composition 

about 50 to 70 wt. %. Lacasse and Favis (1999) have reported that 3 wt. % of 

compatibiliser concentration in blends was enough to achieve a uniform diameter of 

dispersed phase and potentially to have high impact properties (Kudva et al., 2000). 

Therefore, the composition of compatibiliser was chosen in a range of 1 – 5 wt. %.  

 

3.4.1 Tensile Test 

 

Tensile testing was carried out according to ASTM D638-Type I at room 

condition on an Instron Universal Tester.  The specimen was pulled at crosshead speed 

of 50mm/min.  The instrument software calculated the properties such as tensile 

strength, Young modulus and elongation at break from the stress-strain curves. In this 

research, five tests were carried out for each blend sample and average reported.   
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3.4.2 Flexural Test 

 

Determination of flexural modulus is important to overcome certain practical 

problem in measuring tensile strength of thermoplastics in brittle region. Flexural testing 

determines the strength of the material when a force is applied perpendicular to the 

longitudinal axis sample.  In this section, flexural test was carried out using an Instron 

Machine according to ASTM D790-97 (Test Method 1, Procedure A).   

Since the modulus was determined between small initial deflections, a low force 

load cell (100N) was used to ensure good accuracy.  Flexural tests were carried out 

using a simple supported beam.  The distance between the spans is 100 mm and a cross-

head speed of 3 mm/min was used.  The test was carried out at room temperature.  In 

this research, five samples were tested for each composition and average values were 

recorded.  Flexural toughness was calculated from the area under the stress-strain curve. 

The calculation for flexural modulus and strength is as follows: 

Flexural modulus = 
Sbd

WL

∆
∆

3

3

4
        (3.1) 

Flexural strength = 
22

3

bd

wL
        (3.2) 

where W is the ultimate failure load (N), L is the span between the centre of support (m), 

b is the mean width of the specimens (m), d is the mean thickness of the specimens of 

the sample (m), w is the increment in load (N) and S is the increment in deflection.   
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3.4.3 Izod Impact Test 

 

The Izod impact test was conducted according to the ASTM D256-93 standard 

test method to determine the pendulum impact resistance of notched specimens for 

plastic.  The test method covered the determination of the resistance of plastic to 

breakage by flexural shock as indicated by the energy extracted from standard pendulum 

type hammers.  Izod tests were done at room temperature with the conditions as follows: 

Hammer energy = 7.5J, Velocity = 3.0 m/s and Angle = 150º.  The notch was milled 

with a 45º angle and 2.5 mm depth with an Automatic Notcher Machine. In all cases, 

five specimens of each were tested and average values were reported.  

 

3.4.4 Dynamic Mechanical Analysis 

 

The dynamic mechanical properties were measured using Perkin–Elmer 

Dynamic Mechanical Analyzer (DMA 7e, in flexural mode. The device applied a 

continuous sinusoidal oscillatory deformation on the sample and measured the force 

required to produce specific oscillation amplitude. The moduli were derived from the 

value of this force and its phase difference with respect to the deformation. These are the 

elastic (storage) modulus, E’, and viscous (loss) modulus, E” , terms of the complex 

dynamic tensile modulus of a viscoelastic material and dynamic mechanical tan δ. All 

these data were taken as analysis data. 

The temperature was raised at a constant rate of 5°C/min, from 25°C (room 

temperature) to 220°C (just above the melting point of the PA6 phase, Tm
PA6). The 
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frequency of the applied oscillations was 1 Hz and the deformation amplitude was set to 

5 µm (∼0.05% strain). Data were collected every one degree Celsius. 

 

3.5 Differential Scanning Calorimetry (DSC) 

 

There are three set of samples with the set of range composition were prepared 

for DSC analysis besides that of the virgin PA6 and ABS: uncompatibilised PA6/ABS 

blends, compatibilised PA6/ABS and short glass fibre reinforced PA6/ABS composites.  

These samples were investigated under nitrogen using DSC7 device (Perkin Elmer). 

Heating and cooling rates approximately 10 mg samples are 10 K min-1 from 25°C to 

300°C. The curves were analyzed as follows: The glass transition temperature (Tg) was 

taken as the average of the intersection points of the extrapolated lines before and after 

transition, respectively, with tangent at the point of return at the rising curve. Melting 

(Tm) and crystallisation (Tc) temperatures were taken as the temperatures at the peak 

heights. The heat was calculated from the areas under the curves as integrals between the 

onset points of the corresponding peaks. The heats are related to the masses of the 

components in the material according to their composition.  

For the nonisothermal experiments, the enthalpy of fusion, ∆Ηf was determined 

through Pyris software by analyzing the melting endothermic. The percent crystallinity 

will be calculated from the following equation: 

0
% Crystallinity = 100f

polymer f

H

Hφ
∆

×
∆

      (3.3) 

where 
0
fH∆ is the enthalpy of 100% crystalline polyamide 6 and polymerφ  is the mass 

fraction of the polymer. Equation (3.4) represents a normalisation of the enthalpy such 
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that the changes in percentage of crystallinity are based on the amount of polymer 

present in PA6/ABS blends and composite. The onset is the beginning of the melting 

endothermic, and the width represents the difference in temperature between the end and 

onset of the endothermic. All the enthalpy of fusion and glass transition were obtained at 

a second heating of DSC curves. All the important data for analysis and calculation i.e. 

melting temperature, glass transition temperature, heat of fusion were taken at second 

heating run. First heating run was carried for elimination of history of memory in the 

samples and its raw data was used to compare with the data of second heating run. All 

testing were carried three times, to confirm the reproducibility of the results. 

 

3.6 Rheological Testing and analysis 

 

3.6.1 Capillary Rheometer 

 

Rheological analysis of the various blends was performed using a Rosand Dual 

Capillary Rheometer at Technical Service Laboratory, Polyethylene (M) Sdn. Bhd. The 

picture of the machine is shown in Figure 3.2. The Rosand software is capable of 

measuring rheological data at up to sixteen different shear rates during one test. One 

barrel housed a ‘zero’ length die and the other is fitted with a long 16mm die of diameter 

1mm, the calculated rheological data results are Bagley corrected. Rheological data were 

recorded for all the blends over a wide shear rate range of 10 to 3000 sec-1 to replicate 

both extrusion and injection moulding conditions. 
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Figure 3.2 : Picture of Rosand Capillary Rheometer, Technical Service Laboratory, 

Polyethyelene (M) Sdn. Bhd. Kertih, Terengganu. 
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3.6.2 Rotational Rheometer 

 

Small-amplitude oscillatory shear measurements were performed on a Rheostress 

TC501 in parallel-plate geometry at Technical Service Laboratory, Polyethylene (M) 

Sdn. Bhd. The picture of the machine is shown in Figure 3.3. The resin pellets were 

melting pressed. The round samples with 25 mm diameter and 1.5 thickness were 

prepared using compression moulding at 270°C for 6 min under 5×103 Pa. The picture 

of compression moulding for the sample preparation is shown in Figure 3.4. The 

samples were further pressed under 10×103 Pa for another 5 min and cooled using a cold 

press. The measurements were then run using time sweep method under 0.01 rad/s over 

one hour to check the thermal stability the blends and pure polyamide. After that, the 

dynamic rheological testing perform under frequency sweeps ranging from 0.05 to 100 

rad/s, using strain and stress values determined to lie within the linear viscoelastic 

region. The frequency sweep measurements were carried out under nitrogen atmosphere 

at three different temperatures: 230, 245 and 260°C. All the frequency sweeps testing 

were repeated at least three times to confirm the reproducibility. 
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Figure 3.3: Picture of Rheostress TC501 at Technical Service Laboratory, Polyethylene 

(M) Sdn. Bhd. Kertih, Terengganu 
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Figure 3.4: Picture of compression moulding machine, for preparation of dynamic 

rheological specimens 

 

3.7 Fourier Transform Infra-Red (FTIR) 

 

Fourier Transform analysis were performed on a Perkin Elmer Spectrum1 for 

virgin PA6, ABS-g-MAH and compatibilised PA6/ABS blends to confirm the 

occurrence of grafting reaction between amine end group of PA6 and maleic anhydride. 

The ratio between the sample and potassium bromide (KBr) was at about 1: 1000 prior 

to compacting into this pallet using 8 tones force hydraulic press at 5 minutes. Infrared 

spectrums were obtained in transmission and were set to operate in the range of 360 – 

3600 cm-1. 
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3.8 Scanning Electron Microscope (SEM) 

 

Scanning electron miscroscope (SEM) at Ibnu Sina, Faculty of Science of UTM 

was employed to study and record the morphology of fracture surface of the blends. The 

fractured surface was obtained by breaking the specimens under nitrogen liquid. The 

fractured surfaces were then sputtered with titanium in vacuum and surface 

characteristics were studied. These micrographs were analysed using image analysis 

software. 
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CHAPTER 4 

RESULTS AND DISCUSSIONS 

4.1 Mechanical Properties 

4.1.1 Tensile Properties of PA6/ABS Blends 

In this study, three compositions of PA6 were chosen to be blended with ABS 

that is 50, 60 and 70 wt. %. This is because according to, Aoki and Watanabe (1992) 

and Lacasse and Favis (1998), the maximum mechanical strength of PA6/ABS 

blends could be obtained as compared to its constituent polymer at the PA6 

composition about 50 to 70 wt. %. Wang and Li (2001) reported that pure PA6 

possess a tensile strength to about 70MPa and the elongation at break over 160% 

while Howe and Wolkowicz, (1987) reported that the uncompatibilised PA6/ABS in 

any ratio have poor values. The compatibilisation, however, can be improved by 

introducing ABS-g-MAH, because of the similarity of chain structure; ABS-g-MAH 

is miscible with ABS in all proportions. Maleic anhydride (MAH) reacted with free 

terminal amine end group of PA6, which made ABS-g-MAH a good compatibiliser 

between PA6 and ABS. The possible chemical reaction is shown in Figure 4.1.  
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It can be seen from Figures 4.2 and 4.3 respectively that the tensile modulus 

and strength increased with the amount of ABS-g-MAH. This is believed could be 

due to the compatibiliser enhanced the interfacial adhesion between PA6 phases as a 

continuous phase and ABS as a dispersed phase caused by grafting reaction. The low 

tensile properties were found with the absent of compatibiliser but achieved a 

maximum level when the amount of compatibiliser was about 1 wt. %.  These low 

tensile properties of the uncompatibilised blends can be related essentially to the 

larger size of ABS domains with a poor adhesion to the continuous phase. These 

domains will act as gross material defects, causing premature rupture of the specimen 

soon after the beginning of yield. The maximum level at 1 wt. % of compatibiliser 

could be due to enough amount of maleic anhydride reacted with amine end group of 

PA6 as compared to 3 and 5 wt. %. This analysis is in agreement with the FTIR 

finding and will be discussed in FTIR Section 4.5. Also, at 1 wt. % composition of 

ABS-g-MAH, the degree of crystallisation is the highest among the blends (see 

Figure 4.14). This indicates the mechanical properties especially strength depends on 

the degree of crystallinity of the blends  

 

However, when the amount of ABS-g-MAH was about 3 wt. %, the tensile 

modulus and strength decreased with the increasing amount of compatibiliser and 

seemly achieved a constant value beyond this point. This phenomenon could be due 

to the dilution of the hydrogen bonds among PA6 by the segments of ABS, and 

because of the repulsion between the polar segments of PA6 and acrolynitrile 

segments in ABS. After this point (3 wt. % of compatibiliser) the dilution and 

repulsion took place and at the same time, grafting was formed during blending to 

balance each other. Thus, it was found that the tensile modulus and strength 

considerably achieved a constant value. 
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Figure 4.1 : Possible chemical reactions between PA6 and maleic anhydride 

Polyamide 6 ABS-g-MAH 
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Figure 4.4 shows the elongation at break of PA6/ABS blends as a function of 

the amount of compatibiliser introduced into the blends system. For the 

uncompatibilised PA6/ABS blends as expected had a lower value of elongation at 

break. When compatibiliser ABS-g-MAH was introduced, the PA6/ABS system 

showed an increasing in elongation. The elongation at break for all blends began to 

achieve the constant value beyond 3 wt. % of ABS-g-MAH composition. It seems 

that the incorporation of ABS-g-MAH did not improve much on the toughness of the 

blends. Even if, it was expected that ABS-g-MAH which contains butadiene rubber 

particle enhanced the ductility of the blends.  

 

 

 

Figure 4.2 : Effect of compatibiliser composition on tensile modulus of PA6/ABS 

blends 
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Figure 4.3 Effect of compatibiliser composition on tensile strength of PA6/ABS 

blends 

 

 

 

Figure 4.4 : Effect of compatibiliser composition on elongation at break of PA6/ABS 

blends. 
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4.1.2 Flexural Properties of PA6/ABS Blends 

The flexural properties of PA6/ABS blends are plotted against the amount of 

ABS-g-MAH as a compatibiliser in Figure 4.5 and 4.6, respectively. The 

compatibilised blends showed a higher flexural modulus values than the 

uncompatibilised blend over an entire range of compatibiliser contents, except at 70 

wt. % PA6. This is believed to be due to sufficient amount of anhydride function in 

ABS-g-MAH to react with amine end group in PA6 to form a bridge between PA6 

phases and ABS phases. From this result, it can be assumed that the present of ABS-

g-MAH could reduce the interfacial tension thus, increased the adhesion between 

PA6 and ABS phases. However, the un-linear effect of compatibiliser compositions 

is believed to be due to the uneven reactions was occurred in the blends between 

amine end group of PA6 and maleic anhydride (Kudva et al. 2000). At 5 wt. % of 

ABS-g-MAH compositions, there was a slightly reduction in flexural modulus and 

strength. This reduction is not in agreement with the tensile modulus and strength 

results, which was discussed earlier in section 4.1.1. During the incorporation of 

ABS-g-MAH into PA6/ABS blends, ABS component in compatibiliser tends to 

agglomerate within ABS phases, and resulted partially maleic anhydride reacted with 

PA6. This effect consequently reduced the properties as compared to 3 wt. % of 

compatibiliser. This also could be due to repulsion of polar segments of PA6 and 

acrylonitrile segments in ABS. Consequently, more phase separation occurred as 

compared to lower concentration of ABS-g-MAH.    

 

 



 

81
 

 

Figure 4.5 : Effect of compatibiliser composition on flexural modulus of PA6/ABS 

blends. 

 

 

 

Figure 4.6 : Effect of compatibiliser composition on flexural strength of PA6/ABS 

blends 
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4.1.3 Impact Properties of Polymer Blends 

The notched Izod impact strength of virgin PA6 and ABS were measured at 

about 4.4 and 24.9 kJ/m2, respectively. The lower notched impact strength of PA6 is 

owing to the poor mobility of the segments resulted form high crystallinity as 

compared to virgin ABS. The Izod impact strengths for the uncompatibilised blends 

were lower than those of the virgin PA6 at any composition of ABS. When the ABS 

was increased to a certain amount, the blends exhibited higher level of Izod impact 

strength as the virgin PA6. Figure 4.6 shows the impact energy absorption properties 

of PA6/ABS blends as a function of the blends composition and the amount of ABS-

g-MAH copolymer added. For the uncompatibilised PA6/ABS materials, as 

expected, there was a continuous increased in toughness with ABS content since the 

amount of rubber in the system was also increased. In the absence of ABS-g-MAH 

compatibiliser, addition of ABS led to minor toughening, whereas with 

compatibilisation, there was a significant toughening.  

 

The introductions of ABS increased the proportion of the amorphous part and 

increased the mobility of the segments, also higher than the uncompatibilised blends. 

Also with an adequate amount of ABS-g-MAH, the Izod impact strength of 

PA6/ABS blends were slowly improved at all PA6 blends compositions. This 

indicates a direct enhancement of interaction between amine group on PA6 and 

anhydride group in compatibiliser. In other words, ABS-g-MAH again increased the 

adhesion at interfaces of different domains, and reduced the repulsion among the 

segments of PA6 and ABS. Therefore, as shown in Figure 4.2, 4.3 and 4.4, the 

tensile properties of PA6/ABS blends were significantly improved by introducing 

ABS-g-MAH. 

 

As shown in Figure 4.7, ABS-g-MAH itself constitutes a good impact 

modifier for PA6 and the toughening effect is obvious due to the present of ABS in 

compatibiliser itself. However, when the amount of ABS-g-MAH was further 

increased to 3 wt. %, the impact property was slightly increased and the blending 

system underwent a brittle-ductile transition.  In addition of that, when the amount of 
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ABS-g-MAH is about 1 wt. %, the notched impact strength dramatically increased at 

the amount of compatibiliser was about 3%. This is because the incorporation of 

enough ABS-g-MAH made the blends became tougher than the uncompatibilised 

blends. ABS-g-MAH acted like a ‘bridge’ between PA6 and ABS phase and made 

the links stronger as well as enhanced the quality of the component interfaces (Misra 

et. al., 1993). Then, it can be concluded that, the incorporation of ABS-g-MAH 

increased the compatibility between the PA6 and ABS, which is reflected in the 

increased of impact strength. 

 

Form the figure, it can be obtained that 3 wt. % of ABS-g-MAH content was 

selected as a composition for PA6/ABS blends compatibilisation. This is the because, 

further increase in ABS-g-MAH content was allowed an accessible amount in 

PA6/ABS blends thus reduction in flexural properties as discussed in Section 4.1.2 

and slightly increased in impact strength. Considering to the fact that the flexural 

strength represents a stiffness of material and impact strength as a material 

toughness, hence 3 wt. % was chosen as content of ABS-g-MAH was blended with 

addition of short glass fibre to form PA6/ABS composites. Besides that, the ratio of 

60/40 for PA6 and ABS component was selected to be due to the same reason.  It can 

be observed the impact and flexural strength of the PA6/ABS blends at the ratio was 

about 60/40 were consistent as compared to 70/30 and 50/50. This is can be 

explained that 70/30 PA6/ABS blends is the highest flexural strength at all range 

compatibiliser as compared to 60/40 and 50/50. Whereas, 50/50 PA6/ABS blends is 

the highest impact strength as compared to 60/40 and 70/30 PA6/ABS blends.  
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Figure 4.7 : Effect of compatibiliser composition on impact strength of PA6/ABS 

blends 

 

 

4.1.4 Tensile Properties PA6/ABS Composites 

Figures 4.8, 4.9 and 4.10 show the effect of glass fibre composition up to 30 

wt. % on tensile modulus, strength and elongation at break of 60/40 PA6/ABS 

composites with the compatibiliser content was about 3 wt. %. Figure 4.8 shows that 

tensile modulus increased exponentially with increasing amount of glass fibre. This 

suggests that the present of glass fibres acted as reinforcement on the 60/40 

PA6/ABS blends. The trend indicates that the SGF phase melt-blended with 

PA6/ABS blends improved the modulus and increased the stiffness of the material. 

However, the composites appeared to more breakable or brittle compared to the one 

without SGF.  This phenomenon is supported by the trend of elongation at break of 

PA6/ABS composites.  

 

In addition to the tensile modulus, the tensile strength also was calculated for 

SGF reinforced PA6/ABS composites. It is shown in Figure 4.8 that the SGF 

reinforced PA6/ABS composites revealed an almost linear increased in tensile 
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strength with SGF content. It can be concluded that, SGF improved the tensile 

properties of PA6/ABS composite with exponentially increased in modulus, linearly 

increased in tensile strength and reduced in elongation at break. 

 

Further increase in SGF content decreased the elongation at break, as shown 

in Figure 4.10. However, above 10 wt. % of SGF content, the elongations at break of 

PA6/ABS composites are considering achieve almost a constant at value. It can be 

seen that the incorporation of SGF reduced the compatibility between PA6 and ABS, 

which is reflected in the slightly decreased in elongation of these blends. These 

observations which refer to the tensile properties can be rationalised in that the SGF 

acted as a reinforcing agent in the PA6/ABS composites, and the pure SGF is known 

to be quite susceptible to break at room temperature.  The tensile properties of SGF 

were not measured due to difficulties and inconsistencies that would arise due to the 

relatively, extremely brittle nature of the pure glass. Several researchers (Cho and 

Paul, 2000; Kannan and Misra, 1994; Ozkoc et al., 2005) have studied the trend of 

increasing tensile modulus and decresing elongation at break with the increasing 

amount of SGF in the composites. Studied by Young and Baird (2000) on tensile 

strength, modulus and elongation of phosphate glass in poly (ether ether ketone) 

(PEEK) and poly(ether imide) (PEI) also showed a similar behaviour.  These results 

explained that SGF enhanced the stiffness of the composites but reduced the 

performance of the toughness.  
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Figure 4.8 : Effect of glass fibre composition on tensile modulus of 60/40 PA6/ABS 

composites 

 

 

 

Figure 4.9 : Effect of glass fibre composition on tensile strength of 60/40 PA6/ABS 

composites 
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Figure 4.10 : Effect of glass fibre composition on elongation at break of 60/40 

PA6/ABS composites 

 

 

4.1.5 Flexural Properties PA6/ABS Composites 

The flexural modulus and strength values are plotted as a function of SGF 

content shown in Figures 4.11 and 4.12, respectively. For blends of PA6 and ABS, it 

was found that by increasing the percentage of SGF, the flexural modulus and 

strength increased. The incorporation of SGF in these polymer blends showed better 

strength values. As the SGF content was increased from 0 to 30 wt. %, the 

corresponding strength properties were also improved significantly. The trend is 

similar to the result of tensile properties as explained in section 4.1.4. 
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Figure 4.11 : Effect of glass fibre composition on flexural modulus of PA6/ABS 

composites. 

 

 

 

Figure 4.12 : Effect of glass fibre composition on flexural stress of PA6/ABS 

composites 
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4.1.6 Impact Properties of PA6/ABS Composites 

Figure 4.13 shows the notched Izod impact energy of composites (60/40 

PA6/ABS compatibilised with 3 wt. % ABS-g-MAH) versus the composition of 

SGF. The unreinforced PA6/ABS materials, as expected, the toughness was higher 

than the reinforced PA6/ABS composites due to the amount of rubber in the system 

is higher. It was found that, when the SGF was introduced into the system, the blends 

showed a continuous linearly reduction in impact properties. Generally, it can be 

explained that, the toughness was increased by incorporation of ABS due to ABS has 

a strong a ductility properties. At the addition of SGF substantially decreased the 

toughness and increased the stiffness all the materials. It is well known that the SGF 

stiffer than the ABS and PA6. These results are not in agreement with the impact 

study by Cho and Paul (2000). They studied glass-fibre reinforced PA6 toughened 

with ABS and EPR-g-MA as compatibiliser and found that, with increasing of 

amount of SGF and compatibiliser, the impact strength of the their composites 

increased to be due to the ABS phase became more efficiently dispersed and the PA6 

phase became more continuous in character.  

 

It is clear that when the amount of SGF was increased to about 10 wt. %, the 

impact strength decreased drastically. The drastically reduction at 10 wt. % could be 

due to matrix embrittlement (Kanan and Misra, 1994). They studied 70/30 PA6/ABS 

as a matrix and compatibiliser was kept at the percentage of 5 wt. % styrene-grafted 

maleic anhydride.  Beyond this point, the small increment in impact strength with 

further addition about 20 wt. % SGF to be due to the fact that the fibres are shorter 

length and shorter fibres are effective energy absorbers by pull-out and debonding.  

Kanan and Misra (1994) commented again a trend that further addition of glass fibre 

leads to improvement of impact strength. However, the trend was not observed in 

this study which was, generally, the incorporation SGF reduced the impact properties 

of the composites. 
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Figure 4.13 : Effect of glass fibre composition on notched Izod impact strength of 

60/40 PA6/ABS composites 

 
 
 

4.2 Thermal Properties  

4.2.1 Thermal Properties of PA6/ABS Blends 

Semicrystalline PA6 have its melting and crystallisation behaviour changed 

by the presence of a second component in PA6 blends (Araujo et al., 2005, Araujo et 

al., 2004). Any significant change in PA6 melting and crystallisation behaviour in 

the blend can lead to changes in properties of moulded parts. Those changes can 

become more significant when in situ reactive compatibilisation is used for the 

blending. PA6 molecular grafting, due to reactive compatibilisation, may modify its 

kinetics of crystallisation, which certainly would lead to different crystal dimensions 

and different degree of crystallinity as compared to virgin PA6.  
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DSC was used to evaluate the melting and crystallisation behaviour of the 

PA6 component in the blends. Melting temperature at second heating run, Tm2, heat 

of fusion at second heating run, ∆Hm2 and degree of crystallisation, Xc were 

determined from second heating thermograms and Tc and ∆Hc were measured from 

cooling thermograms. As can be seen from Tables 4.1, 4.2 and 4.3, the addition of 

ABS to the pure PA6 slightly changed the melting behaviour of the components at 

first heating run. Compatibilised blends exhibited a lower melting temperature with 

respect to uncompatibilised blends at first heating but the melting temperature almost 

constant value at the second heating run. This indicates that compatibility of the 

system was improved with the addition of compatibiliser according to Tm depression 

criteria (Hage et al., 1999). At second heating run, two melting peaks were observed 

in the DSC thermograms for all blends system with all composition of compatibiliser 

as shown in Figures 4.14, 4.15 and 4.16, respectively. This is could be, at the first 

melting peak, less perfect PA6 crystals which has been formed in the cooling step, 

then forms more perfect crystals upon crystallisations, then finally melts at the 

second melting peak (Tol et al., 2005). 

 

For all the blends system, the small peak observed before the melting is the 

reorganisation of the less perfect PA6 crystals. These crystals are the monoclinic γ-

crystals of the PA6 (Ozkoc et al., 2006; Tol et al., 2005). The formation of this 

structure at the presence of compatibiliser might results in an increased extend of 

reaction of MAH with amine end group of PA6; thus the formation of α-crystals is 

hindered because of this grafting reaction. This phenomenon is also observed from 

Xc and Tc, which are lower when compared to the uncompatibilised blend systems. 

The chemical reaction leads to an increase in the viscosity of the media and reduce 

the crystallisation rate and crystal growth.  

 

Figure 4.17 illustrated the degree of crystallinity PA6/ABS blends as a 

function of ABS-g-MAH concentration, at various PA6 compositions. The degree of 

PA6/ABS blends were calculated using the equation 3.3 and heat of melting for PA6 

at 100% crystalline is about 191 J/g (Bandrup and Immergut, 1989). Generally, The 

Xc of all the blends were lower than virgin PA6 to about 35% crystallinity. The 

presence of ABS exhibits the crystallisation (Bhardwaj et al., 1990). The 
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crystallinities of these blends were independent of the composition of blends, and 

decreased with the increase of ABS-g-MAH amount in the blends. The reduction of 

crystallinity may be due to the formation of graft copolymers by the reactions of 

amide end groups of PA6 with ABS-g-MAH (Gao et al., 1999). This effect can also 

be observed from Tc values. Addition of the second phase together with a 

compatibiliser decreased the crystallisation temperature as a result of retardation 

effect of increasing viscosity due to the compatibilisation reactions.  

 

Table 4.1 shows that the addition of ABS-g-MAH to the PA6/ABS blends has 

significantly changed the melting temperature for the first heating run.  For the 

second heating run, the melting temperature of 50/50 PA6/ABS has not significantly 

effected by the addition of ABS-g-MAH. However, it is shown that the ABS-g-MAH 

interfere in the crystallisation of PA6/ABS blends. The heat of crystallisation for 

compatibilised 50/50 PA6/ABS blends has shown a reduction as compared to 

uncompatibilised PA6/ABS blends. Jannash et al., (1999) have observed that the 

addition of reactive compatibiliser affected the crystallisation of the blends. 

Compatibilisation of PA6/ABS made by ABS-g-MAH has strongly changed the 

crystallisation parameters.  

 

There were also depressions in the crystallisation temperature and the heat of 

crystallisation as a function of ABS-g-MAH concentration. ABS-g-MAH could 

strongly affect melting and crystallisation in PA6/ABS blends, where crystallisation 

properties increased when the amount of compatibiliser increased. However, the 

increasing of crystallisation has reached a maximum value when ABS-g-MAH 

concentration was about 1 wt. % and gradually decreased as ABS-g-MAH increased 

as shown in Figure 4.17. It is suggested that ABS-g-MAH fully reacted with amine 

end group of PA6 at 1 wt. %. These findings are in agreement with tensile modulus 

and strength as discussed at Section 4.1.1. Further increase in compatibiliser content 

has attributed the excess of the amount and affected the thermal properties thus 

reducing the crystallisation of the blends. This trend is similar for 60/40 and 70/30 

PA6/ABS blends as shown in Tables 4.2 and 4.3, respectively.  
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Table 4.1 : DSC data for 50/50 PA6/ABS Blends 

wt/wt % of 
ABS-g-
MAH 

Tm
1
 (

oC) ∆Hm
1
 

(J/g) 
Tc (

oC) ∆Hc 
(J/g) 

Tg(PA6) 

(oC) 
Tg(ABS) 

(oC) 
Tm

2 
(oC) 

∆Hm
2
 

(J/g) 
Xc 

(%) 

0 224.4 34.5 191.4 32.0 56.0 112.7 223.3 30.5 16 
1 223.8 34.3 191.9 31.6 65.7 110.1 222.4 34.3 18 
3 223.8 33.0 191.0 31.3 66.0 107.2 223.1 32.1 17 
5 224.9 31.6 190.9 30.9 65.7 108.0 223.8 29.5 15 
 

 

 

Table 4.2 : DSC data for 60/40 PA6/ABS Blends 

wt/wt % of 
ABS-g-
MAH 

Tm
1
 (

oC) ∆Hm
1
 

(J/g) 
Tc (

oC) ∆Hc 
(J/g) 

Tg(PA6) 

(oC) 
Tg(ABS) 

(oC) 
Tm

2 
(oC) 

∆Hm
2
 

(J/g) 
Xc 

(%) 

0 224.8 39.3 192.7 38.8 51.7 109.4 223.4 38.1 20 
1 224.1 38.6 194.1 40.8 60.9 106.1 223.4 44.0 23 
3 223.2 36.7 191.7 39.8 61.3 104.5 223.1 41.7 22 
5 224.3 35.4 191.8 38.3 61.6 102.2 223.6 36.1 19 
 

 

 

Table 4.3 : DSC data for 70/30 PA6/ABS Blends 

wt/wt % of 
ABS-g-
MAH 

Tm
1
 (

oC) ∆Hm
1
 

(J/g) 
Tc (

oC) ∆Hc 
(J/g) 

Tg(PA6) 

(oC) 
Tg(ABS) 

(oC) 
Tm

2 
(oC) 

∆Hm
2
 

(J/g) 
Xc 

(%) 

0 226.4 46.5 192.8 43.0 47.5 104.7 216.9 44.6 23 
1 225.0 40.3 193.6 47.1 56.9 104.2 223.5 49.9 26 
3 225.3 41.4 192.4 44.7 58.1 103.1 223.5 46.5 24 
5 225.0 42.4 192.4 46.2 55.0 102.9 224.1 44.1 23 
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Figure 4.14 : DSC second heating run thermogram of 50/50 PA6/ABS blends at 
different composition of compatibiliser 

 
 
 
 

 

Figure 4.15 : DSC second heating run thermogram of 60/40 PA6/ABS blends at 
different composition of compatibiliser 
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Figure 4.16 : DSC second heating run thermogram of 70/30 PA6/ABS blends at 
different composition of compatibiliser 

 
 
 

 

Figure 4.17 : Degree of crystallinity of PA6/ABS blends as a function of ABS-g-
MAH concentration, for various PA6 compositions 
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4.2.2 Thermal Properties of 60/40 PA6/ABS Composites 

The DSC thermal studies were scanned for 60/40 PA6/ABS composites with 

3 wt. % compatibiliser and SGF concentration varied from 0 to 30 wt. %. Table 4.4 

shows the numerical results of the temperature scanned and Figure 4.18 illustrates 

the degree of crystallisation for PA6/ABS composites. It is obvious from the data 

that SGF affected on thermal properties of the composites. The melting temperatures 

at first heating run appeared to change as observed with increasing the SGF content 

in the composites and considerably small change at second heating run.  Teh (1983) 

suggested that no shift in melting temperature implies incompatibility between the 

components. Therefore, it seems that the incompatibility has not appeared in our 

composites system by increasing amount of SGF. This indicates the incorporation of 

SGF has maintained the compatibility of the system. This is believed that, the 

selected SGF has a good adhesion with PA6 resulted a little increased in melting 

temperature either in first or second heating run. 

 

The heat of melting and the percent of crystallinity decreased significantly 

with the addition of SGF to the matrix. This phenomenon suggested that the presence 

of SGF inhibits crystalline formation in any particular composition. Jog and Nadkani 

(1986) reported that the crystallinity of semicrystalline polyphenylene sulphide (PPS) 

filled with glass fibre decreased due to the mobility of the PPS chain was inhibited 

with the presence of glass fibre. However, other researchers (Avalos et al., 1998; 

Gupta et al., 1982) found that by incorporation of GF increased the crytallinity of the 

polymer matrix. They commented that the increase in crystallinity was due to the 

polymer matrix which forms crystallinity along the surface of the fibre. As a 

conclusion, it is clear that the crystallinity decreased with increasing amount of 

compatibiliser. This indicates that, the SGF tends to agglomerate within their phase 

due to short in length that form multiphase in the composite system. 
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Table 4.4 : DSC data for 60/40 PA6/ABS Blends 

wt/wt % 
of SGF 

Tm
1
 

(oC) 
∆Hm

1
 

(J/g) 
Tc (

oC) ∆Hc 
(J/g) 

Tg(PA6)

(oC) 
Tg(ABS)

(oC) 
Tm

2 
(oC) 

∆Hm
2
 

(J/g) 
Xc 

(%) 
0 223.2 36.7 191.7 39.8 61.3 104.5 223.1 41.7 22 
10 225.1 24.1 191.9 31.8 61.5 107.0 223.6 31.8 17 
20 224.3 26.2 191.4 31.6 62.1 107.2 224.4 29.0 15 
30 225.4 26.8 193.2 25.7 62.6 108.2 224.9 25.6 13 

 

 

 

 

Figure 4.18 : Degree of crystallinity of 60/40 PA6/ABS composites as a function of 

different amount of short glass fibre 
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4.3 Dynamic Mechanical Analysis (DMA) 

4.3.1 PA6/ABS Blends 

The demand of PA6/ABS blends for external application in electronic and 

automotive application especially as high performance parts has been increasing 

from time to time because its good mechanical properties. On top of that, this 

material is mainly used in under vibration damping. Therefore, dynamic mechanical 

analysis (DMA) result can be utilised in mechanical damping application to reduce 

vibrations. DMA properties of polymer blends depend on various factors such as 

reaction of compatibiliser to form grafted and nature of dispersed-matrix interface 

region. DMA over a wide range of temperature is especially sensitive to all kinds of 

transitions and relaxation process of polymers and also to the morphology of the 

polymers blends. DMA method can also be used to investigate the miscibility or 

compatibility of polymer systems through some kind of specific interaction by 

various groups (Higgins and Walsh, 1984) such as reactive compatibilisation by 

forming grafting between the polymers phases. The specific information that can be 

obtained by this method includes the storage modulus, E’, the loss modulus, E”  and 

tan δ as a function of temperature or frequency. 

 

 

 

4.3.1.1 Storage Modulus of PA6/ABS Blends 

 

 

Dynamic storage modulus (E’) is the most important property to assess the 

load bearing capacity of the blends material. It is also represents the elastics 

components of the blends during the dynamic deformation. The variations of storage 

modulus of PA6/ABS blends ratio as a function of temperature are given in Figure 

4.19, 4.20 and 4.21. There was a prominent increase in the modulus of the blend with 

the incorporation of compatibiliser over the entire region. As the temperature 
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increased, E’ decreased and then there was a sharp decline in the E’ value at the glass 

transition region. This behaviour can be attributed to the increase in a molecular 

mobility of the polymer chains above Tg. The drop in the modulus in the glass 

transition region was much less for higher PA6 amount than for the lower 

composition of PA6 in the blends. That is, the difference between the moduli of the 

glassy state and the rubbery state was smaller in higher amount of PA6 than with 

lower PA6. This is due to the considerable increased in the modulus both in the 

rubbery region and glassy region.  

 

It is clear from Figure 4.19 that at lower temperature (transition region), the 

uncompatibilised 50/50 PA6/ABS had lower moduli compared to the compatibilised 

PA6/ABS. It seems that, with the addition of compatibiliser, the moduli of PA6/ABS 

were enhanced and 5 wt. % showed the highest value of storage modulus. This is the 

evident that ABS-g-MAH has successfully acted as compatibiliser. However, the 

addition 3 wt. % of ABS-g-MAH did not improve much the storage modulus of the 

blends as compared to 1 wt. %. This is believed that, to be due to the enhancement 

could be fully occurred at 1 and 5 wt. % of compatibiliser. At 3 wt. % the amount of 

compatibiliser considered not all the compatibiliser reacted with amine end group of 

PA6 and affected the elastic component of the blends. This phenomenon is supported 

by the discussion of FTIR analysis in Section 4.4.4.8. In addition to that, the ABS 

domains in PA6 phase for 1 and 5 wt. % restricted the mobility of the chain. These 

results are in agreement with tensile modulus, which was discussed earlier in section 

4.1.1. At higher temperature, the storage modulus for all the 50/50 PA6/ABS blends 

showed almost identical.  
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Figure 4.19 : Storage modulus vs. temperature plot for different composition of 

compatibiliser in 50/50 of PA6/ABS blends 

 

 

Figure 4.20 shows the effect of compatibiliser contents on storage modulus of 

DMA for 60/40 PA6/ABS blends.  The maximum E’ value was exhibited by the 

blends having 1 wt. % of compatibiliser content at 680 MPa, and for the 

uncompatibilised was only 480 MPa at room temperature. It is clear that the storage 

modulus of the blends was enhanced by more than 40% upon the addition of 1 wt. % 

ABS-g-MAH at room temperature. On further increasing the compatibiliser content 

to 3 wt. %, E’ value was found to decrease and slightly increased at 5 wt. %. This 

depicts showed an un-linearly improvement in strength by the addition of 

compatibiliser. These results are not in agreement with impact strength, in which is 

impact strength was linearly enhanced by the addition of compatibiliser. Thus, it 

needs other properties to explain this phenomenon. Then, the moduli of all the 60/40 

PA6/ABS blends are considered identical at highest temperature (after the transition 

region).  Generally, the DMA results are in agreement with the tensile results was 

discussed in section 4.1.1, where the highest elastic properties at 1 wt. % of 

compatibiliser.  
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Figure 4.20 : Storage modulus vs. temperature plot at different composition of 

compatibiliser in 60/40 PA6/ABS blends 

 

 

Figure 4.21 shows the effect of temperature on the storage modulus of 70/30 

PA6/ABS blends at different composition of compatibiliser. The incorporation of 

compatibiliser proved the improvement of moduli as well as elastic component of the 

blends at below transition region. However, when the temperature was higher than Tg 

of SAN rich phase (transition region), again, the addition of compatibiliser did not 

affect the DMA properties of the blends as was found in 50/50 and 60/40 blend 

compositions.   
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Figure 4.21 : Storage modulus vs. temperature plots at different composition of 

compatibiliser in 70/30 PA6/ABS blends 

 

 

4.3.1.2 Loss Modulus of PA6/ABS Blends 

 

 

Loss modulus (E” ) is a measure of the energy dissipated as heat per cycle 

under deformation, or it is the viscous response of the material. Figures 4.22, 4.23 

and 4.24 show the variation in trend of loss modulus at different blends systems with 

temperature. Generally, from the figures it is clear that, the incorporation of ABS-g-

MAH caused broadening of the loss modulus peak. The peak broadening can be 

attributed to the inhibition of relaxation process within the blends. This may be due 

to the increase in the number of chain segments as well as less free volume upon 

compatibilisation. There is a shift in the glass transition temperature Tg towards the 

lower temperatures on increasing the compatibiliser content (see Table 4.5). This 

could be primarily attributed to the segmental immobilisation of the matrix chain at 

the interface due to the formation of graft copolymers by the reactions of amide end 

groups of PA6 with ABS-g-MAH. Also, the loss moduli of the blends were increased 

with increasing the compatibiliser content. These results are in agreement as 

expected that the enhancement taken place upon the incorporation of compatibiliser.  
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The blends also showed an increasing trend in loss modulus upon the decreasing of 

PA6 contents. It is clearly shown that higher ABS content is more flexible than 

higher PA6 content in the blends. This phenomenon is in agreement with impact 

result as discussed earlier in Section 4.1.3. The loss modulus value in the transition 

region was much high for compatibilised blends when compared to the 

uncompatibilised one. The higher modulus at this transition region was due to the 

increase in internal friction that enhanced the dissipation of energy. 

 

Figure 4.22 shows the effect of temperature on the E”  of 50/50 PA6/ABS 

blends with various amount of compatibiliser. It is clearly shown that E”  increased 

by increasing amount of compatibiliser. From the figure, 5 wt. % of compatibiliser in 

the blends caused highest E” . This is because higher energy was dissipated when 

more amount of compatibiliser was introduced into the system. This is believed to be 

due to the presence of ABS-g-MAH reduced the stress relaxation of the blends, and 

energy was dissipated in the form of heat. However, at 1 and 3 wt. % amount of 

compatibiliser, the moduli are considered identical, before and after transition. At 

this concentration, the compatibiliser considerably has not affected the energy 

dissipation during a dynamic deformation. 
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Figure 4.22 : Loss modulus vs. temperature plot for different compositions of 

compatibiliser in 50/50 of PA6/ABS blends 

 

 

Figure 4.23 shows the loss modulus values of 60/40 PA6/ABS blends 

containing various amount of ABS-g-MAH as a function of temperature. It was 

found that the loss modulus of the polymer blends at the peak points was higher with 

the introduction of compatibiliser. It is clearly shown that 1 wt. % is the highest 

peak, followed by 5 and 3 wt. %, respectively.  These trends are agreement with the 

tensile strength and modulus results as previously discussed. It is very difficult to 

claim a single and precise comment on dynamic mechanical properties because it is 

depend on dispersing state of dispersed phase, interface interaction and reaction 

between compatibiliser and polymer phase. Therefore, all the phenomena were 

supported by the results of thermal study was discussed in Section 4.2.1.  
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Figure 4.23 : Loss modulus vs. temperature plot at different composition of 

compatibiliser in 60/40 PA6/ABS blends 

 

 

Figure 4.24 shows the influence of temperature on the loss modulus of 70/30 

PA6/ABS blends with various amount compatibiliser up to 5 wt. %. At lower the 

transition region, it was found that 3 wt. % of compatibiliser is the highest loss 

moduli as compared to the uncompatibilised blends. These results are in agreement 

with power law index analysis will be discussed in Section 4.4.3.3. In general, the 

introduction of compatibiliser slightly enhanced the loss modulus of the blends.  
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Figure 4.24 : Loss modulus vs. temperature plot for different composition of 

compatibiliser in 70/30 of PA6/ABS blends 

 

 

4.3.1.3 Tangent delta (tan δ) of PA6/ABS Blends 

 

 

The loss tangent delta (δ) is the ratio of the loss modulus to the storage 

modulus, dimensionless term that expresses the out-of-phase time relationship 

between a shock impact or vibration and the transmission of the force to the material 

support during application. It is also known as tan δ, the loss damping coefficient, or 

the loss factor. Generally, the higher the tangent of delta the better the material 

performance is in shock and vibration. A peak in tan δ typically represents an energy 

absorbing transition, where the area under the curve represents the amount of energy 

absorbed. The tan δ curves can be used to associate to the amount of compatibiliser 

in the polymer blends, which is influenced by the incorporation of compatibiliser. 

The variation of tan δ curves with variation of temperature for different amount of 

compatibiliser in the blend systems is shown in Figure 4.25, 4.26 and 4.27. The 

maximum of tan δ for all blends ratio is shown in Table 4.5. 
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The tan δ of the 50/50 PA6/ABS blends is shown in Figure 4.25 and found to 

increase as the compatibiliser was increased. It was observed that at lower 

temperature, only a small increase in tan δ as compared at higher temperature. In the 

lower temperature or at the glassy state, most of the molecular chain segments were 

still in the frozen-in, and at high temperature or at rubbery state almost all the 

molecule of the blends are free to move. The difference between the compatibilised 

and uncompatibilised blends was more pronounced at transition region (tan δ peak). 

The value of maximum tan δ at the peak of 50/50 PA6/ABS blends is shown in Table 

4.5. It is clearly shown that, with the introduction of compatibiliser reduced the size 

of ABS domains in PA6 matrix and resulted increasing in scale of dispersion (see 

SEM micrograph), and improved the molecular motion of the molecular chain of 

PA6/ABS blends. This explanation is associated with the partial loosening of the 

PA6/ABS blends structure thus that the ABS domains, which are a smaller segment 

in the blends, could move well than in the uncompatibilised blends (Gnatowski and 

Koszkul, 2006). 

 

Figure 4.26 shows clearly the different effects of compatibiliser concentration 

in 60/40 PA6/ABS blends as compared to 50/50 PA6/ABS blends. Increasing the 

compatibiliser concentration in PA6/ABS blends resulted in increasing the tan δ 

value. From the figure, it can be observed that 1 wt. % of ABS-g-MAH has highest 

value of tan δ for all ranges of frequency, followed by 5 wt. % and 3 wt. %, 

respectively. This result is in agreement with the tensile modulus and strength as 

discussed in mechanical 4.1.1.  

 

Figure 4.27 shows the variation of tan δ of 70/30 PA6/ABS blends with a 

different concentration of ABS-g-MAH. As discussed in 60/40 and 50/30 PA6/ABS 

blends, tan δ was improved through the incorporation of ABS-g-MAH. Again, this is 

mainly because compatibiliser improved the dispersion of ABS as a result the ABS 

domains free to move within PA6 phase. In this series of blends, the highest tan δ 

was obtained at 3 wt. % followed by 5 wt. % and 1 wt. % of compatibiliser. 

 

From temperature point of view, it was observed that as temperature 

increased, damping passed through a maximum in transition region and then 
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decreased in the rubbery region. The peak maximum temperature of tan δ or 

transition region corresponds to the Tg of ABS and called Tg at styrene-acrylonitrile 

rich phase (SAN rich phase). Below Tg, damping is low because, in that region, chain 

segments are in the frozen state. Hence, the deformations are primarily elastic and 

the molecular slips resulting in the viscous flow are low. Also, at the rubbery region 

(above the transition region), the molecular segments are quite free to move and 

hence the damping is low and thus there is no resistance to flow. In the transition 

region, damping is high due to the initiation of micro motion of the molecular chain 

segments and their stress relaxation, even though not all the segments will take part 

in such relaxation together. In fact, a frozen-in segment in the glassy state can store 

more energy for a given deformation than a rubbery segment, which can move freely. 

At the transition region, every time stressed frozen-in segment becomes free to 

move, its excess energy is dissipated. Micro motion is concerned with the 

cooperative diffusion motion of the molecular chain segments. The region where 

most of the chain segments take part in this cooperative motion under a given 

deformation, maximum damping will occur in that region. The position and height of 

tan δ peak are indicative of the structure and properties of the PA6/ABS blends. 

 

Higher composition of PA6 had a very less damping in the transition region 

compared to the lower one because PA6 carries a greater extent of stress and allow 

only a small part of it to strain the interface. The tan δ peak height and peak width at 

half height are summarised in Table 4.5. It can be observed that the high of tan δ 

peak was decreased with the increasing amount of PA6 and compatibiliser in the 

blends. This may be due to the restriction of movement of PA6 molecules and by the 

formation of graft copolymers. The lowering of peak height also indicates good 

interfacial adhesion. The width of tan δ peak also becomes broader than the without 

compatibiliser. At lower compatibiliser concentrations, the interfacial will become 

inefficient leading to continuous rich regions and therefore, not enough 

compatibiliser to restrain the continuous and highly localised strains. If there is 

sufficient amount of compatibiliser, and thus the formation of graft copolymers will 

prevent crack propagation. Effective stress transfers between the continuous and 

dispersed phase takes place at higher concentration of PA6, as shown by the lowest 

peak height. However, further increase in the compatibiliser content led to 
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compatibiliser-compatibiliser interaction and achieved high degree of agglomeration.  

This explains that the tan δ for 5 wt. % was always lower than 3 wt. % and 1 wt. % 

compatibiliser, except for 50/50 PA6/ABS blends series.  

 

 

Figure 4.25 : Tan δ vs. temperature plots at different composition of compatibiliser in 
50/50 PA6/ABS blends 
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Figure 4.26 : Tan δ vs. temperature plot for different composition of compatibiliser 

in 60/40 of PA6/ABS blends 

 

 

 

Figure 4.27 : Tan δ vs. temperature plots at different composition of compatibiliser in 

70/30 PA6/ABS blends 
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Table 4.5 : The Tg, compositional dependence of maximum tan δ and peak width at 

half height for PA6/ABS blends with various ABS-g-MAH contents. The maximum 

tan δ was collected by measuring the height of peaks in tan δ curve versus 

temperature. 

PA6/ABS (50/50) 

Composition of ABS-
g-MAH (wt. %) Tg (°C) Tanmax δ 

Peak width at half 
height 

0 109.6 0.313 20 
1 108.2 0.358 19 
3 108.3 0.352 20 
5 108.7 0.367 21 

PA6/ABS (60/40) 

Composition of ABS-
g-MAH (wt. %) Tg (°C) Tanmax δ 

Peak width at half 
height 

0 109.3 0.251 20 
1 106.4 0.315 22 
3 106.7 0.286 21 
5 108.3 0.289 22 

PA6/ABS (70/30) 

Composition of ABS-
g-MAH (wt. %) Tg (°C) Tanmax δ 

Peak width at half 
height 

0 109.5 0.209 23 
1 109.5 0.216 24 
3 110.3 0.242 23 
5 110.8 0.225 24 
 

 

 

4.3.2 PA6/ABS Composites 

 
4.3.2.1 Storage and Loss Modulus of 60/40 PA6/ABS Composites 

 
 

 

The results of storage and loss modulus at different ratio short glass fibre 

(SGF) reinforced 60/40 PA6/ABS composites are shown in Figures 4.28 and 4.30, 

respectively. It can be seen that the storage modulus and loss modulus increased by 
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increasing amount of SGF volume fraction. It was found earlier that the tensile and 

flexural properties of the composites increased almost exponentially with SGF 

content. Unlikely, the flexural properties increased linearly with increasing of SGF 

content. This is evident from the fact that the SGF appeared to have higher storage 

modulus, E’ than the compatibilised PA6/ABS blends. Also, the incorporation of 

SGF into PA6/ABS matrix caused the Tg peaks for SAN rich phase in ABS to grow 

in size. The loss modulus data represents the viscous damping behaviour as well as 

phase behaviour. Again, an increase in E’ and E”  modulus were observed as the SGF 

concentration was increased. E”  modulus can also be used to discuss the dissipation 

energy behaviour and interfacial bonding of the composites. According the loss 

modulus results as shown in Figure 4.29, the highest of SGF concentration has the 

highest loss modulus than the lower SGF concentration and indicates a poor 

interfacial bonding between SGF and the PA6/ABS matrix. Composites with poor 

interfacial bonding tends to dissipate more energy that with good interfaces bonding 

(Tan et al. 1990). Therefore, at high fibre content, when strain is applied to the 

composite, the strain is taken mainly by the fibre in such a way that the interface, 

which is assumed to be the more dissipative component of the composite, is strained 

to a lesser degree (Ibarra L. et al. 1995).  
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Figure 4.28 : Effect of SGF loading with temperature on the storage modulus values 

of 60/40 PA6/ABS composites 
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Figure 4.29 : Effect of SGF loading with temperature on the loss modulus values of 

60/40 PA6/ABS composites 

 
 
 
 

4.3.2.2 Tangent delta (tan δ) of 60/40 PA6/ABS Composites 

 

 

Tan δ is a damping term that can be related to the impact resistance of a 

material. The effect of tan δ on fibre mass fraction as a function of temperature is 

delineated in Figure 4.30. It is observed that the tan δ peak of the unfilled sample 

was higher than the filled sample. At 10 wt. % glass fibre, the value of tan δ 

decreased and beyond 20 wt. % it considerably achieved a constant value. It is 

associated with the glass transition temperature for SAN rich phase.  

 

In addition the above facts, there was no change in area under the curve. Area 

under the curve attributes to the amount of energy absorbed by the polymer which 

undergoes a transition (Chopra, 2002) during application with changing of 

temperature. The incorporation of SGF had less effect to the energy absorbed by 

PA6/ABS composites. The introduction of SGF lowered the tan δ peak, as expected. 

It is believed to be due to the inefficiently packing of the fibres in the composites, 



 

115
leading to the matrix rich region, and consequently less energy to separate the phase 

at the interfacial region. During a closer packing of the fibres, the neighbouring 

fibres would prevent a crack propagation and separation. It is clear from the figure 

that the unreinforced PA6/ABS composite had the highest tan δ and tan δ decreased 

with increasing concentration of SGF. Hong et al. (2007) reported that the decrease 

of the height of the tan δ peak of filled polymer system suggested that the molecular 

chain motion was restricted by the reinforcement fillers in the matrix phases. This 

indicates that further increase in SGF concentration would lead to a high extent of 

agglomeration and fibre-fibre interaction, and the randomly oriented formation of 

SGF in the matrix thus prevented the phases in the PA6/ABS composites to slip. 

Another reason is an effective transfer took places between fibre and the matrix at 

the above 10 wt. % SGF concentration and better interfacial interaction was achieved 

at this fibre loading.  

 

Generally, as fibre concentration in the composites increased, the Tg value 

will also increased. The positive shifts in Tg value shows effectiveness of the fibre as 

a reinforcing agent. Moreover, the introduction of SGF increased the value of Tg, and 

reduced the magnitude of the tan δ. The shifting of Tg to a higher value showed the 

association with the decreased mobility of the polymer chains. The elevation of Tg is 

taken as a measure of the interfacial interaction (Idicula et al., 2005). Therefore, the 

shifting of Tg to higher value indicates at 20 wt. % SGF has better interfacial 

interaction between SGF and PA6/ABS matrix as compared to 10 and 30 wt. % 

concentration. 

 

Table 4.6 shows a trend that the width of half height of tan δ peak became 

broader with increasing the SGF content and the maximum width was obtained with 

fibre loading at about 20 wt. %. This is believed due to the molecular relaxation took 

place in the SGF, which was not present in the PA6/ABS matrix. Dong and Gauvin 

(1993) reported that the molecular motions at the interface contribute to the damping 

of the material apart from those of the constituents. Therefore, the above 

phenomenon occurred due to the decrease in stress transfer from fibre to matrix 

because of the fibre agglomeration and increase in fibre to fibre interaction (Idicula 

et al., 2005). 
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Figure 4.30 : Effect of SGF loading with temperature on the tan δ values of the 60 40 

PA6/ABS composites 

 

 

Table 4.6 : Area under the curve at tan δ maximum, tan δ maximum, Tg for SAN 

rich phase and peak width of 60/40 PA6/ABS composites at different fibre loading. 

60/40 PA6/ABS Composites 

Composition of SGF 
in composites (wt. / 

wt. %) 

Area under 
the curve 

Tg (SAN rich 

phase) (°C) 
Tanmax δ 

Peak width at 
half height 

0 12.41 106.2 0.28 21.23 
10 9.83 110.3 0.21 41.53 
20 8.65 110.6 0.22 48.38 
30 8.21 109.5 0.21 47.07 
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4.4 Rheological Properties 

4.4.1 Rheological Propertied of Virgin PA6 and ABS 

Small amplitude oscillatory rheological tests were performed on the virgin 

component samples of the PA6 and ABS. The complex viscosity, η*  dependence of 

frequency, ω is shown in Figure 4.28. PA6 showed a typical behaviour, exhibiting an 

initial Newtonian plateau at low frequencies followed by a shear thinning or pseudo 

plastics regime at moderate frequencies as compared to ABS. It is also meant that, 

the virgin PA6 has a long Newtonian plateau within the range of frequencies studied.  

The viscosity of PA6 was not significantly affected with increasing the frequencies. 

However ABS showed a different trend which is frequency dependence, 

pseudoplastics behaviour started at low frequencies to moderate frequencies. 

 

Figure 4.29 reveals the viscoelastic properties (G”  and G’) with various 

frequencies of each component, PA6 and ABS at 230°C. It is important to note that 

the loss modulus, G” , was larger than the storage modulus, G’, throughout the 

frequencies studied for the PA6 and ABS, implying that the rheological response of 

these polymeric materials were dominated by viscosity. The storage modulus of PA6 

was more frequencies dependent than the loss modulus, showing larger deviation at 

lower frequencies. ABS had a roughly smaller deviation of viscous and elastics 

character and achieved equally at frequency around 90 rad/s.  This can be seen at 

larger frequencies where ABS became more elastics dominant than viscous 

character. ABS also changed its characters from liquid-like (G” > G’) to solid-like 

(G’ > G”) material with increasing of frequencies. However, PA6 showed liquid like 

material for the whole range of frequencies studied. Basically, in the range of 

frequencies lying to the left of the intersection point at G” higher than G’, the 

polymer demonstrates the flow behaviour (viscous), while in the frequencies range to 

the right of this point at G’ higher than G”, the polymer behave a rubbery like 

material (elastic). This indicates that, above intersection point, the elasticity of the 
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ABS is primarily determined by the density of entanglement network of the styrene-

acrylonitrile copolymer (Dreval et al., 2006). 

 

 

Figure 4.31 : Complex viscosities of blend components (PA6 and ABS) measured at 

230 °C  
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Figure 4.32 : Dynamic moduli of blend components (PA6 and ABS) measured at 230 

°C 

 

 

4.4.2 Dynamic Rheological Properties of PA6/ABS Blends 

 
4.4.2.1 Complex Viscosity Analysis 

 

 

The complex viscosity is important parameter to characterise the rheological 

properties of polymer blends. The real part of the complex viscosity is an energy-

dissipation term similar to the imaginary part of the complex modulus. The complex 

viscosity dependence on frequency at different blend ratio of PA6/ABS blends are 
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shown in Figure 4.33, 4.34 and 4.35, respectively. Generally, the highest of ABS-g-

MAH composition in the mixture was found to be much more viscous and elastic 

than the lower and without ABS-g-MAH as compatibiliser. Therefore, the data 

indicates that the viscosities of PA6/ABS blends were hardly affected by adding 

small amounts of ABS-g-MAH compatibiliser. When adding ABS-g-MAH as 

compatibiliser to PA6/ABS blends, the rheological properties of the blends changed 

significantly. During blending of PA6 with ABS and ABS-g-MAH the melt viscosity 

of PA6/ABS blends strongly increased as a result of graft formation reaction between 

the PA6 amine-end groups and the ABS-g-MAH anhydride groups.  

 

The 50/50 PA6/ABS blends exhibited relatively strong frequency-rheology or 

big frequency-dependence compared to that of 60/40 and 70/30 PA6/ABS blends. In 

generally, all the polymer blends showed a typical behaviour, exhibiting a shear-

thinning regime at all frequencies studied. It showed that at a fixed frequency, the 

complex viscosity increased with the amount of compatibiliser. This indicates that, 

compatibiliser reduced the interfacial tension and enhanced the interfacial adhesion 

between the domains phase and matrix phase. At 1 and 3 wt. % concentration of 

compatibiliser in 50/50 PA6/ABS blends, the complex viscosity showed almost 

equally value and similar trend. Specifically, the incorporation of 5% of ABS-g-

MAH into 50/50 PA6/ABS blends revealed a sharp drop in viscosity beyond 30 s-1 of 

the shear rate. After this point, it could be that the rubber particles of ABS loose its 

entanglement and agglomeration to form uniform orientation and increased the 

flowability (Marrie-Pierre Bertin et al., 1999) shown by reduction in complex 

viscosity. The rest of the blends, either 60/40 or 70/30 PA6/ABS had rather a linearly 

shear-thinning regime.  
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Figure 4.33 : Plot of complex viscosity versus frequency at different amount of 

compatibiliser for 50/50 PA6/ABS blends, at 230°C 

 

 

Figure 4.34 : Plot of complex viscosity versus frequency at different amount of 

compatibiliser for 60/40 PA6/ABS blends, at 230°C 
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Figure 4.35 : Plot of complex viscosity versus frequency at different amount of 

compatibiliser for 70/30 PA6/ABS blends, at 230°C 

 

 

4.4.2.2 Storage Modulus Analysis 

 

 

Figures 4.36, 4.37 and 4.38 show the relationship between rheological storage 

modulus G’ and frequencies ω for the PA6/ABS blends at 230°C containing different 

amounts of ABS-g-MAH. It can be seen that within the frequency range tested, the 

storage modulus decreased with increasing the frequency. The curves of G’ versus 

ω almost followed a linear mixing rule which is at fixed frequency, the storage 

increased with increasing the amount of compatibiliser. It has been reported by Jafari 

et al. (2002) the virgin PA6 obeys the linear viscoelasticity model i.e. Newtonian 

behaviour at lower frequencies while the blends showed pseudoplastic behaviour at 

all frequencies tested. It was found that the storage modulus of the compatibilised 

blend had slightly different as compared to the uncompatibilised blends. The values 

of G’ for the compatibilised blends within the whole frequencies region were higher 

than uncompatibilised, indicating the formation of new structure in these blends 
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except for 70/30 PA6/ABS blends. Similar results of PA6 blended with maleated 

triblock copolymer styrene-b-(ethylene-co-butylenes)-b-styrene (SEBS-g-MA), have 

been reported by Wang and Zheng (2005). It is believed that the interaction has 

occurred between amine end-groups of PA6 with the maliec anhydride groups in 

ABS-g-MAH and form co-polymers at the interface of the blends. 

 

The interaction can stabilise the interface by reducing the coalescence and 

interfacial tension, resulting in enhancement of the interfacial adhesion and viscosity. 

This is the reason why the compatibilised blends of PA6/ABS/ABS-g-MAH 

exhibited higher G’ than the uncompatibilised of PA6/ABS blends. On the other 

hand, it should be emphasised that with the increasing amount of ABS-g-MAH, the 

storage modulus of the blends at low frequency region seems to gradually deviated 

from the uncompatibilised PA6/ABS blends, which is responsible for the existence 

of heterogeneous structure. This phenomenon could be attributed to the results of 

increasing the relaxation time due to the enhancement of macromolecular chains in 

PA6/ABS/ABS-g-MAH blends. 

 

 

Figure 4.36 : Plot of storage modulus versus frequency at different amount of 

compatibiliser for 50/50 PA6/ABS blends, at 230°C 
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Figure 4.37 : Plot of storage modulus versus frequency at different amount of 

compatibiliser for 60/40 PA6/ABS blends, at 230°C 
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Figure 4.38 : Plot of storage modulus versus frequency at different amount of 

compatibiliser for 70/30 PA6/ABS blends, at 230°C 

 

 

4.4.2.3 Loss Modulus Analysis 

 

 

Figures 4.39, 4.40 and 4.41 present the response of loss modulus G” against 

frequencies at different amount of compatibiliser for 50/50 PA6/ABS, 60/40 

PA6/ABS and 70/30 PA6/ABS blends, respectively. The temperature was setup at 

230°C. As far as G”  is concern, it can be seen that higher content of compatibiliser 

(5 wt. %) in the blends had a higher loss modulus, indicating higher energy 

dissipation compared to the lower compatibiliser content. These loss modulus 

responses of PA6/ABS blends appeared to be systematic deviation from the 

behaviour either without compatibiliser to higher compatibiliser content. In other 

words, the loss modulus behaviour followed the ‘rule of mixtures’, which should 

show a predictable increasing trend with increasing compatibiliser content. Khan et 

al. (2005) reported that the addition of compatibiliser into PC/ABS blends changed 

slightly the ratio of the plastic phase components (polystyrene, acrylonitrile-styrene) 

to the rubbery phase component (polybutadiene, butadiene-styrene, butadiene-
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acrylonitrile) altering the interaction between these phases. This indicates the viscous 

component of the blends could be changed, since; the compatibiliser has a similar 

ABS basic component. Previous study by Yuji Aoki (1986), Marie-Pierre Bertin et 

al. (1995), Lee et al. (2002) and Dreval et al. (2006) indicated that the viscoelastic 

behaviour as well as loss modulus of ABS depends strongly on the rubber phase or 

more precisely on the degree of grafting of the rubber particles. As results, the 

change of rubber phase ratio due to incorporation of compatibiliser increased the loss 

modulus responses of PA6/ABS blends. 

 

 

Figure 4.39 : Plot of loss modulus versus frequency at different amount of 

compatibiliser for 50/50 PA6/ABS blends, at 230°C 
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Figure 4.40 : Plot of loss modulus versus frequency at different amount of 

compatibiliser for 60/40 PA6/ABS blends, at 230°C 

 

 

Figure 4.41 : Plot of loss modulus versus frequency at different amount of 

compatibiliser for 70/30 PA6/ABS blends, at 230°C 
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4.4.2.4 Tan δ Analysis 

 

 

The curve of tan δ as a function of the frequency has been used as a method 

of understanding the interaction of PA6 phase and ABS phase with the presence of 

ABS-g-MAH as a compatibiliser. Figure 4.42, 4.43 and 4.44 show the magnitude of 

tan δ as a function of frequencies at different composition of ABS-g-MAH in 

PA6/ABS blends. It has been reported that, the melt strength is related to tan δ, and 

suggesting that higher elasticity can lead to higher melt strength (De-Mario and 

Dong, 1997). It is also can be related to the enhancement of interfacial interaction by 

incorporation of compatibiliser, resulted to the enhancement of melt strength. 

Therefore, the incorporation of compatibiliser can lead to higher melt strength, 

higher elasticity, lower viscous and lower tan δ. From the figures, it can be seen that 

the blend without compatibiliser showed the highest tan δ. The introduction of ABS-

g-MAH into PA6/ABS reduced the tan δ value, increased the melt strength and 

elasticity. It can be concluded that ABS-g-MAH has successfully compatibilised the 

blend of PA6 and ABS.  This trend was found similar for the 60 wt. % and 70 wt. % 

amount of PA6 in the blends. 

 

According to this study, it is very difficult to find any crossover of G’ and G”  

curves at which G’ is equal to G”  and a tan δ, defined as G” /G’, is equal to one at 

the crossover. Because of the intensive increment in tan δ values of most obtained 

PA6/ABS blends, the value of tan δ should always be more than one. Therefore, the 

crossover of G’ and G” curves could not be found, except for 3 and 5 wt. % 

compatibiliser in 50/50 PA6/ABS blends.  Every real material has viscoelastic 

behaviour, therefore G’ and G”  are finite (Nachbaur et al., 2001).  Thus, the material 

can exhibit solid like behaviour, with G’ more than G” , or liquid like behaviour, with 

G”  more than G’. As s result, the sample exhibits solid-like behaviour when tan δ 

more than one (1) and the sample exhibits liquid-like behaviour at tan δ more than 

one (1). According to figures  almost all samples showed tan δ more than one except 

for 3 and 5 wt. % amount of compatibiliser in 50/50 PA6/ABS blends, and this 

means that solid-like behaviour was found in these compositions. This is also 
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indicates that, the minimum concentration of ABS-g-MAH with solid like behaviour 

of PA6/ABS blends is 3 wt. %.  The rest of the samples showed a liquid-like 

behaviour and can be categorised as material which is easy to be processed at this 

processing temperature. The rest of the samples behave liquid-like material because 

they have more amount of PA6 in the systems, since PA6 has good prosessibility at 

this setting temperature as compared to ABS. 

 

 

Figure 4.42 : Plot of tan δ versus frequency at different amount of compatibiliser for 

50/50 PA6/ABS blends, at 230°C 
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Figure 4.43 : Plot of tan δ versus frequency at different amount of compatibiliser for 

60/40 PA6/ABS blends, at 230°C 

 

 

Figure 4.44 : Plot of tan δ versus frequency at different amount of compatibiliser for 

70/30 PA6/ABS blends, at 230°C 
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4.4.2.5 The Cole-cole plot analysis 

 

 

Figures 4.45, 4.46 and 4.47 present a comparison of the curves of G’ versus 

G”  at different compositions of PA6/ABS blends. This mode of presentation, called 

Cole-cole plots of modulus, is used to explain the rheological behaviour of the blends 

because it was found to be independent of the temperature and molecular weight for 

monodisperse materials and very sensitive to the molecular weight distribution and to 

short-chain and long branches. This type of explanations was previously used by Han 

and Chuang (1985) and Han and Yang (1987) to investigate the miscibility and 

compatibility of polymer blends.  Hussein et al. (2006) have reported that the plot of 

G’ versus G”  qualitatively can be used to study the effect blend miscibility or 

compatibility and molecular architecture for polymeric systems. In addition, the 

increase of G’ could be attributed to the entanglements and grafting reaction in the 

compatibilised blend. According to Krache et al., (2004), the change in the 

microstructure of the blends and the compatibility of the polymers will be predicted 

from variation of G’ versus G”  of the polymer blends.  

 

Figure 4.45 illustrates the relationship between G’ and G” for 50/50 

PA6/ABS blends. It can be observed that, the incorporation of compatibiliser reduced 

the slope of the curve G’ versus G”. In other words, the addition of compatibiliser 

increased the elasticity due to grafting reaction of amine-end group and maleic 

anhydride function in ABS-g-MAH. It is more prominent at low frequency. Krache 

et al. (2004) reported that the elasticity of the compatibilised blends was increased 

due to yield stress effects and the development co-continuous structure. This 

indicates that the ABS-g-MAH improved the compatibility of PA6/ABS blends. The 

maximum value of compatibiliser referring to this analysis was about 1 wt. %. This 

analysis is in excellent agreement with the tensile modulus and strength was reported 

in Section 4.1.1. This trends are similar with the trend of 70/30 PA6/ABS blends are 

shown in Figure 4.46. 
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Figure 4.45 : Plot of log G’ versus log G” for 50/50 PA6/ABS blends at different 

amount of compatibiliser, at 230°C 

 

 

However, there was a slightly different trend for 60/40 PA6/ABS blends as 

compared to 50/50 and 70/30 PA6/ABS blends. From Figure 4.46, the slopes of the 

graph without ABS-g-MAH and 1 wt. % were almost similar; although for 3 and 5 

wt. %  they were different. At low frequency, the structure of 3 and 5 wt. % 

compatibilised blends changed with respect to that of without and low amount of 

ABS-g-MAH in the blends. This indicates that 3 wt. % is the maximum amount of 

compatibiliser to achieve a good interaction between PA6 and ABS phases.  It is 

believed that grafting reaction between compatibiliser and matrix has occurred to 

form a bridge and thus restrict the mobility of the constituent polymer chains. 

However, according to our flexural properties results obtained previously, by adding 

compatibiliser beyond 3 wt. % not improve the properties because the compatibiliser 

has acted as fillers. However, the rheological properties were improved and more 

prominent at lower frequency. Beyond 3 wt. %, the excess of compatibiliser in the 

system capable to store more energy elastically and to dissipate more mechanical 

energy when compared to the uncompatibilised blends (Shenoy, 1999).  



 

133

Figure 4.46 : Plot of log G’ versus log G” for 60/40 PA6/ABS blends at different 

amount of compatibiliser, at 230°C 

 

 

Figure 4.47 : Plot of log G’ versus log G” for 70/30 PA6/ABS blends at different 

amount of compatibiliser, at 230°C 
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4.4.2.6 Activation Energy of Flow 

 

 

Controlling the processing temperature is an important means to regulate the 

flowability of polymer melts. In general, melt viscosity of polymer has inversely 

proportional with temperature. Therefore, the increasing of temperature will improve 

the flow behaviour of the molten polymers. It is due to the fact that when the 

temperature increases, the melt free volume increases, causing an enhancement of 

chain segments motion and a reduction of interactions between chain segments (Li 

and Lu, 2008). This will result in the reduction of melt viscosity.  

 

In this study, the dynamic rheological behaviour of the PA6/ABS blends and 

composites has undergone variations of temperature used (230°C, 245°C and 260°C) 

quantitatively. Generally, the viscosity always changed with changing the 

temperature. Therefore, in order to understand the rheological behaviour of 

PA6/ABS blends, the dependence of viscosity of the blends on temperature followed 

the well known Willliam-Landel-Ferry (WLF) equation (Ferry, 1970).  

 

     (4.1) 

 

where C1 and C2 are constants, T0 is a reference temperature and aT is a 

temperature shift factor. The value of C1 and C2 are 17.4 and 51.6, respectively.  

 

The data of PA6/ABS blends were plotted in a form of log τ versus log   

curves at different temperature and aT was determined by the horizontally shift 

necessary to obtain superposition on the corresponding log τ versus log  curve of 

reference temperature T0. All the blends under study were found to be 

thermorheologically simple over the entire range of frequencies and temperatures 

studies. The temperature dependence of the temperature shift factor, aT was stated 

using the Arrhenius equation (Sepehr et al., 2005):- 

 

      (4.2) 
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Where A is pre-exponential factor, Ea is the activation energy and R = 

8.31432 J/g.mol.K is the universal gas constant.  

 

The activation energy of the blends were calculated from the slope obtained 

by linear regression ln aT versus inverse of temperature, 1/T, as shown in Figure 

4.48, 4.49 and 4.50, respectively. 

 

 

Figure 4.48 : Effect of temperature on shift factor, aT of 50/50 PA6/ABS blends at 

different compatibiliser concentration 
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Figure 4.49 : Effect of temperature on shift factor, aT of 60/40 PA6/ABS blends at 

different compatibiliser concentration 
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Figure 4.50 : Effect of temperature on shift factor, aT of 70/30 PA6/ABS blends at 

different compatibiliser concentration 

. 

The activation energy of flow, Ea is the energy that needs to be consumed for 

breaking up the interactions among the chain segments when the melts flow. It 

reflects the dependence of melt viscosity on temperature. The higher the Ea the more 

pronounced the dependence is. In addition, the activation energy decreases with 

increasing temperature because the number of entanglement coupling points are 

reduced and hence results in a decrease of interaction between chain segments. The 

interaction between chain segments will be influenced by the addition of 

compatibiliser.  

 

Figure 4.51 shows that the effect of amount compatibiliser on activation 

energy of viscous flow at different PA6 concentration. At 50/50 and 60/40 PA6/ABS 

blends, adding 1 wt. % of compatibiliser decreased the activation energy of flow. 

This is likely because at this compatibiliser level the amount was fairly enough to 

reduce interfacial tension and enhance the interfacial adhesion between PA6 and 

ABS phases. This result is confirmed with the tensile modulus and strength results 

obtained previously. It could also be explained by the addition of compatibiliser has 
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generally lead to decrease in the Ea of polymer blends and therefore this addition 

made the polymer blends more temperature sensitive (Gribben F. et al., 2005).  

However, the activation energy increased with the addition of more than 3 wt. % 

ABS-g-MAH. When increasing amount of compatibiliser, ABS-g-MAH became 

excess able material in the blends, it meant that the functional group also excess able 

and may result in overwhelming interfacial interaction due to repulsion of polar 

group in ABS phase to the PA6 phase. The figure also shows that the higher amount 

of PA6 in the blends showed the higher activation energy. It could be explained that, 

the lower is the flow activation energy means that the material behaves more elastic 

or in other words, increasingly solid-like (Davendra et al., 2006).  In short, the 

compatibilised interaction and activation energy of flow could be correlated because 

more energy is needed to break the interactions and allow the material to flow. 

Enough amount of compatibiliser could provide stronger interaction than lower or 

without compatibiliser. This result is in agreement with the tensile strength and 

modulus results were discussed earlier. This pattern is similar to the power law and 

consistency index results that will be discussed in Section 4.4.3.3. 

 

At 70/30 PA6/ABS blends the addition of 3 wt. % of compatibiliser showed 

the lowest of activation energy of flow as compared to the previous composition 

where 1 wt. % was the maximum amount of compatibiliser. This is indicates that the 

maximum compatibiliser content was 3 wt. %, and enough amount to initiate 

interaction between the amine end-group of PA6 and maleic anhydride. This could 

be due to because, more amount of compatibiliser reacted with 70 wt. % of PA6 than 

60 and 50 wt. %.  
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Figure 4.51 :  Plot of activation energy of flow versus amount of compatibiliser at 

different concentration of PA6. 

 

 

4.4.3 Capillary Rheological Properties of PA6/ABS Blends 

4.4.3.1 Shear Stress Analysis 

 

 

The rheological properties of blends reveal some information on the 

compatibilisation effect. To probe it, the rheological properties of the PA6/ABS 

blends were investigated using capillary rheometer. Figures 4.52, 4.53 and 4.54 show 

the plot of actual shear stress versus actual shear rate for 50/50, 60/40 and 70/30 

PA6/ABS blends with different amount of ABS-g-MAH, respectively. The 

temperature was setup at 230°C. It can be seen that the curves apparently deviate 

from linear relationship of shear stress with shear rate inclining to the axis of shear 

rate, which means that the blends are pseudoplastics fluids (Han, 1976). This 

observation is similar to most polymeric melts (Han, 1982). All the blends showed a 
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pseudoplastics behaviour. It seems that, the addition of compatibiliser did not change 

the shear stress of all the PA6/ABS blends at low shear rate. It could be due to small 

amount of compatibiliser attributed less to the change of shear stress. However the 

effect of compatibiliser on the shear stress was more obvious at higher shear rate, 

specifically for 60/40 and 70/30 PA6/ABS blends. This indicates that at higher 

concentration of PA6 more grafting reaction has occurred in polymer melts during 

testing, thus to higher amount of amine-end group of PA6 as compared to 50/50 

PA6/ABS blends. These reasons could attribute to the increase of shear stress at 

higher shear rate.  

 

 

Figure 4.52 :  Plots of shear stress as a function of shear rate for 50/50 PA6/ABS 

blend at different compositions of ABS-g-MAH 
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Figure 4.53 :  Plots of shear stress as a function of shear rate for 60/40 PA6/ABS 

blend at different compositions of ABS-g-MAH 

 

 

Figure 4.54 :  Plots of shear stress as a function of shear rate for 70/30 PA6/ABS 

blend at different compositions of ABS-g-MAH 
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4.4.3.2 Shear Viscosity Analysis 

 

 

Shear viscosity,η, is the viscosity coefficient when the applied stress is a 

shear stress. Shear viscosity is the ratio shear stress and shear rate. Therefore, in this 

study, shear viscosity of the samples were analysed and discussed in order to 

understand the compatibilisation effects on the blends composition. The effect of 

compatibilisation for 50/50, 60/40 and 70/30 PA6/ABS blends using ABS-g-MAH at 

230°C and at various shear rates is seen in Figures 55, 56 and 57, respectively. Flow 

curves for the compatibilised blends were basically similar to uncompatibilised 

blends. It shows that the shear viscosity of all the blends decreased with increasing 

shear rate showing a typical property of pseudo-plastics non-Newtonian or shear-

thinning plastics. The decrease in shear viscosity can be attributed to the alignment 

of chain segments of PA6/ABS blends in the direction of applied stress.  

 

At lower shear rate, it closed to zero shear, it can be predicted all the blends 

showed a Newtonian molten flow. This means that the incorporation of 

compatibiliser significantly did not change much the non-Newtonian behaviour at 

lower shear rate. However, the dependence of the shear viscosity on shear rate is 

different as the amount of compatibiliser varies, especially for 50/50 PA6/ABS 

blends at low shear rate regime. The compatibiliser had a little effect on the shear 

viscosity. At a fixed shear rate, the viscosity increased with increasing the amount of 

compatibiliser. The increase in viscosity has been attributed to the increased of 

interaction between the PA6 and ABS as a result of decreased interfacial tension and 

increased entanglement. This finding is in a good agreement with the study by 

Joseph et al. (2007) on the effect of blend of polystyrene and polybutadiene by using 

two different types of compatibiliser. 
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Figure 4.55 :  Plots of shear viscosity as a function of shear rate for 50/50 PA6/ABS 

blend at different compositions of ABS-g-MAH 

 

 
 
Figure 4.56 shows the plots of shear viscosity versus shear rate for 60/40 

PA6/ABS blends. In the shear rate range explored, the blends exhibited pseudo 

plastics behaviour and it is predictable that all the blends could achieve Newtonian 

plateau at low shear rates (shear rate lower than 50 s-1). This means that, the addition 

of compatibiliser did not significantly affect the Newtonian behaviour at low shear 

rate as compared to uncompatibilised blends. In the shear thinning region, the 

addition of interfacial modifier (compatibiliser) made the blends more resistant to 

flow, suggesting the interactions brought by the interfacial modification. The 

restriction in chain mobility is appeared at all range of shear rate studied, where the 

gap between the flow curves of the blends became bigger and bigger with increasing 

of compatibiliser. 
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Figure 4.56 :  Plots of shear viscosity as a function of shear rate for 60/40 PA6/ABS 

blend at different compositions of ABS-g-MAH 

 

 

Figure 4.57 shows the dependence of shear viscosity for 70/30 PA6/ABS 

blend with variation of compatibiliser content up to 5 wt. %. From that figure, it can 

be observed that a considerably little changed in shear viscosity has occurred with 

increasing of compatibiliser at lower shear rate. With greater proportions of 

compatibiliser, the inhibition of polymer chain motion by the compatibiliser phase 

has increased, and the flow resistance increased correspondingly, leading to a slightly 

increased in shear viscosity.  
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Figure 4.57 : Plots of shear viscosity as a function of shear rate for 70/30 PA6/ABS 

blend at different compositions of ABS-g-MAH 

 

 

4.4.3.3 Power Law Index Analysis 

 

 

The power law index can accurately represent the shear-thinning behaviour of 

viscosity with respect to shear rate (Oswald and Menges, 1996). In addition of that, 

the pseudo-plastics materials have n values less than unity and value of n indicates a 

low shear thinning nature. Generally, the flow curve is an important method of 

characterising the processing properties of polymer melts under technology 

conditions. It is usually represented by the relationship curves between shear 

stressτw, shear viscosity ηw and shear rate γ’w and during die extrusion of polymer 

extrusion. Previously, the curves of shear stress τw, versus shear rate γ’w, for 

PA6/ABS samples at various concentration of ABS-g-MAH was shown in Figures 

4.52, 4.53 and 4.54. It can be seen that shear stress increased non-linearly with 

increasing shear rate when the test temperature was constant at 230°C. This indicates 

that the sample melt shear flow did not strictly obey the power law over a wide range 
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of extrusion rates. The effect of compatibiliser concentration on the flow behaviour 

index or power law index, n and consistency index, K of the 50/50, 60/40 and 70/30 

PA6/ABS blends are shown in Figures 4.56, 4.57 and 4.58.  

 

For 50/50 PA6/ABS blends, a drastically effect was noticed upon increasing 

the concentration of compatibiliser as shown in Figure 4.58. There was a reduction in 

power law index upon the addition of 1 wt. % of compatibiliser and increased when 

the compatibiliser was increased to 3 wt. %. This reduction of power law index at 1 

wt % of compatibiliser could be due to a good interaction between ABS phase and 

the PA6 phase. This behaviour was confirmed by tensile modulus and strength result 

as discussed previously.  The increase of power law index when the compatibiliser 

was about 3 wt. %, is believed to be due to an excess of compatibiliser that tends to 

form agglomeration within their phases and reduced the interfacial adhesion. This 

also can be related to the value of consistency index, where it attributes to the 

viscosity. Furthermore, the power law index has slightly decreased with increasing 

the compatibiliser concentration up to 5 wt. %. Though, the consistency index 

increased with added compatibiliser. The increase in compatibiliser could recover 

more entanglement and thus made the molecular orientation more difficult. This 

result is similar to the study of PA6/LDPE blends compatibilised by poly(ethylene-

co-methacrylic acid) reported by Sinthavathavorn et al. (2009). From the figure, it 

can be observed that, 1.5 wt. % is the minimum of power law index and maximum 

consistency index, thus the amount has been suggested as the optimum concentration 

of compatibiliser for 50/50 PA6/ABS blends.  
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Figure 4.58 : Power law index, n and consistency index, K for 50/50 PA6/ABS 
blends with various amount of compatibiliser at 230 °C 

 

 
For 60/40 PA6/ABS blends, similar effects were noticed with 50/50 

PA6/ABS blends upon increasing the concentration of compatibiliser as shown in 

Figure 4.59. It is clear from the figure that n decreased with increasing 1 wt. % of 

compatibiliser. The reduction of n value could be caused by direct interaction of 

anhydride with amine end-group of PA6 and thus resulted in enhancement of 

interfacial adhesion. Increasing amount of compatibiliser higher than 5 wt. % caused 

an increasing trend of the n value. Therefore, the highest pseudoplastics in the flow 

of 60/40 PA6/ABS blends with compatibiliser was found at 1.5 wt. %. Furthermore, 

the pattern of consistency index was found to be opposite as compared to power law 

index.  

 

The trend of power law index and consistency index for 70/30 PA6/ABS 

blends as shown in Figure 4.60 were found to be different as compared to the 

previous composition of PA6/ABS blends. It can be seen that 3 wt % was the 

optimum value of compatibiliser in which power law index was minimum and 
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consistency index was maximum. This could be attributed to the chemical interaction 

between different phases of the blend caused by compatibilisers, which consists of 

chemically reactive segments to their respective counterparts in the polymer pairs. It 

was affected the enhancement of interaction and improved interfacial adhesion and 

thus restricted a movement of molecular level in polymer melt flow.  
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Figure 4.59 : Power law index, n and consistency index, K for 60/40 PA6/ABS 
Blends with various amount of compatibiliser at 230 °C 
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Figure 4.60 : Power law index, n and consistency index, K for 70/30 PA6/ABS 

Blends with various amount of compatibiliser at 230 °C 

 

 

4.4.4 Dynamic Rheological Properties of 60/40 PA6/ABS Composites 

4.4.4.1 Loss and Storage Modulus Analysis 

 

The G’ and G”  results for the polymer composites and polymer blends are 

shown in Figures 4.61 and 4.62, respectively. Again, rises in storage modulus with 

increasing SGF concentration was observed at all frequencies. Moreover, these 

polymer composites can be categorised as liquid-like material, because the G”  was 

greater than G’ at all range of frequencies studied regardless the amount of SGF in 

the systems. This could be due to SGF acted as a ‘lubricant’ and caused the polymer 

phase of PA6 and ABS easily slipped at interphase and interface level.  
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Figure 4.61 :  Effects of loss modulus of 60/40 PA6/ABS composite versus 

frequency at different amount of SGF 

 

 

Figure 4.62 : Effects of storage modulus of 60/40 PA6/ABS composite versus 

frequency at different amount of SGF 
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4.4.4.2 Complex Viscosity Analysis 

 
 

Figure 4.63 represents the relationship between complex viscosity and 

frequencies, ω for PA6/ABS composites containing different amount ranging from 

0% to 30% of SGF at 230°C. It can be seen that the trend in complex viscosity 

growth associated with SGF loading. At all frequencies, the complex viscosity of 

polymer composites was larger than unfilled PA6/ABS blends. It can also be found, 

that the complex viscosity decreased with the increasing of frequencies. This 

observation is due to the deformation of the SGF at high frequencies and its 

associated contribution to an increase in fluidity of the matrix phase. When more 

SGF was added into the blends, the SGF droplets begin to grow and coalesce, 

causing an increase in the complex viscosity (Guschl and Otaigbe, 2003). Generally, 

all the blend systems showed a non-Newtonian behaviour at all frequencies.  The 

increase in viscosity of the composites with increasing fibre concentration could be 

due to the interaction between fibre-fibre and fibre-matrix (Prasantha Kumar et al., 

2000; Dweiri and Azhari, 2004). 

 

 

Figure 4.63 :  Effects of complex modulus of 60/40 PA6/ABS composite versus 

frequency at different amount of SGF 
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4.4.4.3 Tan δ Analysis 

 

In order to obtain information on how efficient the polymer composites lose 

energy to molecular rearrangements and internal friction, the relation between tan δ 

of PA6/ABS composites versus frequency were obtained and it is shown in Figure 

4.64. The tan δ is very sensitive with structural change (Xiao et al., 2006) and 

decreased with the incorporation of short glass fiber, which is due mainly to the 

existence of effective interfacial bonding between SGF and PA6/ABS matrix so that 

the energy dissipation in the composite was limited. Otherwise, if the interfacial 

adhesion is poor, applied energy will be dissipated in the form of heat due to the 

interaction between the fiber and matrix. Consequently, the peak of tan δ will be 

increase with decreasing the interfacial adhesion. Similar to other composite systems, 

the decreasing of tan δ to be due to incorporation of SGF, resulting an improvement 

in damping and showing that the polymer composites are more elastics (Lozano et 

al., 2004). From the figure, it can be observed the tan δ decreased drastically when 

10 wt. % of SGF was introduced into the composite. From the figure, it can be 

observed that 20 and 30 wt. % of SGF considerably have a similar effect on tan δ at 

all frequency studied. Therefore, the incorporation of SGF has improved the damping 

and elasticity of PA6/ABS composites.  

 

Tan δ is very sensitive with structural change of the composites and 

viscoelastic behaviour can be determined using the analysis of tan δ peak.  From the 

figure, a viscoelastic peak occurred at the frequency around 2 – 5 rad/s and depends 

on concentration of SGF in the PA6/ABS composites. It can be observed, the unfilled 

composite has a highest tan δ, indicates less elastics than the filled composites. The 

elastic behaviour became more prominent with the highest amount of SGF. In other 

word, the viscoelatics disappeared with increasing the SGF content. Tan δ peak also 

indicates a solid-liquid transition, which is the composite undergo a transition with 

increasing a frequency. At the transition point, tan δ is expected to be independent of 

frequency. When the frequency increased beyond this transition point, a dominating 
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elastics response (solid behaviour) of the composite became more obvious. At 

frequency is about 100 rad/s, all the composites considerably showed identical tan δ 

value indicating the SGF has not affected the viscoelastic behaviour of the 

composites. 

 

 

Figure 4.64 :  Effects of short glass fibre on the composite tan δ of the PA6/ABS 

blends 

 

 

4.4.4.4 The Cole-cole plot Analysis 

 

 

Figure 4.65 illustrates a plot of storage modulus, G’ versus loss modulus, G”  

for PA6/ABS composites with various amount of short glass fibre.  From the figure, 

it can be seen that the cole-cole plot of PA6/ABS composites deviated from scaling 

G’ versus G”  of the unreinforced polymer blends indicating that a long relaxation 

mechanism has occurred in these samples. This indicates that the composites behave 

in an anomalous way and a phase separation of PA6 and ABS has incurred. In other 

words, the addition of SGF into PA6/ABS composites has enhanced the interfacial 

adhesion, increased the elasticity and improved the properties of the composites. 
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However, the interaction between the SGF and PA6/ABS composites will be more 

obvious by discussing the power law index and consistency index in Section 4.4.4.7. 

At the concentration of SGF beyond 20 and 30 wt. %, it was found that the deviation 

trend considerably similar. This indicates that further incorporation of SGF has not 

improved much the elasticity, even though the complex viscosity of the both 

concentration was different.  

 

 

Figure 4.65 :  Plot of storage modulus, G’ versus loss modulus, G” of 60/40 

PA6/ABS composites at different amount of SGF, at 230°C 

 

 

4.4.4.5 Activation Energy of Flow Analysis 

 

 

The activation energy of polymer composites were calculated from Arrhenius 

equation plots of Ln aT versus reciprocal of temperature as shown in Figure 4.65. 

From the Figure 4.65, the activation energy of flow, that is an indication of 

temperature sensitivity of the melts, was reduced in the present of fibre. This 

explains that the higher temperature sensitivity of the polymer matrix was increased 

in the present of 10 wt. % fibres. This result is not in agreement with the study 
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carried out by Pransantha Kumar et al. (2000). They reported that the activation 

energy of fibre reinforced styrene-butadiene rubber composites increased with 

increasing of fibre concentration, and indicating that the melt viscosity of the 

composite is higher temperature sensitive than that of without fibre. However, from 

Figure 4.67, increasing of activation energy was clearly seen at the concentration of 

fibre beyond 10 wt. % tough the value was till lower than the unfilled PA6/ABS 

composite. This is also indicates that the present of 10 wt. % concentration of SGF in 

the composite reduced the sensitivity of the composite, as a result, reduced the 

compatibility of the system. However, the sensitivity of the composites to 

temperature increased with further increase of SGF concentration beyond 10 wt. %, 

indicates the compatibility of the composite between SGF with PA6/ABS matrix was 

restored with further increase in SGF concentration. 

 

Figure 4.66 : Effect of temperature on shift factor, aT for 60/40 PA6/ABS 

Composites 
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Figure 4.67 : Effect of activation energy for 60/40 PA6/ABS composites with 

different composition of SGF 

 

 

4.4.5 Capillary Rheological Properties of 60/40 PA6/ABS Composites 

4.4.5.1 Shear Stress Analysis 

 

 

The graph of shear stress versus shear rate for 60/40 PA6/ABS composites 

covering at different SGF composition at 230 °C was plotted and shown in Figure 

4.68. A typical result of pseudoplastics behaviour of PA6/ABS composite is shown 

in the figure. At lower shear rate, the incorporation of SGF followed the ‘rule of 

mixing’ where, the shear stress increased with increase of SGF concentration. 

However, at higher shear rate and the incorporation of SGF reduced the shear stress 

of the composites. This could be due to; SGF increased the volume fraction of the 

matrix and create more free space for matrix to flow and the SGF inclusions can 
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move in the matrix to produce the ‘bearing effect’, resulting in reduction of shear 

stress.   

 

Generally, for the entire composites studied, it can be seen that the curves 

apparently deviated from linear relationship inclining to the axis of shear rate, 

showing a typical pseudoplastics fluids. When shear rate is fixed, shear stress 

increased with the increase of SGF concentration. With greater proportion of 

reinforcement, the inhibition of polymer chain motion by the SGF particles was 

increased, and flow resistance increased correspondingly, leading to the increase of 

shear stress.  

 

Figure 4.68 :  Effects of short glass fibre on the composite shear stress of the 

PA6/ABS blends 

 

 

4.4.5.2 Shear Viscosities Analysis 

 

 

The shear viscosity curves obtained for the composites with varying content 

of SGF as a function of shear rate are shown in Figure 4.67. The curves show a 
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significant drop in viscosity with increasing of shear rate beyond 100s-1 indicating a 

pseudoplastic behaviour of the composite. It could be due to with increasing shear 

rate may arise from the molecular alignment during flow through the capillary. 

Rheological study of short PA6 fibre reinforced styrene-butadiene rubber by Seema 

and Kutty (2005) also found a similar observation in which PA6 fibre while 

restricted the free flow of the composite melt; also get aligned in the direction of 

flow.    

 

It can also be seen from the figure that, at a fixed shear rate, the viscosity 

increased with SGF, where 30 wt. % produced the highest among the composites. 

These results followed the ‘rule of mixing’, where the highest SGF concentration 

produces the highest viscosity.  The present of fibre restricted the molecular mobility 

under shear resulted a shift to higher viscosity. According to Prasantha Kumar et al. 

(2000) the increase in viscosity of the composites with increasing fibre concentration 

is due to the interaction between fibre–fibre and fibre–matrix. However, further 

increase in fibre concentration resulted in not much increase in shear viscosity at 

high shear rate as compared to low shear rate. Barnes et al. (1989) have commented 

that the shear viscosity value will increase at Newtonian plateau region by increasing 

the SGF content. This means that the effect of fibre on shear viscosity is prominent at 

lower shear rates. It can be seen that the different in shear viscosity between 

reinforced composites with unreinforced composites became bigger and bigger with 

increasing amount of SGF. This observation is in agreement with earlier study of 

short PA6 fibre reinforced styrene-butadiene rubber (Seema and Kutty, 2005; Kutty 

et al., 1991) and concluded that high concentration of SGF resulting in fibre-fibre 

and fibre-matrix interactions. 
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Figure 4.69 :  Effects of short glass fibre on the composite shear viscosity of the 

PA6/ABS blends 

 

 

4.4.5.3 Power Law Index Analysis 

 

 

The values of flow behaviour index and consistency index as a function of 

fibre content at 230°C is given in Figure 4.70. Non-Newtonian pseudoplastic 

materials have n values less than unity. In the case of SGF reinforced PA6/ABS 

composites, the n values were found to be less than unity indicating that the 

pseudoplastic nature of the system. Without SGF, n value is high, indicates that 

compatibiliser works effectively to enhance the interfacial adhesion and resulted low 

pseudoplastics behaviour. As the fibre concentration was introduced to 20 wt. %, the 

values of n drastically decreased indicating more pseudoplastic nature for the 

composites. This increased in pseudoplasticity is due to the orientation of the fibres. 

However, the n value increased from 0.33 to 0.45 with further increasing of SGF 

concentration from 20 wt. % to 30 wt. % in PA6/ABS composites. This indicates the 

reduction of pseudo-plastics behaviour. It could be because, at higher concentration 

of SGF the entanglement has occurred and the free volume in the composite was 
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increased and provide more space for PA6 and ABS phase free to flow.  

Consequently, the viscosity of the composites increased with further increasing the 

SGF composition. From the figure, it can be concluded that, the optimum 

concentration of SGF is about 20 wt. % where the power law index was minimum 

and consistency index was maximum.  At this point, it is believed that the composite 

has a good interaction between fibre and matrix as well as a good compatibility 

indicating higher pseudoplastic behaviour as compared to the rest of the composite 

studied. 
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Figure 4.70 : Power law index, n and consistency index, K for 60/40 PA6/ABS 
composites with various amount of short glass fibre at 230 °C 
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4.5 Fourier Transform Infra-Red (FTIR) Analysis 

The FTIR analysis of virgin PA6, virgin ABS-g-MAH and 3 wt. % 

compatibiliser in 60/40 PA6/ABS blends were carried out to indentify the occurrence 

of the reaction between compatibiliser and PA6. As seen in Figure 4.68, the broad of 

the peak at 3306.43 cm-1 corresponded to the N-H (amine end group of PA6) stretch 

in PA6 and was not appeared at ABS-g-MAH, whereas the peak at 1071.81 cm-1 

corresponds to the aromatic C-O (maleic anhydride) stretch in ABS-g-MAH 

appeared in the spectrum of virgin PA6, and both peaks will dependent on the 

reaction. However, at the spectrum of 60/40 PA6/ABS blend compatibilised by 3 wt. 

% of ABS-g-MAH, both peaks, N-H and C-O stretches were appeared at 3306.70 

and 1076.47 cm-1, respectively. It is clearly shown, that the size of the both peaks 

decreased significantly. This is in agreement with suggested possible reactions 

between PA6 and maleic anhydride that could be occurred during melt blending of 

PA6/ABS blends as summarised in the Figure 4.1. This suggests that the reaction 

occurred between amine end-group and maleic anhydride to form a ‘bridge’ between 

PA6 phase and ABS phase. This analysis in an agreement with the idea was reported 

by Kudva et al. (2000). The appearance of the C-O peak at compatibilised blends (3 

wt. % ABS-g-MAH in PA6/ABS blend) spectrum has suggested that only a certain 

composition of maleic anhydride has been reacted with amine end group of PA6. 

This is indicates that the remaining of maleic anhydride in PA6/ABS acted as fillers 

and affects the properties of either the blends or composites. This idea is supported 

by FTIR spectrum as shown in Figure 4.72, which is the C-O peak disappeared when 

the amount of compatibiliser was about 1 wt. %, indicates all the ABS-g-MAH fully 

reacted with amine end group of PA6.  
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Figure 4.71 : FTIR spectra of (a) virgin of PA6, (b) 60/40 PA6/ABS blend 

compatibilised by 3 wt. % of ABS-g-MAH and (c) virgin of ABS-g-MAH  
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Figure 4.72 : FTIR spectra of (a) 1 wt. % (b) 3 wt. % and (c) 5 wt. % of ABS-g-
MAH in PA6/ABS blends 
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4.6 SEM Micrograph Analysis 

SEM micrograph is the most convenient approach to differentiate the 

morphologies between compatibilised and uncompatibilised blends. In general, the 

morphology can be improved by the addition of compatibiliser (Kudva at al., 1998).  

The morphology of fractured samples of PA6/ABS blends by liquid nitrogen were 

investigated in the entire of composition and shown in Figures 4.73, 4.74 and 4.75. In 

the case of PA6/ABS blends there exists a clear distinction between the PA6 matrix 

and ABS phase. Micrographs show the dispersed phase was an ABS phase while the 

matrix was the PA6 phase. This phenomenon occurred to be due to PA6 had less 

viscosity then ABS during sample preparation (Kudva et al., 2000a; Chang et al., 

1994; Liu et al., 2001), and this fact was supported by rheological analysis as 

discussed in Section 4.4.1.  

 

It is clear shown that in the absence of compatibiliser, interface adhesion was 

very poor where the gap between the dispersed phased and the matrix was bigger 

(see Figures 4.73 (a), 4.74 (a) and 4.75 (a)). It can be observed that the size of 

dispersed phase was appreciably affected by the addition of MAH. These analyses 

are in agreement with the previous studies (Lacasse and Davis, 1999; Kudva et al., 

1999; Ozkoc et al., 2006). This indicates that ABS-g-MAH has decreased the 

interfacial tension between PA6/ABS phases and aided in finer dispersion of ABS in 

the PA6 matrix. This was resulted the enhancement of the interfacial adhesion thus 

the mechanical and other properties also improved.  This phenomenon was clearly 

observed at the addition of compatibiliser at 1 wt. % into PA6/ABS blends. 

Generally, further increment of ABS-g-MAH reduced the particles size to be more 

uniform and fine spherical.  
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Figure 4.73 : SEM photographs of fractured of 50/50 PA6/ABS blends at various 
amount of ABS-g-MAH (a) 0 wt. %, (b)  1 wt. %, (c) 3 wt. % and (d) 5 wt. % 

 
 
 
 
 
 
 

(a) 0 % (b) 1 % 

(c) 3 % (d) 5 % 
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Figure 4.74 : SEM photographs of fractured of 60/40 PA6/ABS blends at various 
amount of ABS-g-MAH (a) 0 wt. %, (b)  1 wt. %, (c) 3 wt. % and (d) 5 wt. % 

 

 
 
 
 

(a) 0 % (b) 1 % 

(c) 3 % (d) 5 % 
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Figure 4.75 : SEM photographs of fractured of 70/30 PA6/ABS blends at various 
amount of ABS-g-MAH (a) 0 wt. %, (b)  1 wt. %, (c) 3 wt. % and (d) 5 wt. % 

 

 
 

 

 

 

 

 

 

(a) 0 % (b) 1 % 

(c) 3 % (d) 5 % 



 

 

CHAPTER 5 

 

 

CONCLUSION AND RECOMMENDATION  

 

 

5.1. Conclusion 

 

The mechanical of PA6/ABS blends and short glass fibre reinforced PA6/ABS 

composites were systematically investigated. Addition of ABS-g-MAH as 

compatibiliser in the PA6/ABS blends showed that the blends became compatible. It 

was found that the tensile modulus and strength of PA6/ABS blends increased with 

increasing in compatibiliser content. The present of ABS-g-MAH in the blends system 

enhanced the interfacial adhesion between PA6 and ABS phases. The maximum tensile 

modulus and strength were found at 1 wt. % of ABS-g-MAH concentration. This could 

be due to enough amount of ABS-g-MAH reacted with amine end group of PA6.  

Further increase in ABS-g-MAH content reduced the tensile modulus and strength and 

considerably achieved a constant value beyond concentration at about 3 wt. %.  
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The elongation at break of the PA6/ABS was improved by the addition of ABS-

g-MAH at all composition studied. Flexural modulus and strength exhibited different 

trend as compared to tensile modulus and strength, achieved maximum value at ABS-

g-MAH content was about 3 wt. %. Beyond this point, reduction in flexural modulus 

and strength occurred could be due to repulsion of polar segment of PA6 and 

acrylonitrile segment in ABS and excess able amount of ABS-g-MAH acted as filler. 

Impact strength showed a similar patent as compared to elongation at break. This 

indicates ABS-g-MAH enhanced the interfacial adhesion and improves the 

compatibility of the blends. However, the incorporation of short glass fibre to the 60/40 

PA6/ABS blends with a 3 wt. % compatibiliser has not significantly improved the 

impact strength, but exponentially enhanced the tensile modulus and strength and 

linearly improved the flexural properties. Generally, the addition of SGF reduced the 

toughness even though the stiffness increased exponentially. 

 

The thermal properties of PA6/ABS blends decreased with the increase of ABS-

g-MAH concentration. The introduction of compatibiliser has also affected the degree 

of crystallisation the PA6/ABS blends. It was found that 1 wt. % was showed the 

highest degree of crystallisation of PA6/ABS blends and considered as the optimum 

ratio for compatibilisation of all PA6/ABS blends.  The introduction of SGF into 60/40 

PA6/ABS composites reduced the thermal properties especially degree of 

crystallisation. The glass transition temperature, Tg and the heat of melting decreased 

significantly with the addition of SGF to the matrix. This indicates that, the SGF tends 

to agglomerate within their phase due to short in length that form multiphase in the 

composite system. 

 

From the results of the dynamic mechanical properties of 50/50, 60/40 and 

70/30 PA6/ABS blends, generally, the DMA properties especially storage modulus 

were increased by the addition of compatibiliser at low temperature (before transition 

region) and showed no improvement at high temperature (after transition region). 
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Specifically, for 60/40 PA6/ABS blends, it was found that the maximum dynamic 

mechanical properties was achieved at the concentration of compatibiliser at about 1 

wt. % as compared to 50/50 and 70/30 PA6/ABS blends at about 5 wt. % of 

compatibiliser. The increased in dynamic mechanical properties suggested that the PA6 

and ABS chain motion were restricted by the formation of graft copolymer within the 

phases. The reaction has been confirmed by FTIR analysis. The introduction of short 

glass fibre in 60/40 PA6/ABS increased the storage and loss modulus of the 

composites. In other word, the present of SGF in PA6/ABS composites increased the 

elasticity of the system, but resulted poor interfacial bonding with further increase in 

SGF concentration. From DMA results, 20 wt. % of SGF concentration is considered as 

optimum composition of SGF for 60/40 PA6/ABS composites.  

 

In this research, detailed rheological analysis of PA6/ABS blends and 

composites were performed on oscillatory and capillary rheometer. For the oscillatory 

rheometer, the effects of compatibiliser concentration, frequency, and temperature on 

rheological properties were studied. The 50/50 PA6/ABS blends exhibited relatively 

strong frequency-rheology or big frequency-dependence compared to that of 60/40 and 

70/30 PA6/ABS blends. In general, all the polymer blends showed a typical behaviour, 

exhibiting a shear-thinning regime at all frequencies studied. It showed that at a fixed 

frequency, the complex viscosity increased with the amount of compatibiliser. This 

indicates that, compatibiliser reduced the interfacial tension and enhanced the 

interfacial adhesion between the domains phase and matrix phase. However, the 

viscoelastic behaviour in dynamic mechanical properties of PA6/ABS blends, strongly 

dependent on the rubber phase of ABS and compatibiliser and grafting reaction of 

compatibiliser with amine end group of PA6. The incorporation of SGF enhanced 

dynamic rheological properties of the composites. The complex viscosity, storage and 

loss modulus increased with increase in SGF concentration. From the dynamic 

rheological tan δ point of view; it can be observed the tan δ decreased drastically when 

10 wt. % of SGF was introduced into the composite. Moreover, it can be observed that 

20 and 30 wt. % of SGF considerably have a similar effect of tan δ at all frequency 
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studied. Generally, the incorporation of SGF improved the damping and elasticity of 

PA6/ABS composites.  

 

The activation energy of flow, Ea is the energy that needs to be consumed for 

breaking up the interactions among the chain segments when the melts flow. It reflects 

the dependence of melt viscosity on temperature. At 50/50 and 60/40 PA6/ABS blends, 

adding 1 wt. % of compatibiliser decreased the activation energy of flow. However, at 

70/30 PA6/ABS blends the addition of 3 wt. % of compatibiliser showed the lowest of 

activation energy of flow as compared 60/40 and 50/50 PA6/ABS blends. The lower is 

the flow activation energy means that the material behaves more elastic and more 

energy is needed to break the interactions and allow the material to flow. At 10 wt. % 

concentration of SGF in the composite reduced the sensitivity of the composite, as a 

result, reduced the compatibility of the system. However, the sensitivity of the 

composites to temperature increased with further increasing of SGF indicates the 

compatibility of SGF with PA6/ABS matrix was restored. 

 

From capillary rheological point of view, all the blends showed a pseudoplastics 

behaviour. At low shear rate, the addition of compatibiliser did not change the shear 

stress of all the PA6/ABS blends. It could be due to small amount of compatibiliser 

attributed less to the change of shear stress. However the effect of compatibiliser on the 

shear stress was more obvious at higher shear rate, specifically for 60/40 and 70/30 

PA6/ABS blends. It shows that the shear viscosity of all the blends decreased with 

increasing shear rate showing a typical property of pseudo-plastics non-Newtonian or 

shear-thinning plastics. The decrease in shear viscosity can be attributed to the 

alignment of chain segments of PA6/ABS blends in the direction of applied stress. At 

lower shear rate, it closed to zero shear and can be predicted as Newtonian molten 

flow.  
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 It was found that for 60/40 PA6/ABS composites, the curves of shear stress 

versus shear rate apparently deviated from linear relationship inclining to the axis of 

shear rate, showing typical pseudoplastics fluids. When shear rate was fixed, shear 

stress increased with increasing of SGF concentration. With greater proportion of 

reinforcement, the inhibition of polymer chain motion by the SGF particles was 

increased, and flow resistance increased correspondingly, leading to the increase of 

shear stress. The results show a significant drop in viscosity with increasing of shear 

rate beyond 100s-1 indicating a pseudoplastic behaviour of the composite.  The power 

law index, n values were found to be less than unity indicating that the pseudoplastic 

nature of the composite system. Without SGF, n value was high, indicates that 

compatibiliser works effectively to enhance the interfacial adhesion and resulted in low 

pseudoplastics behaviour. As the fibre concentration was introduced to 20 wt. %, the 

values of n drastically decreased indicating more pseudoplastic nature for the 

composites and concluded that, the optimum concentration of SGF was about 20 wt. %. 

 

In order to confirm the reaction between maleic anhydride of ABS-g-MAH 

amide end group for PA6, FTIR analysis was carried out. The FTIR analysis confirmed 

that the reaction took place during melt intercalation process.  FTIR analysis suggested 

that only a certain composition of maleic anhydride has been reacted with amine end 

group of PA6. This indicates that the remaining of maleic anhydride in PA6/ABS acted 

as fillers and affects the properties of either the blends or composites. 

  

5.2. Recommendation for Future Work 

 

Based on the experience gained during this study, the following 

recommendations for future work can be made. 
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i. Extend the investigation of the rheological behaviour of PA6/ABS 

blends and composites using spiral mould method. This method is close 

to the actual processing situation; where the flow behaviour of the blends 

and composite can be evaluated directly form the spiral mould data. 

Also, using the spiral mould data, we can easily predict the flow 

behaviour of the material using the injection moulding. 

ii. Extend the knowledge of dynamic mechanical analysis and rheology of 

the PA6/ABS blends to ternary blends and blends formulation containing 

different type of filler loading. 

iii. Improve understanding of the dynamic mechanical properties of 

PA6/ABS composite with the study below ambient temperature and 

different frequency in order to understand the behaviour of the composite 

during application in cold environment.  Run the testing using a 

temperature sweep instead of frequency sweeps in order to evaluate the 

dynamic mechanical properties under different degree of vibration. This 

information can be used to understand more the behaviour of the 

composite in different conditions. 
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