
IOP Conference Series: Materials Science and Engineering

PAPER • OPEN ACCESS

A Direct Proof of Significant Directed Random
Walk
To cite this article: Choon Sen Seah et al 2017 IOP Conf. Ser.: Mater. Sci. Eng. 235 012004

 

View the article online for updates and enhancements.

You may also like
Networking—a statistical physics
perspective
Chi Ho Yeung and David Saad

-

Constructing and sampling directed graphs
with given degree sequences
H Kim, C I Del Genio, K E Bassler et al.

-

Percolation on the gene regulatory
network
Giuseppe Torrisi, Reimer Kühn and
Alessia Annibale

-

This content was downloaded from IP address 161.139.222.41 on 22/09/2022 at 02:36

https://doi.org/10.1088/1757-899X/235/1/012004
/article/10.1088/1751-8113/46/10/103001
/article/10.1088/1751-8113/46/10/103001
/article/10.1088/1367-2630/14/2/023012
/article/10.1088/1367-2630/14/2/023012
/article/10.1088/1742-5468/aba7b0
/article/10.1088/1742-5468/aba7b0
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsuhK9XcF4WC20QC6PutiEhvs26ZJYRWK2mgNPwh0aIfJee2ZJvKY4jsYu1f70osEs1dDisQAGPLDHYeljmOsiD7kO_puGKGAqVIlKjzaMgfDuAsuHCutpdqt2xVwRG-L_5jUkRe9xqSeH950L9lHlpqVBWl_yQEoGuhiggFMRvoqXnPgRrTBgZ0TRvzwVAxWDTh90oKy_fbDyVwCqTMknKNp820NyY5yQvF0HqayPpCnnR3d57ortkpz5PpGtvxxKSIu_WNODC_zB7sTasoOsyxoXcsfHTWFxCTf7ARdfuxXA&sai=AMfl-YSJ88EHLDIyT1D-fa95MoF2IAhztl-ldKAby9s--LTRdAYmdMOSEgS9m2T57LICtwQChuZBGAFWcQ2l770&sig=Cg0ArKJSzG8tOtJNE5Aa&fbs_aeid=[gw_fbsaeid]&adurl=https://community.electrochem.org/eWeb/DynamicPage.aspx%3Fwebcode%3DEventInfo%26Reg_evt_key%3Dcdc97533-dd9f-4411-a7c2-faa5b85a1388%26utm_source%3DIOP%26utm_medium%3DADV%26utm_campaign%3D242Reg


1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890

CACRE 2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 235 (2017) 012004 doi:10.1088/1757-899X/235/1/012004

 

 

 

 

 

 

A Direct Proof of Significant Directed Random Walk  

Choon Sen Seah
1, a

, Shahreen Kasim
1, b

, Mohd Farhan Md Fudzee
1, c

, and Mohd 

Saberi Mohamad
2, d 

1
Soft Computing and Data Mining Centre, Faculty of Computer Sciences and 

Information Technology, Universiti Tun Hussein Onn Malaysia 
2
Faculty of Computing, Universiti Teknologi Malaysia, Skudai 

a
hi150021@siswa.uthm.edu.my, 

b
shahreen@uthm.edu.my, 

c
farhan@uthm.edu.my, 

d
saberi@utm.my 

Abstract. This paper is presented to disclose the relationship between weight and connectivity 

of nodes. An equation is formed to enhance the connectivity of nodes in directed graph via 

weigh. With implementation of references data, the adjacency matrix is further enhances to 

increases the accessibility of nodes via vector. The evolution of random walk is disclosed in 

this paper as well. Significant directed random walk will be used to prove the importance of 

weight in this paper. 

1. Introduction 

The basics of random walk can be traced back from a famous study by Brown (1828), known as 

Brownian motion [1]. Random walk was first developed to predict the mosquito infestation in forest 

by Karl Pearson [2]. Nowadays, random walk is applied in many different fields for prediction 

purposes and hence, it was further developed to improve the accuracy of prediction. Random walk was 

developed into directed random walk where it is classifying under biased random walk [3]. Directed 

graph consists of a sequence of vertices with connection of edges [4]. With a specific vector, an initial 

vertex will be transported to another vertex via edges. Implementation of directed graph will be further 

discussed on section 3 and 4. The connection between vertices are improved with the implementation 

of weight during the calculation. The equations are further proved through implementing numeric 

values of gene expression data after data pre-processing via Gene Chip Robust Multiarray Averaging 

(GCRMA). The comparison of results between directed random walk and significant directed random 

walk are shown in section 5.   

2. Random Walk 

Random walk can be described as the movement of a particle in a certain state space under the random 

action [5]. The state space is usually a dimensional Euclidean space or the integral lattice. Furthermore, 

random walk was then drawn to the subject and many important fields, such as random processes, 

random noise, spectral analysis and stochastic equations [3]. Each step of random walk is either equal 

to +1 (step forward) or -1 (step backward). 

3. Directed Random Walk 

The Directed Random Walk (DRW) developed by Liu have the ability to restart and stimulate a 

random walker that starts on a source node, s [6]. At every time step, the walker transit from its current 

http://creativecommons.org/licenses/by/3.0
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node to another randomly selected neighbour (forward) or goes backward to source node s with 

probability r. Formally, the DRW with restart is defined as 

     (   ) 
                     (1) 

where Wt is a vector which the i node holds the probability of being at node i at time, t. M is the 

row-normalized adjacency matrix of the graph, G. When the random walk begins, the initial 

probability vector, W0 was constructed by assigning to each node whose initial probability was 0. W0 is 

absolute t-test score, which will be further normalized into a unit vector [6]. The restart probability r 

was set as 0.7. Wt converges to a unique steady state in the presence of the ground node. This was 

obtained by performing the iteration until the normalization fall between Wt and Wt+1 < 10
-10

.  

4. Significant Directed Random Walk 
In this section, an improved DRW which named as significant directed random walk (sDRM) is 

presented. The sDRW proved that the weight of the nodes can affect the connectivity of nodes, which 

leads to higher vector. Directed graph is defined as weighted graph when there are values attached to 

the directed edges [7]. These values represent the cost of travelling from one node to the other. The 

cost can be measure in many terms, depending on the application.  

For example, distance between two nodes and the average travelling time in minutes. In the case of 

gene classification, weight of gene is used as a parameter to identify the usefulness in classification [8]. 

The significant genes normally have higher weight compared to the others. This is because of the 

common genes across protein-protein interaction network. Weight of genes can be obtain from gene 

expression data. 

The Significant Directed Random Walk have ability to enhance the connectivity between nodes by 

weight of nodes. At every time step, the walker transitions from its current node to a randomly 

selected neighbour (based on edge weights) or goes back to source node, s with probability r. r can 

vary according to the datasets due to the attraction of nodes [9]. For example, r can be 0.1, 0.2, 0.3, 0.4, 

0.5, 0.6, 0.7, 0.8, or 0.9. Formally, the sDRW with better connectivity is defined as 

     (   )( )(
      

 
)             (2) 

where, Wt is a vector of i node which is transmitted from i-1 node while M is an adjacency matrix 

developed from the original directed graph (with edges) to more strongly connected directed graph. As 

we stated in the previous section, weight plays an important role in nodes connectivity. Hence, weight 

of two connected nodes, N1 and N2 is implemented into the equation.   

If the nodes have a strong connectivity towards previous nodes, then the vector from previous node 

towards it will be higher. 

5. Direct Proof with Gene Expression Data 

 In this section, we present a direct proof of Significant Directed Random Walk that have better 

connectivity towards vertex compare to Directed Random Walk. By applying pathway data as 

references data and gene expression data as input data, we can obtain result of the equation. Hence, the 

ability of significant random walk can be proven.  

Weight of the nodes are obtained from gene dataset, GSE19188 (Non-Small Cell Lung Cancer) 

[10], which will be processed in data pre-processing stage before implement into equation. Table 1 

shows the weight of nodes after data pre-processing using Gene Chip Robust Multiarray Averaging 

(GCRMA).  

Assume G; V = {1,2,3,4,5} where G represent directed graph, while V represent vertex. Figure 1 

shows part of the biological pathway, leukocyte transendothelial migration where highlighted nodes 

will be used in calculation and will be simplified into Figure 2.  
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Table 1. Weight of each node that implement in graph, G 
       

Nodes 1 2 3 4 5 6 

Weight 2.338914 8.47301 6.1441 3.102989 11.38365 5.149393 

 

 

 

 

Figure 1. Gene sets that will be focusing on 

(highlighted) 

 Figure 2. Graph G with nodes and edges after 

simplified from Figure 1 

 

Figure 2 shows the nodes and edges that will be used in the calculation. The direction of the 

pathway is stated as below: 

1 -> 2 -> 3 -> 4 ->5 > 6 

Firstly, we will calculate the vector of significant directed random walk, followed by directed 

random walk, and compare the results in the end. The comparison of the results will be shown in Table 

2. Initial vector, W0 of first nodes (1) is zero because it is an initial node. Directed random walk will 

be proven by implementing the same data for comparison purposes. For first vector, Wt is set as 1. 

Significant Directed Random Walk Directed Random Walk  

W0 = 0 W0 = 0 

W1  = (1-0.4)(1)( (2.338914+8.47301)/2) + 0.4(0) 

 = 3.243577 

W1 = (1-0.4)(1)(1) + 0.4 (0) 

 = 0.6 

W2 = (1-0.4)(1)(  (8.47301+6.1441)/2) + 0.4(3.243577) 

 = 4.385133 + 1.297431 

 = 5.682564 

W2 = (1-0.4)(1)(0.6)+ 0.4(0) 

 = 0.36 

W3 = (1-0.4)(1)(  (6.1441+3.102989)/2) + 0.4(5.682564) 

 = 2.774127 + 2.273026 

 = 5.047153 

W3 = (1-0.4)(1)(0.36) + 0.4(0) 

 = 0.216 

W4 = (1-0.4)(1)(  (3.102989+11.38365)/2) + 0.4(5.047153) 

 = 4.345992 + 2.018861 

 = 6.364853 

W4 = (1-0.4)(1)(0.216) + 0.4(0) 

 = 0.1296 

W5 = (1-0.4)(1)(  (11.38365+5.149393)/2) + 0.4(6.364853) 

 = 4.959913 + 2.545941 

 = 7.505854 

W5 = (1-0.4)(1)(0.1296) + 0.4(0) 

 = 0.07776 

Table 2. Comparison result of vector from node 1 to node 6 
   

Vector, W Significant Directed Random Walk Directed Random Walk 

W0 0 0 

W1 3.243577 0.6 

W2 5.682564 0.36 

W3 5.047153 0.216 

W4 6.364853 0.1296 

W5 7.505854 0.07776 
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From the results above, we know the fluctuation of the vector in significant directed random walk 

is because of the weight. Weight plays an important role to attract the other nodes while the constant 

decline of vector in directed random walk is because of the previous vector. The connectivity (vector) 

will become weaker and weaker. 

On the other hand, the connectivity between 2 nodes can also be proven by significant directed 

random walk. Hence, another calculation by using DRW and sDRW will be run to test the 

connectivity between first node and the other node. The paths are stated as below: 

1 -> 2, 1 -> 3, 1 -> 4, 1 -> 5, 1 -> 6 

The calculations by using sDRW and DRW are shown as below: 

Significant Directed Random Walk Directed Random Walk 

W1->2 = (1-0.4)(1)( 
                

 
) + 0.4(0) 

 = 3.243577 

W1->2 = (1-0.4)(1)(1) + 0.4 (0) 

 = 0.6 

W1->3 = (1-0.4)(1)( 
               

 
) + 0.4(0) 

 = 2.544904 

W1->3 = (1-0.4)(1)(1) + 0.4 (0) 

 = 0.6 

W1->4 = (1-0.4)(1)( 
                 

 
) + 0.4(0) 

 = 1.632571 

W1->4 = (1-0.4)(1)(1) + 0.4 (0) 

 = 0.6 

W1->5 = (1-0.4)(1)( 
                 

 
) + 0.4(0) 

 = 4.116769 

W1->5 = (1-0.4)(1)(1) + 0.4 (0) 

 = 0.6 

W1->6 = (1-0.4)(1)( 
                 

 
) + 0.4(0) 

 = 2.246492 

W1->6 = (1-0.4)(1)(1) + 0.4 (0) 

 = 0.6 

 

Table 3. Vector from node 1 to the other nodes 
   

Vector, W Significant Directed Random Walk Directed Random Walk 

W1->2 3.243577 0.6 

W1->3 2.544904 0.6 

W1->4 1.632571 0.6 

W1->5 4.116769 0.6 

W1->6 2.246492 0.6 

From Table 3, with sDRW, we figure out the connectivity between node 1 and node 5 are strongest 

among the other nodes, while the weakest connectivity is between node 1 and node 4. While with 

DRW, the connectivity is remaining the same because the initial vector and first vector play the roles 

in determine the next vector. In sDRW, the reason to have such significant different of vector is 

because of the weight between each node. 

6. Conclusion 

Weight plays an important role between vertex and edge. Vector can be enhanced by implementing 

weight as one of the parameter. The equation shown is significant directed random walk. With the 

proven results after implementation, we believe that connectivity of nodes can be enhances with 

significant directed random walk as well as improve the vector. By comparing two different random 

walk, we figure out that the connectivity between nodes can be determine via vector. By using vector, 

the direction according to the pathway are fixed and possible to be simplify. With this, the pathway 

data can be used as references data to enhances the accuracy of the cancerous classification. sDRW 

proved that enhanced pathway can increases the accessibility of nodes towards the other significant 

nodes. With the enhanced pathway data, the result of accuracy can be increases due to fully utilized 

pathway data as references data. Fully utilized references data can help in increases the accuracy of 

cancerous classification. 
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