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Abstract. Subspace System Identification (SSI) is considered as one of the most reliable tools 
for identification of system parameters. Performance of a SSI scheme is considerably affected 
by the structure of the associated identification algorithm. Weight matrix is a variable in SSI that 
is used to reduce the dimensionality of the state-space equation. Generally one of the weight 
matrices of Principle Component (PC), Unweighted Principle Component (UPC) and Canonical 
Variate Analysis (CVA) are used in the structure of a SSI algorithm. An increasing number of 
studies in the field of structural health monitoring are using SSI for damage identification. 
However, studies that evaluate the performance of the weight matrices particularly in association 
with accuracy, noise resistance, and time complexity properties are very limited. In this study, 
the accuracy, noise-robustness, and time-efficiency of the weight matrices are compared using 
different qualitative and quantitative metrics. Three evaluation metrics of pole analysis, fit values 
and elapsed time are used in the assessment process. A numerical model of a mass-spring-
dashpot and operational data is used in this research paper. It is observed that the principal 
components obtained using PC algorithms are more robust against noise uncertainty and give 
more stable results for the pole distribution. Furthermore, higher estimation accuracy is achieved 
using UPC algorithm. CVA had the worst performance for pole analysis and time efficiency 
analysis. The superior performance of the UPC algorithm in the elapsed time is attributed to 
using unit weight matrices. The obtained results demonstrated that the process of reducing 
dimensionality in CVA and PC has not enhanced the time efficiency but yield an improved modal 
identification in PC. 

1. Introduction 
Civil engineering structures are generally designed to serve for the lifetime of the occupants or facilities 
and their failure may lead to catastrophic economic or human losses. Hence, it is important to monitor 
the health state of these structures during their service life. Structural Health Monitoring (SHM) is an 
effective solution introduced for the need of a safer and more efficient condition assessment of 
structures. SHM is widely accepted tool for damage diagnosis in civil engineering communities and has 
been subject of various studies for the past three decades. SHM systems are used in many civil 
engineering structures including buildings [1-2], bridges [3-4] or dams [5- 6]. Vibration-based Damage 
Detection (VDD) is an area of significant interest in SHM and considerable effort have been dedicated 
toward developing novel approaches and improving existing strategies [7-8]. VDD methods rely on 
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change of dynamic properties as an indicator of damage existence. These methods exploit the observable 
variation in modal parameters such as resonant frequency, damping and mode shape or their derivative 
to identify changes in physical properties of a structure. VDD Variation in environmental and 
operational condition of structures alters the modal parameters of structures that pose negative effect in 
detectability of the VDD algorithm. The influence of environmental and operational condition and 
discrimination of their effects are discussed in [9-10]. Time-domain methods are the simplest VDD 
methods to perform due to direct use of time series in analysis process. Time-domain VDD methods 
generally use acceleration response due to its higher sensitivity and richer dynamic contents compared 
to velocity and displacement signals. SSI method is reported as one of the most reliable time-domain 
methods in VDD and most of the studies are specially concentrated on subspace method in the recent 
years [11]. The outstanding performance of SSI algorithm is particularly due to its capability in global 
noise rejection [12]. The most researched subspace methods in the field of system identification are i) 
Canonical Variate Analysis (CVA), ii) Multivariable Output Error State-sPace (MOESP) and iii) 
Numerical algorithms for State-Space Subspace System Identification (N4SID) [3]. In order to reduce 
the complexity of implementing the aforementioned algorithms, Overschee, Moor [12] introduced an 
unified stochastic, deterministic and combined subspace schemes which put CVA, MOESP and N4SID 
into a pragmatic approach. Peeters and De Roeck [13] for the first time adapted SSI algorithm to deal 
with output-only measurements of ambient input. Output-only system identification approaches are the 
most appropriate methods for damage detection of civil engineering structures where the ambient 
method is used as excitation source [14-15].  

Several research studies have been conducted to improve the performance of the SSI to deal with 
low quality of the input data including short length of measurement data [16], gluing the extracted data 
from multiple sets of sensors [17], noise inclusion [18], bias errors [19], complexity of structures [20], 
non-structural elements [21], Hammerstein systems [22], unexcited modes [23] and superiors modes 
[15]. Selecting of the appropriate weight matrix is a factor that must be considered in implementation 
of the SSI algorithm. Weight matrix was first introduced by Overschee, Moor [12] to reduce the 
dimensionality of data space through using principle parameters in PC, UPC and CVA methods. PC 
analysis is a multivariate statistics technique for reducing dimensionality of a data space. CVA is linear 
regression method for data analysis that is applied to quantify the relation between expectation and the 
extracted normalized variables. UPC algorithm is simpler than PC and CVA algorithms and use matrices 
of unit weight in the approximation process [24]. Some studies are conducted to compare the 
performance of PC, UPC and CVA as below. Cisma iu, Narciso [25] studied optimization routine for 
implementation of FE updating techniques based on identified dynamic response of a real footbridge 
structure. It was stated that the SSI–UPC was chosen due to its simplicity and superior performance 
dealing with modes having comparable energy levels. Nguyen [26] proposed a unified sensing 
configuration for VDD of complex civil engineering structures. It was demonstrated that the SSI-UPC 
algorithm was selected due to powerful estimation capabilities and its application in most of modal 
analysis used in civil structures. Pioldi, Pansieri [27] investigated modal dynamic properties of buildings 
under earthquake base-excitations. It is stated that the CVA was found to be the most stable weighting 
option to achieve a reliable estimation at seismic excitation. It is claimed that CVA returns less noise or 
mathematical poles and higher capabilities to separate true physical modes from spurious earthquake 
harmonics. However, no direct comparison between these three subspace algorithms has been reported 
in the aforementioned studies and no evidence was given to prove the advantage of the CVA approach. 
Kompalka, Reese [28] presented a monitoring framework to deal with progressive damage using SSI-
DATA algorithm together with model updating. In the paper it is demonstrated that the use of different 
weighting matrices of PC, CVA or UPC yield similar results. Miguel, Lopez [29] presented a hybrid 
stochastic/deterministic optimization algorithm to provide a starting point for optimizer. It is stated that 
the performance of three different variants of CVA, PC and UPC is quite similar, thus the variant PC 
was chosen for system identification. Herlufsen, Andersen [30] presented a damage detection technique 
including SSI technique together with a recently developed projection channel technique. It was 
mentioned that the analysis was performed on UPC, CVA and PC algorithms for different channels 
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scenarios and all three algorithms gave almost identical results. However just the evaluation result of 
the SSI-PC was presented in the paper. As mentioned above, several researches have reported the effect 
of selecting weight matrices in SSI algorithm. However, there are limited studies, which 
comprehensively investigate on the influence of weight factor in efficiency of the SSI algorithm.  

The aim in the present paper is to evaluate the influence of weight matrix on estimation accuracy, 
noise robustness and time efficiency of the SSI-PC, SSI-UPC and SSI-CVA algorithm. Three different 
metrics of fit values, poles analysis and the elapsed computation time are introduced to compare the 
performance of the SSI algorithms. The obtained results show that UPC algorithm had the best record 
in computation time analysis. The superior performance of the UPC algorithm in the elapsed time is 
attributed to using unit weight matrices. The use of unit weight matrix reduces the computational burden 
significantly and improves the time efficiency of the algorithm. The obtained results demonstrated that 
the process of reducing dimensionality in CVA and PC has not enhanced the time efficiency but yield 
an improved modal identification in PC. It is observed that the principal components obtained using PC 
algorithms are more robust against noise uncertainty and give more stable results for the pole 
distribution. Furthermore, higher estimation accuracy is achieved using UPC algorithm. CVA had the 
worst performance for pole analysis and time efficiency analysis. 

2. Subspace algorithm and implementation of weight matrices 
SSI is a time-domain identification method to extract the parameter of dynamic system. The subspace 
algorithm is divided into four steps of i) QR decomposition, ii) state sequence determination, iii) least 
square estimation and iv) Kalman filter. In the first step, the extracted response signal is cast into the 
form of block Hankel matrix. Then, the Hankel matrix is decomposed into triangular matrix and block 
matrix where the extracted triangular matrix is subspace representation of the Hankel matrix. The 
oblique projection of the past and future output data are used to determine the weighting matrices. The 
extracted oblique projection is pre and post multiplied by appropriate weight matrices to infer the system 
order and state sequence. In the second step, a geometrical projection is adapted to eliminate dependence 
of the SSI algorithm onto future output. The oblique projection of the past and future output data are 
used to determine the state-sequence of the system. In the third step, the LS is deployed to drive system 
matrices Aand C . Finally, the Kalman predictor is used to estimate the system model by inferring the 
Kalman gain K  of the state-space model. High resistance against noise in SSI algorithm to a great extent 
is achieved by adopting Singular Value Decomposition (SVD). SVD provide a simple way to improve 
the performance of SSI algorithm and reduce dimensionality with minimal loss of information. The 
principle angle and direction between subspaces can be determined using singular values of the obtained 
oblique projection. The cosines of the principle angles U  and V are denoted by the singular values 
(S). 

1 2
T

iW W USV  (1) 

      
Where W1 and W2 are the weighting matrices of the oblique projection. Weighting matrices of W1 

and W2 allows to draw the most proper state-space basis of an identified model. Three weighting 
algorithm are defined for implementation of the SSI algorithm including PC, UPC and CVA. The PC 
method incorporates right weight matrix to determine singular values. The output covariance matrix of 
the past 

pp YY , is used to determine the block Toeplitz matrices in PC algorithm whereas the output 

covariance matrix of the future data
pp YY ,  is used for CVA algorithm. UPC method is special case of 

PC analysis that gives the first principle component index of a system with equal weight factors to each 
set of data. The CVA algorithm selects equal weights for the all incorporated system. The weighting 
matrices in CVA are obtained from singular values.  
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Table 1.The 1W  and 2W  weighting matrices in PC, UPC and CVA algorithms. 

 1W  2W  
PC liI  

p
T
p YY

pYpY

2/1
,

 

UPC liI  jI  

CVA 2/1
, fYfY

 jI  

 

Table 1 presented the weighting matrices for PC, UPC and CVA algorithms. The weights matrices of 
PC, UPC and CVA algorithms are used to determine the singular values. PC analysis is a left side 
weighting obtained from the covariance matrix of the past and future data. UPC method use identity 
matrix for weighting and CVA incorporates right-hand weight matrix.  

3. Numerical simulation case study 
Mass-spring-damper (MSD) system is the most common reduced-order engineering model in structural 
dynamics. A 6-DOF, Mass-Spring-Damper (MSD) simulation model is used in this study to compare 
the performance of PC-SSI, UPC-SSI and CVA-SSI algorithms. 

 

 
Figure 1.The schematic of the simulation system. 

Figure 2 schematically shows the simulation model used in this case study. The proposed numerical 
model includes six mass elements with seven massless components, which are excited in z direction at 
node 6. The dynamic simulation example was defined by mass  , stiffness   and damping   
matrices. The mass matrix  is an identity matrix of order six. The stiffness of each mass to the adjacent 
elements equals k m and the Rayleigh damping was given by a combination of damping 
matrix proportion to stiffness and mass matrices as: , equal to: 

 
1.377 0.3486 0 0 0 0
0.3486 1.377 0.3486 0 0 0

0 0.3486 1.377 0.3486 0 0
0 0 0.3486 1.377 0.3486 0
0 0 0 0.3486 1.377 0.3486
0 0 0 0 0.3486 1.377

C

 
An impulsive load, with duration of 0.01 second and excitation force of 1 kN is applied to the MSD 

structure in node 3. The corresponding acceleration time-history is calculated with sampling frequency 
of 500 Hz and 1000 Hz. The imposed noise uncertainity in a real structure is simulated by adding random 
values into the extracted response signal.  

 

3.1. Fit analysis 
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Fit-value is a similarity measure between two signals, which is described with Variance Accounted For 
(VAF). VAF is an evaluation metric associated to the fit quality of the estimation. Higher VAF values 
suggest a better fit of the estimation result into a particular signal and thus better identification 
performance[31]. The VAF value is used in this study to appraise the performance of the CVA, PC and 
UPC algorithms. VAF criterion is defined as: 

11 100
Variance y y

VAF
Variance y

 (14) 

      
Where (y) is response signal of the simulation model and ( 1y ) is the predicted values of the dynamic 
system. 

 
Figure 2.Distribution of the VAF values for the subspace algorithms using (a) PC algorithm (b) UPC 

algorithm and (c) CVA. 

Acceleration response of the simulation FE model with 100 sets of noise patterns was used for 
evaluation of the SSI weight algorithms. The noise ratio of 30% is used in fit analysis experiment. Figure 
6 displays the fit analysis for three SSI algorithms. In Figure 6 (a,b and c) the oscillation pattern of PC, 
UPC and CVA algorithm are plotted. UPC algorithm has the best prediction capability among all, and 
PC is only slightly worse, while the CVA performs the worst in obtained results. 

3.2. Analysis of the system poles 
Poles are dynamic parameters of a system and are depend on distribution of mass, stiffness and damping 
within a system. Complex poles are a common phenomenon in modal identification of damped 
structures however, there is not any unified procedure to quantify the poles complexity [32- 33]. Poles 
can be plotted in a complex plane of real and imaginary components. In an undamped structure, the 
poles lie on the imaginary axis whereas the real portions of the complex values are zero.  
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Figure 3.Complex poles nomenclature of the simulation numerical system in complex plane. 

Figure 7 illustrates the extracted poles of the four first orders in the noise-free simulation model. The 
poles correspond to each of the four orders are complex conjugate of each other. Hence, 1 2 3, ,  

1 2 3, ,  and *
4 are the first order of the numerical model and 1 2 3, , and 4, 1 2 3, ,  are the 

conjugates. The poles are plotted on real and imaginary axes of a complex plane. In a separate numerical 
experiment, various noise ratios ranged from zero to 30% was used to determine the optimum ratio, 
which provides the best resolution for assessing the inherent oscillatory patterns of system poles.  

 
Figure 4. Plot of the estimated poles of the simulation case study obtained from: (a) PC algorithm for 

order 1 and 2, (b) PC algorithm for order 3 and 4, (c) UPC algorithm for order 1 and 2, (d) UPC 
algorithm for order 3 and 4, (e), CVA for order 1 and 2, and (f) CVA for order 3 and 4. 

The 5% noise ratio was found to be the optimum ratio, which shows a clear insight into the transition 
pattern of the system’s complex poles from the concentrated into the oscillated phase. The oscillation 
pattern of the numerical model under various noise distributions is used to evaluate the noise-robustness 
of the identification algorithms [34]. The results obtained from different SSI algorithms of the simulation 
model are illustrated in complex plane considering the four order system. 100 sets of output signal with 

Order 1 
Order 2 
Order 3 
Order 4 
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different noise patterns are used as the input of the SSI algorithms. Sampling frequency of 500Hz for 
2048 data point was used for poles analysis. Figure 8 shows the comparisons of the oscillation patterns 
for complex poles correspond to PC, UPC and CVA algorithms. As it could be seen the poles of a 
dynamic system lie inside a circle centered at zero with radius of one. The obtained values are in the 
form of conjugate pair symmetric about the real axes. The poles values are heavily distributed near the 
real axes than imaginary one. For the purpose of brevity and informativeness the zeros are not plotted 
in the figures. In Figure 8(a) and (b), the oscillation pattern of the four-order dynamic parameters of the 
numerical system obtained from the PC algorithm is plotted. The extracted results represent a relatively 
lower oscillation of the pole values. The plots show that the poles in the 4th order are heavily distributed 
about the real axes. The complex pole values of the Figure 7 still could be traced through the distribution 
density. Figure 8 (c) and (d) illustrates the oscillation pattern of the poles associated with UPC algorithm 
for the conducted experiments. The scattering increases to approach the imaginary axis. Figure 8 (e) and 
(f) depicted the oscillation pattern for the CVA algorithm. The CVA algorithm provides high scattering 
compared to other SSI algorithms. The PC algorithm has the best prediction capability among all, and 
UPC is only slightly worse, while the CVA performs the worst. 

3.3. Analysis of the elapsed time 
In a continuous monitoring process, a large repetition cycle is carried out to obtain the system 
parameters. The large number of repetition time executed in a highly populated dataset may have a 
prohibitive computational cost in structural systems. Accordingly, it is important to reduce the elapsed 
analysis time by striking a reasonable balance within the required accuracy level. Therefore the best SSI 
algorithm is the one that achieves higher accuracy in an optimal time.  
In this subsection, the elapsed time for the repetitive running of the subspace algorithms of PC, UPC 
and CVA is analyzed to verify the effectiveness of each algorithm. The comparison scheme of the time-
efficiency was implemented in a desktop computer of a msi Dual Core CPU with two 3GHz cores and 
2 GB RAM running windows 7 having Matlab 2014a installed. 100 different noise patterns was 
extracted and used as input data for the three subspace algorithms. The elapsed computation time for 
each algorithm is measured and recorded in a separate data-base.  

Table 2.Elapsed computation time for subspace algorithms. 

 
In Table 2, the elapsed computation time for SSI algorithms is presented. The mean values of the 
computation time for PC, UPC and CVA algorithms are 10.8, 5.2 and 11.3, respectively. The UPC 
algorithm has the best performance in these three techniques with nearly two times better in term of 
computation efficiency. CVA algorithm has the worst performance while PC algorithm has resulted 
slightly lower time for the same set of estimation data.  

4. Remarks 
This study present comparison of three different subspace implementation of PC, UPC and CVA. 
Numerical simulation was used for evaluation process. The subspace algorithms were evaluated based 
on the fit values, poles variances and the elapsed time. Table 3 outlines brief remarks of this study. The 
best VAF value among three algorithms was observed in UPC algorithm whereas the lowest 
performance was for PC algorithm. The highest efficiency was in UPC algorithm while the recorded 
time for the PC and CVA algorithms were nearly two times of UPC’s. The least oscillation of poles for 
the first four orders were achieved in PC algorithm for both numerical and field test data and the smallest 
variances was mapped in CVA. 

Algorithm Computation time (s) 
PC 10.8 

UPC 5.2 
CVA 11.3 
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Table 3. Evaluation of the performance in PC, UPC and CVA subspace algorithms.

 
* The notion ‘+’, ‘++’ and ‘+++’ represent the ‘poor’, ‘medium’ and ‘strong’ identification results in the 
incorporated analysis technique, respectively. 

5. Summary 
The PC and CVA algorithms are designed to reduce the dimensionality of the identification result using 
orthogonal transformation and linear regression, respectively. Since the UPC algorithm doesn’t use any 
weighting matrix (unit weight is used), the computation time is significantly low compared to the other 
counterparts. As it can be seen by the computation time analysis, the process of reducing dimensionality 
has not enhanced the time efficiency of the PC and CVA algorithms but yield an improved modal 
identification in PC. The principal components obtained using PC algorithms are more robust against 
noise uncertainty and give more stable results for the pole distribution. Higher estimation accuracy is 
achieved using UPC algorithm however it is not as good as PC for discrimination of the poles in the first 
four orders. CVA had the worst performance for pole analysis and time efficiency analysis. 
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