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ABSTRACT 
 
 
 
 
g-Jitter characterizes a small fluctuating gravitational field brought about, among others, 

by crew movements and  machine vibrations aboard spacecrafts  or in other low-gravity 

environments such as the drop-tower and parabolic flights. Experimental studies have 

shown that in these low-gravity environments, g-jitter can induce appreciable convective 

flow that can be detrimental to certain experiments such as crystal growths and 

solidification processes.  

In this research, mathematical models to study the effect of g-jitter on  heat and  mass 

transfer is developed. Specific problem considered revolve around the effect of g-jitter 

induced free convection, on the flow and heat transfer characteristics associated with a 

stretching vertical surface in a viscous and incompressible fluid. The velocity and 

temperature of the sheet are assumed to vary linearly with x, where x is the distance 

along the sheet. It is assumed that the gravity vector modulation is given by 

[ ]*( ) 1 cos ( )og t g t kε π ω= + , and the resulting non-similar boundary layer equations 

are solved numerically using an implicit finite-difference scheme. Results presented 

include fluid flow and heat transfer characteristics for various parametric physical 

conditions such as  the amplitude of modulation, frequency of the single-harmonic 

component of oscillation, buoyancy force parameter and Prandtl number on the skin 

friction and Nusselt number. This theoretical investigation is useful in providing 

estimates of the tolerable effects of g-jitter which will   help to  ensure the design of 

successful experiments in low-gravity environments. 
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ABSTRAK 

 
 
 
 

Ketar-g  mencirikan suatu ayunan kecil medan raviti yang terhasil antaranya oleh 

gerakan angkasawan dan getaran mesin di dalam kapal angkasa atau di persekitaran 

graviti rendah yang lain misalnya di menara-jatuh dan penerbangan parabolik. Kajian 

secara eksperimen mendapati aliran olakan yang dijana oleh ketar-g di persekitaran 

graviti rendah, boleh mempengaruhi olakan yang boleh menjejaskan beberapa 

eksperimen seperti proses penghabluran dan proses pemejalan. Dalam kajian ini, model 

matematik dibina untuk mengkaji kesan ketar-g ke atas pemindahan haba dan jisim. 

Masalah yang dipertimbangkan merangkumi olakan bebas yang dijana oleh ketar-g 

terhadap pemindahan haba  dan jisim ke atas permukaan regangan menegak dalam 

bendalir likat dan tidak mampat. Halaju dan suhu permukaan diandaikan berubah secara 

linear terhadap x, dengan x merupakan jarak disepanjang permukaan. Diandaikan juga 

perubahan vector gravity diberikan oleh [ ]*( ) 1 cos ( )og t g t kε π ω= + , dan persamaan 

terbitan separa tak linear diselesaikan secara analisis secara berangka dengan 

menggunakan skim beza terhingga tersirat. Penyelesaian diperolehi meliputi ciri-ciri 

aliran bendalir dan pemindahan haba dipaparkan secara grafik bagi perubahan amplitud, 

frekuensi bagi ayunan satu-harmonik, parameter daya apungan,  nombor Prandtl untuk 

geseran kulit dan nombor Nusselt. Kajian teori ini penting untuk memberi anggaran 

tahap toleransi ketar-g yang boleh menjamin kejayaan eksperimen yang dijalankan di 

persekitaran graviti rendah. 
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CHAPTER I 
 
 
 
 

INTRODUCTION 
 
 
 
 
1.1   Heat Transfer on Continuous Stretching Surface 
 
 

Heat transfer is the energy interaction due to a temperature difference in a 

medium or between media. Heat is not a storable quantity and is defined as energy in 

transit due to a temperature difference. The applications of heat transfer are diverse, 

both in nature and in industry. Climatic changes, formation of rain and snow, heating 

and cooling of the earth surface, the origin of dew drops and fog, spreading of forest 

fires are some of the natural phenomena wherein heat transfer plays a dominant role. 

The importance of heat transfer in industry include heating and air conditioning of 

building, design of internal combustion engines, oil exploration, drying and 

processing of solid and liquid wastes. 

 

It is no wonder J.B Joseph Fourier, the father of the theory of heat diffusion, 

made this remark in 1824: ‘Heat, like gravity, penetrates every substance of the 

universe; its rays occupy all parts of space. The theory of heat will hereafter forms 

one of the most important branches of general physics’, (Ghoshdastidar (2004)). 

 

 The problem of flow and heat transfer adjacent to a continuous stretching 

surface has attracted many researchers during the past few decades. This is because 

of its wide application in many manufacturing processes, such as continuous casting, 

glass fiber production, metal extrusion, hot rolling, manufacturing of plastic, paper 

production and wire drawing, (Chen (2000)). Both the kinematics of stretching and 

the heat transfer during such process have a decisive influence on the quality of the 

final product. 
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1.2 g-Jitter and Its Effects 
 
 

Space experiments have revealed unknown or nonexistent effects on Earth 

which can be detrimental to certain experiments. For example, alloy solidification 

experiments conducted in space vehicles showed that the solute uniformity and 

defects formation in space grown crystals are strongly affected by free convection in 

the melt pool that arises as a result of the combined action of temperature and 

concentration gradients in the melt (Nelson (1991), Monti and Sovino (1998), 

Wilcox and Regel (2001)). These deleterious effects generally are considered to be a 

culprit for the quality of crystals grown in low-gravity environments (Alexander et. 

al. (1991), Kamotani et.al. (1995), Neumann (1990)).  One of these effects is g-jitter 

or residual acceleration phenomena associated with the microgravity environment. 

 
 

g-Jitter is defined as the inertia effects due to quasi-steady, oscillatory or 

transient accelerations arising from crew motions and machinery vibrations in 

parabolic aircrafts, space shuttles or other microgravity environments. Quasi-steady 

accelerations are accelerations which vary only little for periods longer than one 

minute, oscillatory accelerations are periodic with a characteristic frequency, while 

transient accelerations are non-periodic and typically have duration less than one 

second (Mell (2001)). g-Jitter characterizes a small fluctuating gravitational field, 

very irregular in amplitude, random in direction, and contains a broad spectrum of 

frequencies (Schneider and Straub (1989), Alexander et.al. (1991), Nelson (1991)). 

Its effects may be negligible in earthbound situations, but in a low-gravity 

environment, where heat and mass transfer in a fluid medium, in the absence of 

radiation, is expected to be affected only by pure diffusion, g-jitter can give rise to 

significant convective motions. 

 
 

Studies on g-jitter effects indicate that convection in microgravity is related to 

the magnitude and frequency of g-jitter and to the alignment of the gravity field with 

respect to the growth direction or the direction of the temperature gradient (Pan et. al. 

(2002), Shu et. al (2001)). As an example, Ramos (2000) has shown that the 

thickness and axial velocity components, heat fluxes and interfacial temperature are 
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periodic functions of time whose amplitudes increase as the amplitude of the g-jitter 

increases, but decrease as the frequency of g-jitter increases. Results from Li (1996) 

show that the frequency and amplitude of the g-jitter all play an important role in 

determining the convective flow behaviour of the system. When the residual 

accelerations oscillate about the positive and negative of an axis, the orientation of 

this direction relative to the density gradient determines whether a mean flow is 

generated in the system. 

 
 

g-Jitter has large effects on materials processing in space or in gravity-

reduced environment. It can interact with the density gradients and result in both 

fluid flow and solute segregation. Wilcox and Regel (2001) has reviewed the 

microgravity effects on the material processing. They concluded that convection 

should result, that the amount of convection increases with increasing acceleration 

and decreasing frequency, and that it will significantly influence some materials 

processing operations. Alexander et al. (1991) found that the orientation of the 

residual gravity is a crucial factor in determining the suitability of the spacecraft 

environment as a means to suppress or eliminate unwanted effects caused by buoyant 

fluid motion in Bridgman's crystal growth experiment. These authors found that g-

jitter affects the compositional uniformity of the growing crystal. 

 
 
 
 
1.3 Significance of Research 
 
 

The effect of g-jitter on experiments, compared to ideal zero gravity 

conditions, is largely unknown, especially in quantitative terms. It is therefore of 

great interest to quantitatively access acceptable acceleration levels for a given 

experiment such that the processes to be studied would not be appreciably distorted 

by the environment in which the experiments take place. Significant levels of g-jitter 

have been detected during space missions in which low-gravity experiments were 

being conducted. The problem has been approached from a numerical standpoint, 

one of the key results being that a relatively modest acceleration of 10-5g0 (g0 being 

the gravity on the surface or the Earth) can have a significant impact on solute 
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segregation (Pan et. al (2002)). This is true even though velocity magnitudes are 

several orders lower than under terrestrial conditions. Unfortunately, a complete 

experimental parametric study of this g-jitter problem is obviously impossible, so 

one has to rely on modelling to gain some insight into the question (Alexander et. al. 

(1991)). 

 
 

Alexander (1997) has mentioned that theoretical models can be used 

effectively to predict the experiment sensitivity to g-jitter, provided the time-

dependent nature of the g-jitter is properly characterized. His experimental work in 

the MEPHISTO (Material pour l'Etude des Phenomenes Interessant la Solidification 

sur Terre et n Orbite) furnace facility to observe the effect of g-jitter on segregation 

during directional solidification of tin-bismuth indicated that a "cause and effect" 

relationship between g-jitter and disturbances in the transport conditions can be 

clearly identified. These results are of significance for planning future low-gravity 

experiments, and analyzing the results of past experiments. Reliable prediction of g-

jitter sensitivity based on models with proven experimental correlations can be used 

to optimize the limited time available for low-gravity experimentation, determine 

acceptable levels of g-jitter, and avoid unnecessary (expensive) design restrictions 

which might arise due to inaccurate predictions. 

 
 

For materials science experiments conducted in low earth-orbit spacecraft, 

there are many open questions regarding experiment sensitivity to residual 

acceleration. Since sensitivity to g-jitter is an important consideration in the selection 

of optimal experiment operating conditions, it is imperative that these questions be 

answered so that the scientific return from such experiments is maximized. In order 

to obtain a more efficient engineering design in low-gravity conditions, more 

informations regarding the effect of g-jitter on fluid behaviour in low gravity 

environment is needed. The results of study should be helpful in understanding the g-

jitter effects on fluid mechanics process in microgravity conditions and better 

engineering design could be made in the future. 
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1.4 Objectives and Scope of Research 
 
 

The main objective of this project is to investigate theoretically the heat 

transfer coefficients on continuous stretching surface and the effect of g-jitter 

adjacent to a vertical stretching sheet. This involves the construction of suitable 

mathematical models by formulating the appropriate governing equations and 

choosing the right boundary conditions and then solving the resulting equations using 

both analytical and numerical means.  

 
 
 
 
1.5 Report Outline 
 
 

This report consists of six chapters including this introductory chapter, where 

we have presented the research background, objectives and significance of research. 

In Chapter 2, a literature review on the problems concerning the heat transfer on 

continuous stretching surface  and the  effect of g-jitter adjacent to a vertical 

stretching sheet presented and discussed.   Chapter 3, concerned with numerical 

scheme used in this study, which is the Keller-box method.  Keller and Cebeci 

(1972) reported that this method is very simple and accurate which is applicable to 

boundary layer flow problems.  This method is chosen since it seem to be most 

flexible of the common methods, being easily adaptable to solving equation of any 

order (Cebeci and Bradshaw (1977)).  One of the basic ideas of the Keller-box 

method is to write the governing equation in the form of a first order system.  

 

In Chapter 4, we consider the problem of heat transfer coefficients on a 

continuous stretching surface. We will use the Keller-box method that has been 

described in Chapter 3 to solve this problem. Three cases of thermal boundary 

conditions, namely uniform surface temperature ( )0n = , variable surface 

temperature ( )0n ≠  and uniform heat flux ( )( )1 2n m= −  are presented in the 

following three main section. 
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Chapter 5 is concerned with the effect of periodical gravity modulation, or g-

jitter induced free convection, on the flow and heat transfer characteristics associated 

with a stretching vertical surface in a viscous and incompressible fluid. The velocity 

and temperature of the sheet are assumed to vary linearly with x, where x is the 

distance along the sheet. It is assumed that the gravity vector modulation is given by 

[ ]*( ) 1 cos ( )og t g t kε π ω= + , and the resulting non-similar boundary layer 

equations are solved numerically using an implicit finite-difference scheme. The 

effects of the amplitude of modulation, frequency of the single-harmonic component 

of oscillation, buoyancy force parameter and Prandtl number on the skin friction and 

Nusselt number are discussed in detail. 

 

Finally the concluding chapter, Chapter 6, contains a summary of the main 

results of the report and several recommendations for future research. 

 



 
 
 
 
 

CHAPTER II 
 
 
 
 

LITERATURE REVIEW 
 
 
 
 
2.1 Introduction 
 
 
 This chapter contains a literature review on two main topics to be 

investigated, namely in Section 2.2 studies concerning with continuous stretching 

surface is discussed and in Section 2.3 contains related research on the effect of g-

jitter on vertical stretching sheet.  

 
 
 
 
2.2 Continuous Stretching Surface 
 
 

The flow and heat transfer stirred up by a continuous stretching surface 

entering the cooling viscous fluid is important in a practical engineering process. For 

example, materials which are manufactured by extrusion process and heat-treated 

substances proceeding between a feed roll and a wind-up roll can be classified as the 

continuous stretching surface. In order to get the top-grade property of the final 

product, the cooling procedure should be effectively controlled. There are three types 

of velocity and temperature distributions for problems involving continuous 

stretching surface namely self similar, power law and exponential form. 

 

In the past few decades, the related investigation about stretching surface has 

never been interrupted. Sakiadis (1961) initiated the study of boundary layer flow 

over a continuous solid surface moving with constant speed. It was observed that the 

boundary layer growth is in the direction of motion of the continuous solid surface 
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and different from that of the Blasius flow past a flat plate. Crane (1970) gave 

similarity solution closed to an analytical form for steady 2D incompressible 

boundary layer flow caused by the stretching surface with linear velocity. 

 

Banks (1983) discussed the flow field of stretching wall with a power law 

velocity variation for different values of velocity exponent. Grubka and Bobba 

(1985) studied the heat transfer characteristics of a continuous stretching surface 

with linear surface velocity and power law surface temperature for different value of 

Prandtl number and temperature exponent. 

 

Ali (1994) who extended Bank’s and Grubka work for continuous stretching 

surface problem. He investigates the heat transfer characteristics of a continuous 

stretching surface with power law velocity and temperature distribution. Three 

thermal boundary conditions of uniform surface temperature, variable surface 

temperature and uniform heat flux at the continuous stretching surface had been 

investigated.  

 

Chen and Char (1988) has reported the heat transfer characteristics of a 

continuous stretching surface with power law surface temperature and power law 

surface heat flux variation with effect of suction or blowing. Ali (1995) has 

examined the effects of suction or injection for heat and flow in a quiescent fluid 

driven by a continuous stretched surface. He also used power law velocity and 

temperature variation with three thermal boundary condition for this problem. The 

thermal boundary condition that he used was the same with Ali (1994). It was shown 

that suction increased the heat transfer from surfaces whereas, injection cause a 

decrease in the heat transfer. 

 

Rollins and Vajwavelu (1991) have investigated the heat transfer 

characteristics in a viscoelastic fluid over a continuous stretching surface with 

internal heat generation. Two cases were studied in this problem namely (i) the sheet 

with uniform surface temperature and (ii) the sheet with uniform wall heat flux. The 

solution and heat transfer characteristics were obtained in terms of Kummer’s 
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Functions. They found for large values of Prandtl number a uniform approximation 

could be expressed in terms of parabolic cylinder functions in both cases. 

 

Chen (1998) presented the numerical solutions of laminar mixed convection 

in boundary layers adjacent to vertical, continuously stretching sheets. The Keller-

box method was used to solve this problem. The author studied the effect of thermal 

buoyancy on flow past a vertical, continuously stretching where the velocity and 

temperature variation was assumed power law form.  

 

Magyari and Keller (1998) discussed heat and mass transfer in the boundary 

layer on an exponentially stretching continuous surface. They intended to complete 

the investigations by discussing a further type of similarity solution of the governing 

equations. Their solutions involve an exponential dependence of the similarity 

variable as well as the stretching velocity and the temperature distribution on the 

coordinate in the direction parallel to that of the stretching. 

 

In 2001, Mohammadein and Rama studied the heat transfer characteristics of 

a laminar micropolar fluid boundary layer over a linearly stretching, continuous 

surface. They consider the effect of viscous dissipation and internal heat generation 

with self similar velocity and temperature variation. 

 

Heat transfer characteristic of the separation boundary flow induced by a 

continuous stretching surface was reported by Magyari and Keller (1999). They 

discussed an exact-solvable case of separation flow characterized by an identically 

vanishing skin friction with power law velocity and temperature variation. 

 

Tashtoush et al (2000) have examined the laminar boundary layer flow and 

heat transfer characteristics of a non-Newtonian fluid over a continuous stretching 

surface subject to power-law velocity and temperature distribution with suction or 

injection parameter. Their results was obtained numerically using fourth order 

Rungge-Kutta method to show suction and injection effect for uniform and cooled 

surface temperature. 
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Chen (2000) have investigated the flow and heat transfer characteristics 

associated with a heated, continuously stretching surface being cooled by a mixed 

convection flow. These problems also assume the velocity and temperature 

distribution is varying according to a power-law form subject to variable surface 

temperature and variable surface heat flux boundary condition. Their results show 

that the local Nusselt number is increased with increasing the velocity exponent for 

variable surface temperature case while the opposite trend is observed for the 

variable surface heat flux. The author also found that the local skin friction 

coefficient is increased for a decelerated stretching surface, while it decreased for an 

accelerated stretching surface. 

 

Mechanical and thermal properties of the self similar boundary layer flow 

induced by continuous stretching surface with rapidly decreasing power law 

( )1m < −  and exponential velocity was studied by Maygari et al (2001).Ali (2004) 

who extend Magyari et al (2001) work for continuous stretching surface with 

different values of velocity exponent in the presence of the buoyancy force and the 

surface was moving vertically subject to power-law velocity. 

 

Seddek and Salem (2005) examined the effect of thermal buoyancy on flow 

past a vertical continuous stretching surface with variable viscosity and variable 

thermal diffusivity. Their results showed that variable viscosity, variable thermal 

diffusivity, the velocity exponent parameter, the temperature had the significance 

influences on the velocity and temperature profiles, shear stress and Nusselt number 

in two cases air and water. The result was obtained numerically using the shooting 

method. 

 

Partha et al (2005) presented a similarity solution for a mixed convection 

flow and heat transfer from an exponentially stretching surface subject to 

exponential velocity and temperature distribution. The influence of buoyancy along 

with viscous dissipation on the convective transport in the boundary layer region is 

analyzed. 
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Magyari and Keller (2006) studied the heat transfer characteristics of the 

laminar boundary layer flow induced by continuous stretching surface with 

prescribed skin friction subject to power law velocity and temperature variation. 

 

Sanjayanand and Khan (2006) analyzed the effect of various physical 

parameters like viscoelastic parameter, Prandtl number, local Reynold number and 

Eckert number on various momentum, heat and mass transfer of boundary layer with 

second fluid characteristic over continuous stretching surface with exponential 

velocity and temperature distribution. 

 

 Recently Ishak et al (2007) studied the mixed convection on the stagnation 

point flow toward a vertical, continuously stretching sheet. They analyzed the effects 

of governing parameters on the flow and heat transfer characteristics for fixed value 

of Prandtl number. They found the dual solution exist in the neighborhood of the 

separation region. 

 

Many authors have studied this problem. However they limited to some 

constraints on the surface velocity and temperature. Tsou et al (1967) have 

considered the continuous moving surface with constant velocity and temperature. 

Stretched surface with different velocity boundary condition and for various 

temperature boundaries at the surface was studied by Crane (1970), Grubka and 

Bobba (1985), Soundalgekar and Murty (1980) and Vleggar (1977).  

 

Suction or injection of a stretched surface was introduced by Erickson et al 

(1966) and Fox et al (1968) for uniform surface velocity and temperature. Gupta and 

Gupta (1977) extended Erickson’s work, in which the surface was moved with a 

linear speed for various values of parameters. Furthermore, linearly stretching 

surface subject to suction or injection was studied by Chen and Char (1998) for 

uniform wall temperature and heat flux.  

 

In the classical convective heat transfer between solid wall and the fluid flow, 

usually the temperature or heat flux at the solid-fluid interface is prescribed over the 

entire interface. Physically, the condition of uniform surface temperature is achieved 
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by either violent mixing or a phase change, for example, boiling or condensation, on 

the other side of a thin wall that has a higher thermal conductivity. However, in 

certain engineering systems, the condition of constant surface temperature does not 

apply. For example, in the design of thermal insulation, material processing, and 

geothermal systems, it has been observed that natural convection can induce thermal 

stresses that lead to critical structural damage in the piping systems of nuclear 

reactors. But, an important practical and experimental circumstance in many forced, 

free and mixed convection flows is that generated adjacent to a surface dissipating 

heat uniformly. 

 

The effect of uniform surface temperature and uniform heat flux gives much 

impact on heat transfer process. Thus, our first problem of this study is to investigate 

the heat transfer coefficients of a continuous stretching surface subjected to a 

uniform surface temperature, variable surface temperature and uniform heat flux, 

respectively.  

 
 
 
 
2.3  The Effect of g-Jitter on Vertical Stretching Sheet 
 
 
 The production of sheeting material which includes both metal and polymer 

sheets arises in a number of industrial manufacturing processes.  The fluid dynamics 

due to a stretching surface is important in many extrusion processes.  Since the 

pioneering study by Crane (1970) who presented an exact analytical solution for the 

steady two-dimensional stretching of a surface in a quiescent fluid many authors 

have considered various aspects of this problem and obtained similarity solutions. 

Many researchers presented theoretical results on this problem.  The papers by 

Magyari and Keller (1999, 2000), and Nazar et al. (2004) contain a good amount of 

references, but these studies pertain to forced convection flows only.  On the other 

hand, problems involving the boundary layer flow due to a stretching surface in the 

vertical direction in a steady, viscous and incompressible fluid when the buoyancy 

forces are taken into account have been considered by Daskalakis (1993), Ali and Al-

Yousef (1998), Chen (1998, 2000), Lin and Chen (1998) and Chamkha (1999). 
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However, only Kumari et al. (1996) have studied the unsteady free convection flow 

over a stretching vertical surface in an ambient fluid, where they considered both 

cases of constant surface temperature and constant heat flux.  

 

It is known that in many situations the presence of a temperature gradient and 

a gravitational field can generate buoyancy convective flows.  Recent technological 

implications have given rise to increased interest in oscillating natural and mixed 

convection driven by g-jitter forces associated with microgravity.  In low-gravity or 

microgravity environments, it can be expected that the reduction or elimination of 

natural convection may enhance the properties and performance of materials such as 

crystals. However, aboard orbiting spacecrafts all objects experience low-amplitude 

perturbed accelerations, or g-jitter, caused by crew activities, orbiter manoeuvres, 

equipment vibrations, solar drag and other sources (Antar and Nuotio-Antar, (1993); 

Hirata et al. (2001)). There is a growing literature, which tries to characterize the g-

jitter environment and the review articles by Alexander (1990) and Nelson (1991) 

give a good summary of earlier work on convective flows in viscous fluids. There 

have also been a number of studies which investigate the effect of g-jitter on flows 

involving viscous fluids and porous media, e.g. Amin (1988), Farooq and Homsy 

(1994), Li (1996), Pan and Li (1998), Rees and Pop (2000, 2001), and Chamkha 

(2003).  However, to our best knowledge there has not been any study regarding g-

jitter effects on stretching problems.  Therefore, in this paper, we will study the 

behavior of g-jitter induced free convection of a viscous and incompressible fluid 

due to a surface, which is stretched in the vertical direction.   

 

Following Rees and Pop (2000, 2001), we consider a simple model problem 

in which the gravitational field takes the form 

 

[ ]*( ) 1 cos ( )og t g t kε π ω= +             (2.3.1)        

 

where og is the time-averaged value of the gravitational acceleration *( )g t  acting 

along the direction on the unit vector k, ε  is a scaling parameter, which gives the 

magnitude of the gravity modulation relative to go, t is the time and ω  is the 
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frequency of oscillation of the g-jitter driven flow. 

 

The effect of oscillating free convection is driven by g-jitter forces associated 

with a gravitational field given by equation (2.3.1) on the boundary layer flow over a 

vertical stretching surface.  For many practical applications the stretching surfaces 

undergo cooling or heating that cause surface velocity and temperature variations. It 

is assumed here that the stretching velocity and the surface temperature vary linearly 

with the distance along the surface. In addition, it is assumed that the g-jitter field 

under consideration is spatially constant , otherwise varies harmonically with time. 

The governing partial differential equations are transformed into a non-dimensional 

form using similarity variables and then solved numerically using the Keller-box 

method which is an implicit finite-difference scheme.   

 

Similarity solutions can be obtained for the special case when the amplitude 

of the modulation is zero and we have shown that solutions of these equations exist 

only for limited values of the negative buoyancy force parameter.  Effects of the 

amplitude of modulation, frequency of the single-harmonic component of oscillation, 

buoyancy force parameter and Prandtl number on the skin friction and Nusselt 

number are discussed in detail. 

 
 



 
 
 
 
 

CHAPTER III 
 
 
 
 

THE KELLER-BOX METHOD 
 
 
 
 
3.1 Introduction 
 
 
 This chapter discusses the details of the numerical scheme used in this study, 

which is the Keller-box method.  Keller and Cebeci (1972) reported that this method 

is very simple and accurate which is applicable to boundary layer flow problems.  

This method is chosen since it seem to be most flexible of the common methods, 

being easily adaptable to solving equation of any order (Cebeci and Bradshaw 

(1977)).  One of the basic ideas of the Keller-box method is to write the governing 

equation in the form of a first order system.  

 

In Section 3.2 the discussion begins with the governing equations for the 

problem of the heat transfer characteristic of a continuous stretching surface.  Then 

we discuss the finite difference method in Section 3.3.  We shall use centered 

difference derivatives and average at the midpoints of net rectangle to get the finite 

difference equations.  The finite difference equations are generally nonlinear 

algebraic equations.  In this study, we linearize the resulting nonlinear algebraic 

equations using Newton’s method.  Full details of Newton’s method will give in 

Section 3.4.  In Section 3.5, we solve the linear system by the block-tridiagonal 

factorization method.  This method is employed on the coefficient matrix of the finite 

difference equations.  Finally, we discuss the choice of suitable starting conditions 

for the numerical computation in Section 3.6.  This section include the determination 

of values y∞ , the selection of step size, as well as the assumptions of the initial 

velocity and temperature profiles.  
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3.2 Governing Equation 
 
 
 A steady two dimensional motion of incompressible viscous fluid due to a 

continuous stretching surface in a stationary fluid is governed by the continuity, 

momentum and energy equation under the boundary layer approximation are 

 

Continuity equation, 

 

0u v
x y
∂ ∂

+ =
∂ ∂

               (3.2.1) 

 

Momentum equation, 

 
2

2

u u uu v
x y y

ν∂ ∂ ∂
+ =

∂ ∂ ∂
              (3.2.2) 

 

Energy equation, 

 
2

2

T T Tu v
x y y

α∂ ∂ ∂
+ =

∂ ∂ ∂
              (3.2.3) 

 

subject to boundary conditions 

 

( )wu u x= , 0v =  and ( )wT T x=      at 0,y =          (3.2.4a) 

0u =                    and T T∞=            at y →∞         (3.2.4b) 

 

The continuous stretching surface is assumed to have power-law velocity and 

temperature variations, that is ( ) 0
m

wu x U x=  and ( ) n
wT x T Cx∞= + where 0U and C 

are constant and m and n are the velocity and temperature exponent parameter.  

 

The Cartesian coordinates ( ),x y and the boundary layer representation on a 

continuous stretching surface are shown schematically in Figure 3.1. In this figure 
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the x-axis is the direction of the moving surface and y –axis is perpendicular to it. 

The velocity components in the direction of x and y are u and v respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Schematic diagram of flow induced by a continuous stretching surface. 

 

Nonsimilar Transformation 

 

In order to solve equations (3.2.1) to (3.2.3), subject to boundary conditions 

(3.2.4), we use the following similarity transformation (Ali (1994)) 

 

( )0
mu U x f η′= ,                (3.2.5 a) 

0( 1) ,
2

mU xmy
x

η
ν

+
=                  (3.2.5b) 

1
0 22 1 1
1 2 2

mU m mv x f f
m
ν η

− + −⎡ ⎤′= − +⎢ ⎥+ ⎣ ⎦
,         (3.2.5c) 

( )nT T Cx θ η∞= +             (3.2.5d) 

 

where η  is the similarity variable and f is the dimensionless stream function,ψ  

depends on η  only. The stream function ψ  is defined as 

x 

u T

0
mu U x=  

y 

n
wT T Cx∞= +  

0wv =  

0u∞ =   T∞  
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        ,u v
y x
ψ ψ∂ ∂

= = −
∂ ∂

             (3.2.6) 

 

In terms of the stream function ψ , equations (3.2.2) and (3.2.3) become 

 
2 2 3

2 3y x y x y y
ψ ψ ψ ψ ψν∂ ∂ ∂ ∂ ∂

− =
∂ ∂ ∂ ∂ ∂ ∂

             (3.2.7) 

2

2

T T T
y x x y y
ψ ψ α∂ ∂ ∂ ∂ ∂

− =
∂ ∂ ∂ ∂ ∂

             (3.2.8) 

 

From equations (3.2.5a, b), we obtain the chain rule following system of equations: 

 

2
0

02

( 1)
2

m
m U xmU x f

y x
ψ

ν
∂ +′′=
∂

          (3.2.9a) 

3
0

03

1( )( )
2

m
m U xmU x f

y x
ψ

ν
∂ +′′′=
∂

          (3.2.9b) 

12
1 0 2

0 0
( 1) ( 1)

2 2

m
m m Um mU mx f U x y x f

x y x
ψ

ν

−
−∂ + − ′= +

∂ ∂
       (3.2.9c) 

 

From equations (3.2.5c), ( )nT T Cx θ η∞= + , then 

 

( )nT Cx θ η
θ
∂

=
∂

            (3.2.10) 

1
1 0 2( 1) ( 1)

2 2

m
n n UT m mnCx Cx y x

x
θ θ

ν

−
−∂ + − ′= +

∂
      (3.2.11a) 

0( 1)
2

m
n U xT mCx

y x
θ

ν
∂ + ′=
∂

         (3.2.11b) 

2
0

2

1( )( )
2

m
n U xT mCx

y x
θ

ν
∂ + ′′=
∂

         (3.2.11c) 

 

Substituting equations (3.2.9) and (3.2.11) into equations (3.2.7) and (3.2.8), we 

obtain the following system of equations: 
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( )22 0
1

mf ff f
m

′′′ ′′ ′+ − =
+

,           (3.2.12) 

2Pr 0
1

nf f
m

θ θ θ⎡ ⎤′′ ′ ′+ − =⎢ ⎥+⎣ ⎦
.           (3.2.13) 

 

subject to 

 

( ) ( ) ( )0 1,  0 0,              0 1f f θ′ = = = ,         (3.2.14) 

( ) ( )0,                            0f θ′ ∞ = ∞ = .         (3.2.15) 

 
 
 
 
3.3 The Finite Difference Method 
 
 
 To solve (3.2.12) and (3.2.13) using Keller-box method, we write equations 

(3.2.12) and (3.2.13) as a system of first-order equations. For this purpose, we 

introduce new dependent variable ( , ), ( , )u x y v x y and ( , )t x y and G replaces θ  as the 

variable for temperature. Therefore, we obtain 

 

f u′ =   u v′ =   G t′ =                (3.3.1a,b,c) 

22 0
1

mv fv u
m

′ + − =
+

            (3.3.1d) 

2Pr 0
1

nt ft uG
m

⎡ ⎤′ + − =⎢ ⎥+⎣ ⎦
           (3.3.1e) 

 

where the primes denote differentiation with respect to η . In terms of the new 

dependent variables, the boundary conditions become 

 

( ),0 0,   ( ,0) 1,f x u x= = ( ),0 1G x =                      (3.3.2a) 

( ), 0u x ∞ = , ( ), 0v x ∞ = , ( , ) 0G x ∞ =          (3.3.2b) 

 

The net rectangle considered in the xy-plane is shown in Figure 3.1, and the 

net points are denoted by: 
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0 10,        ,       1, 2,..., ,n n
nx x x k n N−= = + =          (3.3.3a) 

0 10,        ,      1, 2,..., ,     ,j j j Jy y y h j J y y− ∞= = + = =                    (3.3.3b) 

 

where nk  is the xΔ -spacing and jh is the yΔ -spacing. Here n and j are index points 

on the xy-plane. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Net rectangle for difference approximations 

 

We approximate the quantities ( ), , , ,f u v G t  at points ( ),n
jx y  of the net 

by ( ), , , ,n n n n n
j j j j jf u v G t , which we shall call net functions. We also employ the notation 

( )n

j
 for points and quantities midway between net points and for any net function: 

 

( )1/2 1
1/2 1

1 1( ),           
2 2

n n n
j j jx x x y y y− −
− −≡ + ≡ +      (3.3.4a,b) 

( ) ( ) ( ) ( ) ( ) ( )1/2 1

1/2 1

1 1     and     
2 2

n n n n n n

j j j j j j

− −

− −
⎡ ⎤ ⎡ ⎤= + = +⎣ ⎦ ⎣ ⎦    (3.3.4c,d) 

 

The derivatives in the x –direction are written in terms of finite difference as: 

 

( ) ( ) ( ) 1n n

nx k

−∂ −
=

∂
            (3.3.4e) 
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We write the difference equations that are to approximate equations (3.3.1a) 

to (3.3.1e) by considering one mesh rectangle as in Figure 3.1. We start by writing 

the finite difference approximations of the ordinary differential equations (3.3.1a) to 

(3.3.1c) for the midpoint ( )1 2/,n
jx y − of the segment 1 2P P , using centered difference 

derivatives. This process is called “centering about ( )1 2/,n
jx y − ”. We get 

 

( ) ( )1
1 1/2

1 ,
2

n n
j j n n n

j j j
j

f f
u u u

h
−

− −

−
= + =           (3.3.5a) 

( ) ( )1
1 1/2

1 ,
2

n n
j j n n n

j j j
j

u u
v v v

h
−

− −

−
= + =           (3.3.5b) 

( ) ( )1
1 1/2

1 ,
2

n n
j j n n n

j j j
j

G G
t t t

h
−

− −

−
= + =           (3.3.5c) 

 

 Equations (3.3.1d,e) are approximated by centering the midpoint 

( )1 2
1 2

/
/,n

jx y−
− of the rectangle 1 2 3 4P P P P . This can be done in two steps. In the first 

step, we center equations (3.3.1d,e) about the point ( )1 2/ ,nx y−  without specifying y. 

We denote the left-hand side of equations (3.3.1d,e) by 1 2 and L L , then the 

approximations are  

 

( )1
1 1

1 0,
2

n nL L −+ =                        (3.3.6a) 

( )1
2 2

1 0,
2

n nL L −+ =                        (3.3.6b) 

 

Rearranging equation (3.3.6) and using equation (3.3.4c), the difference 

approximation to equations (3.3.1d,e) at 1 2/nx −  become 

 

( ) ( ) ( ) [ ] 12
1

2 ,
1

nn n nmv fv u L
m

−′ + − = −
+

         (3.3.7a) 

( ) ( ) ( ) [ ] 1
2

2Pr ,
1

n n n nnt ft uG L
m

−⎡ ⎤′ + − = −⎢ ⎥+⎣ ⎦
         (3.3.7b) 
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where 

 

1 2
1

2 ,
1

n mL v fv u
m

− ⎡ ⎤′= + −⎢ ⎥+⎣ ⎦
           (3.3.8a) 

1
2

2Pr ,
1

n nL t ft uG
m

− ⎡ ⎤⎡ ⎤′= + −⎢ ⎥⎢ ⎥+⎣ ⎦⎣ ⎦
          (3.3.8b) 

 

where the identity sign introduces useful shorthand: [ ] 1n−  means that the quantities 

in square bracket are evaluated at 1nx x −= . 

 

 The second step we center equations (3.3.7) about point ( )1/2
1/2,n

jx y−
−  by 

using equation (3.3.4d) and we get 

 

( ) ( ) [ ]2 11
1/2 1/2 1/2 1 1/2

2 ,
1

n n
nj j n n n

j j j j
j

v v mf v u L
h m

−−
− − − −

−
+ − = −

+
        (3.3.9a) 

( ) [ ] 11
1/2 1/2 1/2 1/2 2 1/2

2Pr ,
1

n n
nj j n n n n

j j j j j
j

t t nf t u G L
h m

−−
− − − − −

− ⎡ ⎤+ − = −⎢ ⎥+⎣ ⎦
       (3.3.9b) 

 

where 

 

[ ] ( ) ( )
1

21 1
1 1/2 1/2 1/21/2

,

n

n j j
j j jj

j

v v
L f v u

h

−

− −
− − −−

⎡ ⎤−
⎢ ⎥= + −
⎢ ⎥⎣ ⎦

   

 [ ] ( ) 11 1
2 1/2 1/2 1/2 1/21/2

Pr ,
nn j j

j j j jj
j

t t
L f t u G

h
−− −

− − − −−

−
⎡ ⎤= + −⎣ ⎦    

 

 Equations (3.3.5) and (3.3.9) are imposed for 1 2, , ...,j J= at given n, and the 

transformed boundary layer thickness, Jy , is to be sufficiently large so that it is 

beyond to the edge of the boundary layer by Keller and Cebeci (1972). 

 

At nx x= , the boundary conditions (3.3.2) become 
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0 0 00,    1,    1,    0,    0,    0n n n n n n
j j jf u G u v G= = = = = =         (3.3.10) 

 
 
 
 
3.4 Newton’s Method 
 
 
 If we assume 1 1 1 1 1, , , ,n n n n n

j j j j jf u v G t− − − − −  to be known for 0 j J≤ ≤ , then 

equations (3.3.5), (3.3.9) and (3.3.10) are a system of equations for the solution of 

the unknowns ( ), , , ,n n n n n
j j j j jf u v G t , 0 1, , ...,j J= . For simplicity of notation we shall 

write the unknowns at nx x=  as 

 

( ) ( ), , , , , , , ,n n n n n
j j j j j j j j j jf u v G t f u v G t=  

 

Then the system of equations (3.3.5) and (3.3.9) can be written as  

 

( )1 1 0,
2

j
j j j j

h
f f u u− −− − + =            (3.4.1a) 

( )1 1 0,
2

j
j j j j

h
u u v v− −− − + =            (3.4.1b) 

( )1 1 0,
2

j
j j j j

h
G G t t− −− − + =            (3.4.1c) 

( ) ( )( ) ( ) ( )2 1
1 1 1 1 1 1/2

2 ,
4 1 4

nj j
j j j j j j j j j

h hmv v f f v v u u R
m

−
− − − − −

⎛ ⎞
− + + + − + =⎜ ⎟+ ⎝ ⎠

      (3.41d) 

( ) ( )( )

( )( ) ( )

1 1 1

1
1 1 2 1/2

Pr
4

2Pr
1 4

j
j j j j j j

nj
j j j j j

h
t t f f t t

hn u u G G R
m

− − −

−
− − −

⎡ ⎤
− + + +⎢ ⎥

⎣ ⎦
⎡ ⎤⎛ ⎞

− + + =⎢ ⎥⎜ ⎟+ ⎝ ⎠⎣ ⎦

        (3.4.1e) 

 

where 

 

( ) ( ) ( )
1

21 1
1 1/2 1/2 1/21/2

2 ,
1

n

n j j
j j j jj

j

v v mR h f v u
h m

−

− −
− − −−

⎡ ⎤−
⎢ ⎥= + −

+⎢ ⎥⎣ ⎦
       (3.4.2a) 
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( ) ( ) 1

1 1
2 1/2 1/2 1/2 1/21/2

2Pr ,
1

n

n j j
j j j j jj

j

t t nR h f t u G
h m

−

− −
− − − −−

⎡ ⎤− ⎡ ⎤⎢ ⎥= − + −⎢ ⎥+⎣ ⎦⎢ ⎥⎣ ⎦
      (3.4.2b) 

 

( ) ( )1 1
1 21/2 1/2

 and n n

j j
R R− −

− −
 involves only known quantities if we assume that the solution 

is known on 1nx x −= . To solve equation (3.4.1) with (3.3.10) by Newton’s method, 

we introduce the iterates ( ) ( ) ( ) ( ) ( ), , , , ,   0,1,2,...i i i i i
j j j j jf u v G t i⎡ ⎤ =⎣ ⎦ . 

 

 In order to linearize the nonlinear system of equations (3.4.1) using Newton’s 

method, we introduce the following iterates 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1 1

1 1

,     ,     

,     .

i i i i i i i i i
j j j j j j j j j

i i i i i i
j j j j j j

f f f u u u v v v

G G G t t t

δ δ δ

δ δ

+ + +

+ +

= + = + = +

= + = +
        (3.4.3) 

 

Then we substitute (3.4.3) into (3.4.1) except the term on 1nx − , we get 

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )1 1 1 1 0,
2

ji i i i i i i i
j j j j j j j j

h
f f f f u u u uδ δ δ δ− − − −+ − + − + + + =  

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )1 1 1 1 0,
2

ji i i i i i i i
j j j j j j j j

h
u u u u v v v vδ δ δ δ− − − −+ − + − + + + =  

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )1 1 1 1 0,
2

ji i i i i i i i
j j j j j j j j

h
G G G G t t t tδ δ δ δ− − − −+ − + − + + + =  

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( ) ( )

1 1 1 1 1 1

2 1
1 1 1 1/2

4
2 ,

1 4

ji i i i i i i i i i i i
j j j j j j j j j j j j

nj i i i i
j j j j j

h
v v v v f f f f v v v v

hm u u u u R
m

δ δ δ δ δ δ

δ δ

− − − − − −

−
− − −

+ − + + + + + + + +

⎛ ⎞
− + + + =⎜ ⎟+ ⎝ ⎠

 

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )

1 1 1 1 1 1

1
1 1 1 1 2 1/2

Pr
4

2Pr ,
1 4

ji i i i i i i i i i i i
j j j j j j j j j j j j

nj i i i i i i i i
j j j j j j j j j

h
t t t t f f f f t t t t

hn u u u u G G G G R
m

δ δ δ δ δ δ

δ δ δ δ

− − − − − −

−
− − − − −

⎡ ⎤
+ − + + + + + + + +⎢ ⎥

⎣ ⎦
⎡ ⎤⎛ ⎞

− + + + + + + =⎢ ⎥⎜ ⎟+ ⎝ ⎠⎣ ⎦
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Next we drop the terms that are quadratic in ( ) ( ) ( ) ( ) ( )( ), , , ,i i i i i
j j j j jf u v G tδ δ δ δ δ  

and we have also drop the superscript I for simplicity. After some algebraic 

manipulations, the following linear tridiagonal system of equations is obtained 

 

( ) ( )1 1 1 1/2

1 ,
2j j j j j j

f f h u u rδ δ δ δ− − −
− − + =          (3.4.4a) 

( ) ( )1 1 2 1/2

1 ,
2j j j j j j

u u h v v rδ δ δ δ− − −
− − + =          (3.4.4b) 

( ) ( )1 1 3 1/2

1 ,
2j j j j j j

G G h t t rδ δ δ δ− − −
− − + =          (3.4.4c) 

( ) ( ) ( ) ( ) ( )
( ) ( )
1 2 1 3 4 1 5

6 1 4 1/2
,

j j j j jj j j j j

jj j

a v a v a f a f a u

a u r

δ δ δ δ δ

δ

− −

− −

+ + + +

+ =
       (3.4.4d) 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
1 2 1 3 4 1 5

6 1 7 8 1 5 1/2
,

j j j j jj j j j j

j j jj j j j

b t b t b f b f b u

b u b G b G r

δ δ δ δ δ

δ δ δ

− −

− − −

+ + + +

+ + + =
       (3.4.4e) 

 

where 

 

( )1 1/21 ,
2

j
jj

h
a f −= +  

( ) ( )2 1/2 11 2,
2

j
jj j

h
a f a−= − + = −             (3.4.5) 

( ) ( ) ( )3 1/2 4 3,           ,
2

j
jj j j

h
a v a a−= =  

( ) ( ) ( )5 1/2 6 5
2 ,           ,

1 j jj j j

ma h u a a
m −= − =
+

 

 

( )1 1/2
Pr1 ,
2 j jj

b h f −= +  

( ) ( )2 1/2 1
Pr1 2,
2 j jj j

b h f b−= − + = −  

( ) ( ) ( )3 1/2 4 3
Pr ,           ,
2 j jj j j

b h t b b−= =            (3.4.6) 

( ) ( ) ( )5 1/2 6 5Pr ,           ,
1 j jj j j

nb h G b b
m −

⎛ ⎞= − =⎜ ⎟+⎝ ⎠
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( ) ( ) ( )7 1/2 8 7Pr ,           ,
1 j jj j j

nb h u b b
m −

⎛ ⎞= − =⎜ ⎟+⎝ ⎠
 

 

( )1 1 1/21/2
,j j j jj

r f f h u− −−
= − +  

( )2 1 1/21/2
,j j j jj

r u u h v− −−
= − +  

( )3 1 1/21/2
,j j j jj

r G G h t− −−
= − +              (3.4.7) 

( ) ( ) 2
4 1 1/2 1/2 1/2

2 ,
1j j j j j jj

mr v v h f v u
m− − − −

⎛ ⎞= − − − +⎜ ⎟+⎝ ⎠
 

( ) ( )5 1 1/2 1/2 1/2 1/2
2Pr ,

1j j j j j j jj

nr t t h f t u G
m− − − − −

⎛ ⎞= − − − +⎜ ⎟+⎝ ⎠
 

 

 To complete the system (3.4.4), we recall the boundary condition (3.3.10), 

which can be satisfied exactly with no iteration. So, to maintain these correct values 

in all the iterates, we take 

 

0 0 00,    0,    0,    0,    0,    0J J Jf u G u v Gδ δ δ δ δ δ= = = = = =         (3.4.8) 

 
 
 
 
3.5 Block-elimination Method 
 
 
 The linear system (3.4.4) can be solved by the block-elimination method. The 

linearized difference equations of the system (3.4.4) have a block-tridiagonal 

structure. 

 

  Generally, the block-tridiagonal structure consists of variable or constant, but 

here, an interesting feature can be observed that is, for the Keller-box method it 

consists of block matrices. Before we solved the linear system (3.4.4) using block-

elimination method, we will show how to get the elements of the block matrices from 

the linear system (3.4.4). We consider three cases, namely when 1 1 and ,j J J= − .  

 

When 1j = , the linear system (3.4.4) become 
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( ) ( ) ( )1 0 1 1 0 1 1 1/2

1 ,
2

f f h u u rδ δ δ δ
−

− − + =  

( ) ( ) ( )1 0 1 1 0 2 1 1/2

1 ,
2

u u h v v rδ δ δ δ
−

− − + =  

( ) ( ) ( )1 0 1 1 0 3 1 1/2

1 ,
2

G G h t t rδ δ δ δ
−

− − + =  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1 1 2 0 3 1 4 0 5 11 1 1 1 1

6 0 41 1 1/2
,

a v a v a f a f a u

a u r

δ δ δ δ δ

δ
−

+ + + +

+ =
 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 1 2 0 3 1 4 0 5 11 1 1 1 1

6 0 7 1 8 0 51 1 1 1 1/2
,

b t b t b f b f b u

b u b G b G r

δ δ δ δ δ

δ δ δ
−

+ + + +

+ + + =
 

 

The corresponding matrix form is [we let 1 1
1 ,
2

d h= − 0and 0,fδ =  0 00,  0u Gδ δ= = ] 

from (3.4.8): 

 

( ) ( ) ( )
( ) ( ) ( )

( )
( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )

0

1 1 0

1 1 1

2 3 1 11 1 1

2 3 1 11 1 1

1 1 1/2
1 1

2 1 1/21

32 1 1/2

5 21 4 1 1/2

5 7 21 1
5 1

0 0 1 0 0
0 0 0

0 0 0
0 0

0 0

0 0 0 0
1 0 0 0 0
0 1 0 0 0

0 0 0 0
0 0 0

v
d d t

d d f
a a a v

b b b t

r
d u

rG
rf

a v r
b b t r

δ
δ
δ
δ
δ

δ
δ
δ
δ
δ

−

−

−

−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ +
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

( )1/2−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

For the value of 1j = , we have [ ][ ] [ ][ ] [ ]1 1 1 2 1A C rδ δ+ =  

 

When 1j J= − , the linear system (3.4.4) become 

 

( ) ( )( ) ( )1 2 1 1 2 1 1 1/2

1 ,
2J J J J J J

f f h u u rδ δ δ δ− − − − − − −
− − + =  
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( ) ( )( ) ( )1 2 1 1 2 2 1 1/2

1 ,
2J J J J J J

u u h v v rδ δ δ δ− − − − − − −
− − + =  

( ) ( )( ) ( )1 2 1 1 2 3 1 1/2

1 ,
2J J J J J J

G G h t t rδ δ δ δ− − − − − − −
− − + =  

( ) ( ) ( ) ( ) ( )
( ) ( )( ) ( )

1 1 2 2 3 1 4 2 5 11 1 1 1 1

6 2 41 1 1/2
,

J J J J JJ J J J J

JJ J

a v a v a f a f a u

a u r

δ δ δ δ δ

δ
− − − − −− − − − −

−− − −

+ + + +

+ =
 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( )

1 1 2 2 3 1 4 2 5 11 1 1 1 1

6 2 7 1 8 2 51 1 1 1 1/2
,

J J J J JJ J J J J

J J JJ J J J

b t b t b f b f b u

b u b G b G r

δ δ δ δ δ

δ δ δ
− − − − −− − − − −

− − −− − − − −

+ + + +

+ + + =
 

 

The corresponding matrix form is (we let 1 1
1
2J Jd h− −= − ) 

 

( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )

3

1 3

1 2

24 21 1

24 21 1

1 2

1 2

1

6 3 11 1 1

6 8 3 11 1 1 1

0 0 1 0 0

0 0 0 0

0 0 0 0

0 0 0

0 0 0

0 1 0 0

1 0 0 0

0 1 0 0

0 0

0

J

J J

J J

JJ J

J
J J

J J

J J

J

J J J

J J J J

u
d G

d f
va a
tb b

d u
d G

d

a a a

b b b b

δ
δ
δ
δ
δ

δ
δ

−

− −

− −

−− −

−
− −

−
−

− −

−

− − −

− − − −

⎡ ⎤− ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥

−⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

( )
( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1

1

1

1 1 1/21 1

2 1 1/21

3 1 1/2

5 41 1 1/2

5 71 1 5 1 1/2

0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 0 0

0 0 0

J

J

J

J J

J

J

JJ

J
J J

f
v
t

rd u
rG
rf

va r
tb b r

δ
δ
δ

δ
δ
δ
δ
δ

−

−

−

−−
−

−−

−

− −

− − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥ +
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

 

 

For all values of 2,3,..., 1,j J= −  we have  

 

1 1j j j j j j jB A C rδ δ δ− +⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ + =⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  
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Finally, when j J= , the linear system (3.4.4) become 

 

( ) ( ) ( )1 1 1 1/2

1 ,
2J J J J J J

f f h u u rδ δ δ δ− − −
− − + =  

( ) ( ) ( )1 1 2 1/2

1 ,
2J J J J J J

u u h v v rδ δ δ δ− − −
− − + =  

( ) ( ) ( )1 1 3 1/2

1 ,
2J J J J J J

G G h t t rδ δ δ δ− − −
− − + =  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1 2 1 3 4 1 5

6 1 4 1/2
,

J J J J JJ J J J J

JJ J

a v a v a f a f a u

a u r

δ δ δ δ δ

δ
− −

− −

+ + + +

+ =
 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 2 1 3 4 1 5

6 1 7 8 1 5 1/2
,

J J J J JJ J J J J

J J JJ J J J

b t b t b f b f b u

b u b G b G r

δ δ δ δ δ

δ δ δ
− −

− − −

+ + + +

+ + + =
 

 

The corresponding matrix form is (we let 1 ,  and 0,  0
2J J J Jd h u Gδ δ= − = =  from 

(3.4.8)): 

 

( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )

( )

2

2

1

4 2 1

14 2

1 (1/2
1

1

6 3 1

6 8 3 1

0 0 1 0 0
0 0 0 0
0 0 0 0
0 0 0

0 0 0

0 1 0 0

1 0 0 0

0 1 0 0

0 0

0

J

J J

J J

J J J

JJ J

JJ J

J J

J J

JJ J J

J
J J J J

u
d G

d f
a a v

tb b

rd u
d G

d f
va a a
tb b b b

δ
δ
δ
δ
δ

δ
δ
δ
δ
δ

−

−

−

−

−

−
−

−

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ +
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

( )
( )
( )
( )

)

2 (1/2)

3 (1/2)

4 (1/2)

5 (1/2)

J

J

J

J

r

r

r

r

−

−

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

For all values of ,j J=  we have 1j j j j jB A rδ δ−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ =⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

 

Therefore, for 1,2,3,..., 1, ,j J J= − we have 
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[ ][ ] [ ][ ] [ ]
[ ][ ] [ ][ ] [ ][ ] [ ]
[ ][ ] [ ][ ] [ ][ ] [ ]

[ ][ ] [ ][ ] [ ][ ] [ ]
[ ][ ] [ ]

1 1 1 2 1

2 1 2 2 2 3 2

3 2 3 3 3 4 3

1 2 1 1 1 1

1

1:           

2 :                  

3 :          
                                            

1:    

:         
J J J J J J J

J J J

j A C r

j B A C r

j B A C r

j J B A C r

j J B A

δ δ

δ δ δ

δ δ δ

δ δ δ

δ δ
− − − − − −

−

= + =

= + + =

= + + =

= − + + =

= +

M M

[ ] [ ]J Jr=

 

 

In the matrix form, this can be written as 

 

  δ =A r              (3.5.1) 

 

where 

 

[ ] [ ]
[ ] [ ] [ ]

[ ] [ ] [ ]
[ ] [ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

1 1 1 1

2 2 2 2 2

1 1 1 1 1

  

J J J J J

J J J J

A C r
B A C r

B A C r
B A r

δ
δ

δ
δ
δ

− − − − −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

, ,O O O M MA r  

 

The elements of the matrices are as follows 

 

[ ]
( ) ( ) ( )

( ) ( ) ( )

1 1

1 11

2 3 11 1 1

2 3 11 1 1

0 0 1 0 0
0 0 0

0 0 0 ,
0 0

0 0

d d
d dA

a a a
b b b

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

         (3.5.2a) 

 

( ) ( ) ( )
( ) ( ) ( ) ( )

6 3 1

6 8 3 1

0 1 0 0

1 0 0 0

0 1 0 0 ,  2

0 0

0

j

j

jj

j j j

j j j j

d

d

dA j J

a a a

b b b b

⎡ ⎤
⎢ ⎥
−⎢ ⎥

⎢ ⎥
−⎡ ⎤ = ≤ ≤⎢ ⎥⎣ ⎦

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

       (3.5.2b) 
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( ) ( )
( ) ( )

4 2

4 2

0 0 1 0 0
0 0 0 0
0 0 0 0 ,  2
0 0 0

0 0 0

j

jj

j j

j j

d
dB j J

a a

b b

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤ = ≤ ≤⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

         (3.5.3) 

 

( )
( ) ( )

5

5 7

0 0 0 0

1 0 0 0 0

0 1 0 0 0 ,  1 1

0 0 0 0

0 0 0

j

j

j

j j

d

C j J

a

b b

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎡ ⎤ = ≤ ≤ −⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

         (3.5.4) 

 

[ ]

10

10

1 1

1

1

,             ,      2

j

j

j

j

j

uv
Gt

f j Jf
vv
tt

δδ
δδ
δδ δδ
δδ
δδ

−

−

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= = ≤ ≤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

    (3.5.5a, b) 

 

And         

( )
( )
( )
( )
( )

1 (1/2)

2 (1/2)

3 (1/2)

4 (1/2)

5 (1/2)

,   1

j

j

j j

j

j

r

r

rr j J

r

r

−

−

−

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎡ ⎤ = ≤ ≤⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

           (3.5.6) 

 

The coefficient matrix A  is known as tridiagonal matrix due to the fact that 

all elements of A  are zero except those on the three main diagonal. To solve 

equation (3.5.1), according to the block elimination method as described in Cebeci 

and Bradshaw (1988), we assume matrix A  is nonsingular and we seek a 

factorization of the form 

 

  =A LU              (3.5.7)  

 

where  
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[ ]
[ ] [ ]

[ ] [ ]

[ ] [ ]
[ ] [ ]

1

2 2

3 3

1 1J J

J J

B
B

B
B

α
α

α

α
α

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

O

O

L  

 

and         

[ ] [ ]
[ ] [ ]

[ ] [ ]

[ ] [ ]
[ ]

1

2

3

1J

I
I

I

I
I
−

⎡ ⎤Γ
⎢ ⎥Γ⎢ ⎥
⎢ ⎥Γ
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥

Γ⎢ ⎥
⎢ ⎥
⎣ ⎦

,O

O

U   

 

[ ]I is the identity matrix of order 5. [ ]iα  and [ ]iΓ  are 5 x 5 matrices whose element 

are determined by the following equations: 

 

[ ] [ ]1 1Aα = ,              (3.5.8a) 

[ ][ ] [ ]1 1 1A CΓ =             (3.5.8b) 

 

and 

 

1       2 3j j j jA B j Jα −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − Γ =⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ , , , ,K          (3.5.8c) 

                    2 3 1j j jC j Jα⎡ ⎤ ⎡ ⎤ ⎡ ⎤Γ = = −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ , , , , .K         (3.5.8d) 

 

By substituting (3.5.7) into (3.5.1), we get 

 

δ =LU r             (3.5.9) 

 

If we define   δ =U W          (3.5.10) 
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then equation (3.5.9) becomes =LW r          (3.5.11) 

 

where  

 

[ ]
[ ]

[ ]
[ ]

1

2

1J

J

W
W

W
W

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

,MW  

 

and jW⎡ ⎤⎣ ⎦  are 5 x 1 column matrices. The elements W can be solved from equation 

(3.5.11): 

 

[ ][ ] [ ]1 1 1W rα = ,           (3.5.12a) 

1           2j j j j jW r B W j Jα −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − ≤ ≤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ,       (3.5.12b) 

 

The solution of equation (3.5.7) by block-elimination method consists of two 

sweeps. The step in which and j j jWαΓ ,  are calculated, is usually referred to as the 

forward sweep. They are computed from the recursion formulas given by (3.5.8) and 

(3.5.12). When the elements of W are found, equation (3.5.10) then gives the solution 

of δ in the so called backward sweep, in which the elements are obtained by the 

following relations: 

 

[ ] [ ]J JWδ = ,            (3.5.13a) 

1        1 1j j j jW j Jδ δ +⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − Γ ≤ ≤ −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ,        (3.5.13b) 

 

Once the elements of δ are found, equation (3.4.4) can be used to find (i+1)th 

iteration in equation (3.4.3). 

 

 These calculations are repeated until some convergence criterion is satisfied. 

In laminar boundary layer calculations, the wall shear stress parameter ( )0,v x  is 
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usually used as the convergence criterion. This is probably because in boundary layer 

calculations, it is find that the greatest error usually appears in the wall shear stress 

parameter. Calculations are stopped when 

 

( )
0 1
ivδ ε<              (3.5.14) 

 

where 1ε  is a small prescribed value.  

 

 In this study, we consider 5
1 10ε −=  that gives about four decimal places 

accuracy for most predicted quantities (Cebeci and Bradshaw (1988)). 

 
 
 
 
3.6 Starting Conditions 
 
 

In the numerical computation, a proper step size yΔ and an appropriate 

y∞ value (an approximate to y = ∞ ) must be determined. All of these value usually 

determined by a trial and error approach (Chen (1998)). In general, if the appropriate 

y∞ value at a given x is not known, the computation can be started by using small 

value of y∞ and the successively increase the values of y∞ until a suitable y∞ is 

obtained. 

 

For most laminar boundary layer flows the transformed boundary layer 

thickness ( )y x∞  is almost constant. The value of y∞ typically lies between 5 and 10. 

Once we obtain the proper values of y∞ , a reasonable choice of step size yΔ and 

xΔ should be determined. In most laminar boundary layer flows, a step size 

0 02.yΔ = to 0.04 is sufficient to provide accurate and comparable results. 

 

In order to start and proceed with the numerical computation, it is necessary 

to make initial guesses for the function and , , ,f u v G t across the boundary layer. To 

start a solution at a given x, it is necessary to assume distribution curves for the 
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velocity, u and the temperature, G between 0y =  and y y∞= . We used the 

distribution curves given by Bejan (1984) and Ghoshdastidar (2004). These are used 

as the initial guess because both the velocity and temperature profiles satisfy the 

boundary condition for the problem of heat transfer characteristic of a continuous 

stretching surface with thermal boundary condition for uniform and variable surface 

temperature. 

 

The velocity profile chosen is 

 
2

1 yu f
y∞

⎛ ⎞
′= = −⎜ ⎟

⎝ ⎠
              (3.6.1) 

 

and the temperature profile is 

 
2

1 yG
y

θ
∞

⎛ ⎞
= = −⎜ ⎟

⎝ ⎠
               (3.6.2) 

 

Therefore, integrating and differentiating equation (3.6.1) with respect to y, we get 

the following expression for f and v 

 

( )

2 3

20 3

y y

y

y yf udy y
y y

∞=

=
∞ ∞

= = − +∫             (3.6.3) 

( )2

2duv y y
dy y ∞

∞

−
= = −               (3.6.4) 

 

Similarly, differentiating equation (3.6.2) with respect to y, we get 

 

( )2

2dGt y y
dy y ∞

∞

−
= = −               (3.6.5) 

 

 Finally, to solve the problem of heat transfer coefficients of a continuous 

stretching surface we used Matlab® to program the Keller-box method. The 

complete program in this particular problem is given in appendix. Figure 3.2 below 
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shows the general flow diagram for the computations of the Keller-box method. The 

symbol are defined in Appendix. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Flow diagrams for the Keller-box method 
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Figure 3.4 Flow diagrams for the Keller-box method (continued) 
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CHAPTER IV 
 
 

 
 

HEAT TRANSFER COEFFICIENTS ON A CONTINOUOUS STRECTHING 
SURFACE 

 
 
 
 
4.1 Introduction 
 
 

In this chapter, the problem of heat transfer coefficients on a continuous 

stretching surface is considered and discussed. We will use the Keller-box method 

that has been described in Chapter 3 to solve this problem. Three cases of thermal 

boundary conditions, namely uniform surface temperature ( )0n = , variable surface 

temperature ( )0n ≠  and uniform heat flux ( )( )1 2n m= −  are presented in the 

following three main section. 

 

Section 4.2 will discuss the problem of heat transfer stretching surface with 

uniform surface temperature conditions and the result will be discussed in Section 

4.2.1. The ordinary differential equations for problem with variable surface 

temperature are given in Section 4.3 and in Section 4.3.1 the result for this problem 

will be discussed. In the last section, Section 4.4 the problem for thermal boundary 

condition with uniform heat flux will be discussed and the results are presented in 

section 4.4.1. 
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4.2 Uniform Surface Temperature  
 
 
Following Ali (1994), for uniform surface temperature case, we will consider 

the temperature exponent parameter, 0n = . According to equations (3.2.12) and 

(3.2.13), the ordinary differential equations for f and θ  becomes 

 

( )22 0
1

mf ff f
m

′′′ ′′ ′+ − =
+

            (4.2.1) 

Pr 0fθ θ′′ ′+ =              (4.2.2) 

 

subject to the boundary conditions 

 

( ) ( ) ( )0 1,  0 0,              0 1f f θ′ = = =             (4.2.3) 

( ) ( )0,                            0f θ′ ∞ = ∞ =            (4.2.4) 

 

where primes denote differentiation with respect to η . 

 

 In practical applications, the physical quantity of principal interest is the local 

heat transfer coefficients, which can be expressed in terms of dimensionless 

parameters, Nusselt number Nu and Reynolds number Re. From Ali (1994) the heat 

transfer coefficients for uniform surface temperature case is given as 

 

( )Nu 1 0
2Re

m θ+ ′= −            (4.2.5 a) 

 

 In should mention that deriving equation (4.2.5 a) we had to use the definition 

of local heat transfer coefficient h and a local Nusselt number defined as 

 

,    w

w

q hxh Nu
T T k∞

= =
−

          (4.2.5 b) 

 

The heat transfer coefficients is important because in any practical situations, 

we have to know how strong a body is heated; the rate of heat transfer from the body 



40 
 

to the fluid; what kind of materials we have to use in order to avoid the body to be 

exposed to high temperatures, etc. All the practical devices that operate with the use 

of heat are designed based on theoretical or experimental heat transfer coefficients, 

such as nuclear devices, insulation of buildings. 

 
 
 
 
4.2.1 Results and Discussion 
 
 

Equation (4.2.1) and (4.2.2) subject to boundary conditions (4.2.3) and (4.2.4) 

were solved using the Keller-box. The solution procedure using this method has been 

discussed in Chapter III. All the results quoted here were obtained using uniform grid 

in η  direction. We used the step size of 0.05ηΔ = . In all cases we choose 10η = . 

The initial profiles for this problem are given by equations (3.6.1) to (3.6.5). 

 

Details results are for temperature profiles, ( )θ η  and heat transfer 

coefficient, ReNu  are obtained for the following values of velocity exponent 

parameter, 0 41 3. m− ≤ ≤  and 3 1 1m .− ≤ ≤ −  with Prandtl number, Pr = 0.72, 1.0, 3.0 

and 10. In order to access the accuracy of the present method, we have compared the 

results for the heat transfer coefficient, ReNu  for 0 and 0m n= =  and 

temperature gradient ( )0θ ′  for 1m =  and 0n = with previously published result and 

found them into excellent agreement. The comparison is shown in Table 4.1 and 

Table 4.2. This favorable comparison lends confidence in the numerical results 

obtain in this paper. 

 

Table 4.1: Heat transfer coefficient Nu
Re

for 0 and 0m n= = . 

Pr 
 

Jacobi 
(1993) 

Soundalgekar and Murty 
(1980) 

Chen 
(1980) 

Tsou et al 
(1967) 

Ali 
(1994) 

Present 
 

0.7 0.3492 0.3508 0.3492 0.3492 0.3476 0.3493 
1.0 0.4438 - - 0.4438 0.4416 0.4438 
10.0 1.6790 1.6808 - 1.6804 1.6713 1.6804 
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Table 4.2: Temperature gradient ( )0θ ′ for 1 and 0m n= = . 

Pr 
Grubka and Bobba 
(1985) 

Lakshmisha et al 
(1988) 

Gupta 
(1977) 

Ali 
(1994) 

Present 
 

0.7 - 0.45446 - -0.45255 -0.4540 
1.0 -0.5820 - -0.5820 -0.59988 -0.5820 
10.0 -2.3080 - - -2.29589 -2.3082 
1.0 - - -0.1105 -0.10996 -0.1106 
 

Figure 4.1 to 4.3 illustrate the dimensionless temperature profiles, ( )θ η  and 

heat transfer coefficient, ReNu  for various values of Prandtl numbers and 

velocity. Figure 4.1 shows that when 3 and 0m n= =  the thermal boundary layer 

thickness decreases for larger Prandtl numbers. From Figure 4.2, it is clear that 

increasing m from -0.25 to 3 changes the profile to be less flat near the edge of the 

boundary layer, while for m from -3 to -1.1 the profile change to be less steeper near 

the edge of the surface. These values of m mean that heat is transferred from 

continuous surface to the ambient (Ali, 1994). 

   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Dimensionless temperature profiles, ( )θ η  for various values of Prandtl 

numbers for 3 and 0m n= = . 
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Figure 4.2: Dimensionless temperature profiles, ( )θ η  for various values of m 

for 0 and Pr 0.72n = = . 

 

 Figure 4.3 presented the heat transfer coefficient in the dimensionless form of 

ReNu as a function of m in the range of 0 41 3. m− ≤ ≤ for different Prandtl 

numbers. It shows that the increasing velocity exponent parameters, m and Prandtl 

number enhance the heat transfer coefficient, ReNu . Moreover, increasing 

Prandtl number increases the rate of heat transfer coefficient, ReNu . 
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enhance the heat transfer coefficient. Moreover, increasing Prandtl number also 

increase the rate of heat transfer coefficie 

 

 

 

 

 

 

 

Figure 4.3: Variation of Nu
Re

as a function of m at n = 0 and for different values of 

Prandtl number. 

 
 
 
 
4.3 Variable Surface Temperature 
 
 

In this section we will consider the variable surface temperature case ( )0n ≠ . 

According to equations (3.2.12) and (3.2.13), the ordinary differential equations for 

f and θ  becomes 

 

( )22 0
1

mf ff f
m

′′′ ′′ ′+ − =
+

           (3.2.12) 

2Pr 0
1

nf f
m

θ θ θ⎡ ⎤′′ ′ ′+ − =⎢ ⎥+⎣ ⎦
           (3.2.13) 

 

subject to 

 

( ) ( ) ( )0 1,  0 0,              0 1f f θ′ = = =           (3.2.14) 

( ) ( )0,                            0f θ′ ∞ = ∞ =          (3.2.15) 
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where primes denote differentiation with respect to η . 

 

In practical applications, the physical quantities of principal interest are the 

local heat transfer coefficients are same with the uniform surface temperature case. 

 
 
 
 
4.3.1 Results and Discussion 
 
 

Equation (3.2.12) and (3.2.13) subject to boundary conditions (3.2.14) and 

(3.2.15) were solved using the Keller-box. The solution procedure using this method 

has been discussed in Chapter III. All the results quoted here were obtained using 

uniform grid in η  direction. We used the step size of 0.05ηΔ = . In all cases we 

choose 10η = . The initial profiles for this problem are given by equations (3.6.1) - 

(3.6.5). 

 

Details results are for temperature profiles, ( )θ η  and heat transfer coefficient, 

ReNu  are obtained for the following values of velocity exponent parameter, 

0 41 3. m− ≤ ≤  and 3 1 1m .− ≤ ≤ −  and temperature exponent parameter, 0n ≠  with 

Prandtl number, Pr = 0.72, 1.0, 3.0 and 10. The accuracy of this numerical method 

was validated by direct comparison with the numerical results reported earlier by 

Chen (1998), Grubka and Bobba (1985) and Ishak et al (2007) for 1m = . Table 4.3 

present the temperature gradient, ( )0θ ′ , it can be seen from Table 4.3 that very good 

agreement between the results exists. This favorable comparison lends confidence in 

the numerical results obtained in this paper. 

 

Table 4.3: Temperature gradient ( )0θ ′ for 1m = . 

  
Grubka and Bobba 

(1985)  
Ishak et al 

(2007)  
Present
  

n Pr = 1 Pr = 3 Pr = 10 Pr = 1 Pr = 3 Pr = 10 Pr = 1 Pr = 3 Pr = 10
-2 1.0000 3.0000 10.0000 1.0000 3.0000 10.0000 0.9994 2.9999 9.9988
-1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0001 0.0000 0.0000
0 -0.5820 -1.1652 -2.3080 -0.5820 -1.1652 -2.3080 -0.5820 -1.1653 -2.3081
1 -1.0000 -1.9237 -3.7207 -1.0000 -1.9237 -3.7207 -1.0000 -1.9237 -3.7208
2 -1.3333 -2.5097 -4.7969 -1.3333 -2.5097 -4.7969 -1.3333 -2.5097 -4.7970
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Further, numerical results for temperature gradient, ( )0θ ′  are presented in 

Table 4.4. The results presented in Table 4.4, show that ( )0θ ′ is positive or negative 

then the direction of heat flow is to or from continuous stretching surface 

respectively. The dashed lines in this table at some Prandtl number indicate that 

unrealistic solutions (Grubka and Bobba, 1985) are obtained. For 0.5 3m≤ ≤  

and 2n < − , the temperature gradient, ( )0θ ′ is positive, and the heat is transferred 

into the continuous surface from the ambient (Ali, 1994). However, for 

3 1 1m .− ≤ ≤ −  the profiles switch their order with respect to n. 

 

Table 4.4: Temperature gradient ( )0θ ′ as a function of Prandtl numbers, 

temperature exponent and velocity exponent. 

 

m n Pr = 0.72 Pr = 1.0 Pr = 3.0 Pr = 10.0 
-0.41 0.00 -0.6288 -0.7672 -1.4023 -2.5802 
-0.41 1.00 -1.6954 -2.0113 -3.4984 -6.3547 
-0.41 2.00 -2.3340 -2.7555 -4.7614 -8.6437 
-0.41 3.00 -2.8289 -3.3343 -5.7504 -10.4408 
-0.25 -1.00 2.6328 4.9710 - - 
-0.25 0.00 -0.5449 -0.6737 -1.2834 -2.4435 
-0.25 1.00 -1.3892 -1.6708 -3.0052 -5.5796 
-0.25 2.00 -1.9376 -2.3123 -4.1021 -7.5736 
-0.25 3.00 -2.3688 -2.8176 -4.9690 -9.1515 
-0.20 -1.00 1.9120 3.1382 - - 
-0.20 0.00 -0.5328 -0.6602 -1.2663 -2.4240 
-0.20 1.00 -1.3289 -1.6025 -2.9010 -5.4076 
-0.20 2.00 -1.8555 -2.2193 -3.9570 -7.3281 
-0.20 3.00 -2.2715 -2.7067 -4.7937 -8.8514 
0.00 -1.00 0.8466 1.1892 3.7390 13.3456 
0.00 0.00 -0.5038 -0.6276 -1.2246 -2.3764 
0.00 1.00 -1.1547 -1.4035 -2.5891 -4.8818 
0.00 2.00 -1.6113 -1.9401 -3.5124 -6.5638 
0.00 3.00 -1.9776 -2.3699 -4.2515 -7.9103 
0.50 -3.00 18.6243 - - - 
0.50 -2.00 1.6657 2.6586 178.9910 - 
0.50 -1.00 0.2054 0.2716 0.6283 1.3929 
0.50 0.00 -0.4752 -0.5952 -1.1826 -2.3282 
0.50 1.00 -0.9256 -1.1376 -2.1554 -4.1304 
0.50 2.00 -1.2717 -1.5473 -2.8687 -5.4352 
0.50 3.00 -1.5589 -1.8856 -3.4534 -6.5021 
1.00 -3.00 2.2342 3.9915 - - 
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1.00 -2.00 0.7167 0.9994 2.9999 9.9988 
1.00 -1.00 -0.0011 -0.0001 0.0000 0.0000 
1.00 0.00 -0.4636 -0.5820 -1.1653 -2.3081 
1.00 1.00 -0.8088 -1.0000 -1.9237 -3.7208 
1.00 2.00 -1.0886 -1.3333 -2.5097 -4.7970 
1.00 3.00 -1.3270 -1.6153 -3.0000 -5.6935 
1.50 -3.00 1.1227 1.6526 7.5935 - 
1.50 -2.00 0.3732 0.5027 1.2569 3.0542 
1.50 -1.00 -0.1057 -0.1348 -0.2889 -0.6014 
1.50 0.00 -0.4573 -0.5748 -1.1557 -2.2969 
1.50 1.00 -0.7373 -0.9151 -1.7779 -3.4603 
1.50 2.00 -0.9725 -1.1965 -2.2769 -4.3799 
1.50 3.00 -1.1769 -1.4393 -2.7016 -5.1583 
2.00 -3.00 0.6862 0.9558 2.8438 9.3630 
2.00 -2.00 0.1910 0.2540 0.5943 1.3385 
2.00 -1.00 -0.1694 -0.2159 -0.4576 -0.9446 
2.00 0.00 -0.4533 -0.5702 -1.1496 -2.2898 
2.00 1.00 -0.6889 -0.8573 -1.6774 -3.2794 
2.00 2.00 -0.8918 -1.1010 -2.1126 -4.0838 
2.00 3.00 -1.0711 -1.3146 -2.4884 -4.7741 
2.50 -3.00 0.4467 0.6070 1.5786 4.0562 
2.50 -2.00 0.0770 0.1024 0.2319 0.5054 
2.50 -1.00 -0.2123 -0.2703 -0.5688 -1.1681 
2.50 0.00 -0.4505 -0.5670 -1.1454 -2.2849 
2.50 1.00 -0.6540 -0.8153 -1.6037 -3.1461 
2.50 2.00 -0.8324 -1.0304 -1.9899 -3.8618 
2.50 3.00 -0.9922 -1.2213 -2.3276 -4.4833 
3.00 -3.00 0.2938 0.3939 0.9603 2.2664 
3.00 -2.00 -0.0015 -0.0002 0.0000 0.0000 
3.00 -1.00 -0.2432 -0.3093 -0.6479 -1.3259 
3.00 0.00 -0.4485 -0.5647 -1.1423 -2.2813 
3.00 1.00 -0.6275 -0.7835 -1.5474 -3.0438 
3.00 2.00 -0.7868 -0.9759 -1.8947 -3.6889 
3.00 3.00 -0.9309 -1.1486 -2.2015 -4.2548 
3.50 -2.00 -0.0589 -0.0745 -0.1623 -0.3433 
4.50 -3.00 0.0469 0.0632 0.1426 0.3097 
5.00 -3.00 -0.0016 -0.0002 0.0000 0.0000 
-3.00 -3.00 -1.2329 -1.5157 -2.8882 -5.5745 
-3.00 -2.00 -1.0022 -1.2404 -2.4024 -4.6810 
-3.00 -1.00 -0.7353 -0.9189 -1.8249 -3.6111 
-3.00 0.00 -0.4140 -0.5246 -1.0877 -2.2164 
-3.00 1.00 -0.0026 -0.0004 0.0000 0.0000 
-3.00 2.00 0.5794 0.8061 2.3397 7.4432 
-3.00 3.00 1.5674 2.5042 - - 
-2.00 -3.00 -1.7543 -2.1388 -4.0028 -7.6507 
-2.00 -2.00 -1.4005 -1.7195 -3.2699 -6.3082 
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-2.00 -1.00 -0.9703 -1.2057 -2.3611 -4.6358 
-2.00 0.00 -0.3966 -0.5041 -1.0589 -2.1815 
-2.00 0.50 -0.0035 -0.0007 0.0000 0.0000 
-2.00 1.00 0.5363 0.7468 2.1521 6.7742 
-2.00 2.00 3.2501 7.8899 - - 
-1.50 -3.00 -2.5093 -3.0409 -5.6223 -10.6746 
-1.50 -2.00 -1.9910 -2.4282 -4.5539 -8.7199 
-1.50 -1.00 -1.3391 -1.6540 -3.1953 -6.2280 
-1.50 0.00 -0.3697 -0.4717 -1.0119 -2.1232 
-1.50 0.30 0.0792 0.1114 0.2707 0.6337 
-1.50 1.00 2.4167 4.6876 -6.5541 -1.3821 
-1.15 -3.00 -4.6355 -5.5889 -10.2370 -19.3241 
-1.15 -2.00 -3.6719 -4.4505 -8.2486 -15.6877 
-1.15 -1.00 -2.4330 -2.9831 -5.6776 -10.9786 
-1.15 0.00 -0.3018 -0.3865 -0.8767 -1.9445 
-1.10 -3.00 -5.6861 -6.8493 -12.5345 -23.6380 
-1.10 -2.00 -4.5044 -5.4537 -10.0931 -19.1739 
-1.10 -1.00 -2.9808 -3.6498 -6.9299 -13.3807 
-1.10 0.00 -0.2761 -0.3525 -0.8164 -1.8587 

 

 

Figure 4.4 to 4.7 illustrate the dimensionless temperature profiles, ( )θ η  and 

heat transfer coefficient, ReNu for various values of Prandtl numbers, velocity 

exponent parameter m and temperature exponent parameter n. Figure 4.4 shows that 

when Pr 0.72= and 3m =  it is clear that increasing value of n change the profile to 

be more flat near the edge of the boundary layer. Furthermore, when n is increase in 

the range 2n > −  the boundary layer profile change to be steeper near the edge of the 

surface and this means that the heat is transferred from the continuous stretching 

surface to the fluid medium (Ali, 1994). Figure 4.5 presented the dimensionless 

temperature profiles θ  for 0.25m = −  and 1n = − . In this figure, for Prandtl number 

0.72 and 1.0 heat is transferred to the surface however for Prandtl number 3.0 and 

10.0 heat is transferred from the surface to the ambient. 
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Figure 4.4: Dimensionless temperature profiles, ( )θ η  for various values of n 

for 3 and Pr 0.72m = = . 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Dimensionless temperature profiles, ( )θ η  for various values of Prandtl 

numbers for 0.25 and 1m n= − = − . 
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surface for all values of Prandtl numbers and at 1m =  it is adiabatic surface and there 

is no heat exchange between the surface and the fluid medium. However for 1m >  

heat is transferred from the surface to the ambient for all values of Prandtl numbers. 

We notice that in Figure 4.7 when 2n = , heat is transferred from the continuous 

stretching surface to the fluid medium. We also see from Figure 4.6 and 4.7 that the 

increasing of n, m and Prandtl numbers enhances the heat transfer coefficient, 

ReNu . 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Variation of Nu
Re

as a function of m at n = -1 and for different values of 

Prandtl number. 
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Figure 4.7: Variation of Nu
Re

as a function of m at n = 2 and for different values of 

Prandtl number. 

 
 
 
 
4.4 Uniform Heat Flux 
 
 

In this case, we will consider the temperature exponent parameter, 

( )1 2n m= − . According to equations (3.2.12) and (3.2.13), the ordinary differential 

equations for f and θ  becomes 

 

( )22 0
1

mf ff f
m

′′′ ′′ ′+ − =
+

            (4.4.1) 

1Pr 0
1

mf f
m

θ θ θ⎡ ⎤−⎛ ⎞′′ ′ ′+ − =⎜ ⎟⎢ ⎥+⎝ ⎠⎣ ⎦
            (4.4.2) 

 

subject to the boundary conditions 

 

( ) ( ) ( )0 1,  0 0,              0 1f f θ′ ′= = = −           (4.4.3) 
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( ) ( )0,                            0f θ′ ∞ = ∞ =           (4.4.4) 

 

where primes denote differentiation with respect to η  

 

In practical applications, the physical quantities of principal interest are the 

local heat transfer coefficients, which can be expressed in terms of dimensionless 

parameters, Nusselt number Nu and Reynolds number Re. From Ali (1994) the heat 

transfer coefficients for uniform surface temperature case is  

 

( )

1
Nu 2

0Re

m

θ

+

=               (4.4.5) 

 
 
 
 
4.4.1 Results and Discussion 
 
 

Equation (4.4.1) and (4.4.2) subject to boundary conditions (4.4.3) and (4.4.4) 

were solved using the Keller-box. The solution procedure using this method has been 

discussed in Chapter III. The element of matrix A in the correlation (3.5.1) have 

some differences, where the equations (3.5.2a) and (3.5.5a) becomes 

 

[ ]
( ) ( ) ( )

( ) ( ) ( )

1 1

1 11

2 3 11 1 1

2 3 11 1 1
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0 0
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b b b

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 and [ ]

0

0

1 1

1

1

v
t
f
v
t

δ
δ

δ δ
δ
δ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  (4.4.6 a,b) 

 

The corresponding boundary conditions are  

 

0 0 00,    1,    1,    0,    0,    0n n n n n n
j j jf u t u v G= = = − = = =          (4.4.7) 

 

and 
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0 0 00,    0,    0,    0,    0,    0J J Jf u t u v Gδ δ δ δ δ δ= = = = = =                    (4.4.8) 

 

All the results quoted here were obtained using uniform grid in η  direction. 

We used the step size of 0.05ηΔ = . In all cases we choose 10η = . The initial of the 

velocity profile are the same as the equations (3.6.1), (3.6.2) and (3.6.3) while the 

initial values of temperature profile is adopted from the uniform heat flux problem 

that is given by Lienhard (1981) as follows 

 
2

1
2
y yG

y
θ ∞

∞

⎛ ⎞
= = −⎜ ⎟

⎝ ⎠
              (4.4.9) 

 

and initial values for temperature gradient profile is 

 

( )y y
t

y
∞

∞

−
=              (4.4.10) 

 

Details results are for temperature profiles, ( )θ η  and heat transfer 

coefficient, ReNu  are obtained for the following values of velocity exponent 

parameter, 0 41 3. m− ≤ ≤ , 3 1 1m .− ≤ ≤ − and Prandtl number, Pr = 0.72, 1.0, 3.0 and 

10. Figure 4.8 to 4.10 illustrate the dimensionless temperature profiles, ( )θ η  and 

heat transfer coefficient, ReNu  for various values of Prandtl numbers, velocity 

exponent parameter, m and temperature exponent parameter, n. From figure 4.8, the 

thermal boundary layer is increasing with increasing m and this means that more heat 

is dissipated to the fluid medium.  However, the effect of decreasing the boundary 

layer thickness with increasing Prandtl number is shown in Figure 4.9 for 0.41m = − . 

 

The heat transfer coefficient, ReNu  is presented in Figure 4.10. This 

figure indicates that increasing Prandtl number enhances the heat transfer coefficient, 

ReNu . However, compared to the two cases previously uniform surface 

temperature and variable surface temperature, we found that in this case the heat 

transfer coefficient, ReNu  decreases with increasing m. 
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Figure 4.8: Dimensionless temperature profiles, ( )θ η  for various values of m 

for and Pr 0.72= . 

 
 
 
 

 

 

 

 

 

 

 

 

 

Figure 4.9: Dimensionless temperature profiles, ( )θ η  for various values of Prandtl 

number and 0.41m = − . 
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Figure 4.10: Variation of Nu
Re

as a function of m at different values of Prandtl 

number. 
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CHAPTER V 
 
 
 
 

g-JITTER FREE CONVECTION ADJACENT TO A VERTICAL 
STRECHING SHEET 

 
 
 
 
5.1  Introduction 

 
 
In this chapter, the problem of  g-jitter free convection adjacent to vertical 

stretching sheet is considered and discussed. We will also use the Keller-box method 

that has been described in Chapter 3 to solve this problem. Section 5.2 will discuss 

the basic equations of the problem. Finally, in Section 5.3 the result for this problem 

will be discussed.  

 
 
 
 
5.2 Basic Equations 
 
 

Consider the g-jitter flow of a viscous and incompressible fluid over a 

vertical sheet as shown in Figure 1.  Two equal and opposite forces are impulsively 

applied along the x-axis so that the wall is stretched, keeping the origin fixed in a 

viscous and incompressible fluid of ambient temperature .∞T   The temperature of the 

plate is assumed to be suddenly increased or decreased to the value .∞T   The 

stationary coordinate system has its origin located at the center of the sheet with the 

positive x-axis extending along the sheet in the upward direction, while the y-axis is 

measured normal to the surface of the sheet and is positive in the direction from the 

sheet to the fluid.  The continuous stretching surface is assumed to have the velocity 

and temperature of the form xcxuw =)(  and ,)( xaTxTw += ∞  where a and c are 

constants and c > 0.  Both the cases of heating ( )∞> TTw or cooling )( ∞< TTw  of the 
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sheet will be considered, which correspond to a > 0 or a < 0, respectively.  

 

Under these assumptions along with the Boussinesq and boundary layer 

approximations, the basic equations are  

 

0=
∂
∂

+
∂
∂

y
v

x
u                (5.2.1)           

2

2 *( ) ( )u u u uu v g t T T
t x y y

υ β ∞
∂ ∂ ∂ ∂

+ + = + −
∂ ∂ ∂ ∂

           (5.2.2) 

2

2

y
T

y
Tv

x
Tu

t
T

∂
∂

=
∂
∂

+
∂
∂

+
∂
∂ α              (5.2.3)       

 

subject to the initial and boundary conditions 

 

0 : 0, any ,
0 : ( ) , 0, ( ) on 0

0, as
w w

t u v T T x y
t u x c x v T x T a x y
u T T y

∞

∞

∞

< = = =
> = = = + =

→ → →∞

         (5.2.4)     

 

where u and v are the velocity components along x- and y- axes, T is the fluid 

temperature, α , β  and υ  are the thermal diffusivity, the thermal expansion 

coefficient and kinematic viscosity, respectively.  We now define the following non-

dimensional variables 

 
1 1
2 2

0

, ( ) , ( ) ( , )

( ) *( )( , ) , ( )
( )w

ct y c x f

T T g tg
T T g

τ ω η ψ υ τ η
υ

θ τ η τ∞

∞

= = =

−
= =

−

           (5.2.5) 

 

where ψ  is the stream function which is defined as 
y

u
∂
∂

=
ψ  and .

x
v

∂
∂

−=
ψ   With 

the use of (5.2.5), equations (5.2.2) and (5.2.3) become 
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θ
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θ
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Ω=
∂
∂

−
∂
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+
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∂ ff

Pr 2

21             (5.2.7)                       

 

and the boundary conditions (5.2.4) become  

 

0, 1, 1 on 0

0, 0 as

ff

f

θ η
η

θ η
η

∂
= = = =

∂
∂

→ → →∞
∂

            (5.2.8)                        

 

where 
c
ω

=Ω  is the non-dimensional frequency and λ  is the mixed convection 

parameter , which is defined as 

    

22

2

3

0

])([

])([

x

x

w

w

Re
Gr

xxu

xTxTg
=

−
=

∞

υ

υ
β

λ             (5.2.9)                       

 

with 
3

0 2[ ( ) ]w
xGr g T x Tβ
υ∞= −  being the local Grashof number and 

υ
xxuRe w )(=  is 

the local Reynolds number, respectively.  We notice that 0>λ  corresponds to an 

aiding flow and 0<λ  corresponds to an opposing flow, respectively. 

 

The physical quantities of interest include the reduced velocity )(' ηf and the 

non-dimensional temperature profiles as well as the skin friction coefficient, fC , and 

the local Nusselt number, Nu , which are defined as 
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)(

,

2

)(
2

∞−
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⎟
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⎝
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TTk
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          (5.2.10) 
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where the )(xwτ  and )(xqw  are given by 

                 

00 )()(,)( == ∂
∂

−=
∂
∂

= ywyw y
Tkxq

y
uμτ          (5.2.11) 

 

k being the thermal conductibility. Using variables (5.2.5), we get 

 

)0,()0,(2
2
12

2
2
1

τ
η
θτ

η ∂
∂

−=
∂
∂

=

x

x
xf

Re

NufReC          (5.2.12) 

 

We notice that when g-jitter is absent, e.g., when the parameter ε  of the 

amplitude of the modulation is zero ( 0)ε = , equations (5.2.6) and (5.2.7) reduce to 

 

2''' '' ' 0f f f f λθ+ − + =            (5.2.13)    

'' Pr ( ' ' ) 0f fθ θ θ+ − =            (5.2.14) 

 

and the boundary conditions (4.2.8) become 

 

(0) 0, '(0) 1, (0) 1
'( ) 0, ( ) 0

f f
f

θ
θ

= = =
∞ = ∞ =

           (5.2.15) 

 

where primes denote differentiation with respect to .η   The skin friction coefficient 

and the Nusselt number given by equations (5.2.12) are now given by       

 
1
2

1
2

2 ''(0), '(0)x
f x

x

NuC Re f
Re

θ= = −           (5.2.16) 

 
 
 
 
5.3 Results and Discussion 
 
 

The two sets of transformed differential equations (5.2.6) to (5.2.8) and 
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(5.2.13) to (5.2.15) have been solved numerically using the Keller-box method 

described in the book by Cebeci and Bradshaw (1984).  We first solved equations 

(5.2.13) to (5.2.15) for different values of the Prandtl number Pr , the mixed 

convection parameter λ  > 0 (assisting flow) and λ < 0 (opposing flow), respectively.  

To assess the accuracy of the present numerical method, comparison of the wall heat 

flux, '(0)θ− is made with those of Grubka and Bobba (1985).  It can be seen from 

Table 5.1 that for some values of Pr when the buoyancy effect is neglected (λ =0), 

the results are in very good agreement, thus ensuring that the present method is 

accurate. 

 

Table 5.1: Comparison of heat transfer rate )0(θ ′   for 0=λ  and various values of 
Pr. 

 0.01 0.72 1.0 3.0 10.0 100.0 
Present Results -0.0199 -0.8086 -1.0000 -1.9238 -3.7225 -12.3953 
Grubka and Bobba [26 ] -0.0197 -0.8086 -1.0000 -1.9237 -3.7207 -12.2940 
 
 
                 x              )(* tg  
     
 
 
             cxxuw =)(             
                  y 
        
           
              ∞T  
 
                axTxTw += ∞)(  
 

Figure 5.1: Physical model and coordinate system. 
 

Further, we have found that equations (5.2.13) to (5.2.15) have solutions for 

any values 0λ > (assisting flow), but for 0λ < (opposing flow), these equations have 

solutions only for values of ( ) ( 0)c Prλ λ< < .  ( )c Prλ  is a critical value of λ  for 

which a solution of equations (14) to (16) exists while for values of ( ) 0c Prλ λ< < , 

a solution of these equations does not exist.  Table 5.2 contains values of 

( ),c Prλ ''(0)f  and '(0)θ−  for  some values of Pr.   Figures 5.2 and 5.3 illustrate the 

variation of the reduced skin friction, ''(0)f , and heat transfer parameter, '(0)θ− , 
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with λ  for some values of Pr.  It can be seen from this table and figures that '(0)θ−  

increases continuously with λ  positive or negative, while the assisting flow ( 0)λ > , 

produces an increase in ''(0)f  and an opposing flow ( 0)λ < produces a decrease in 

''(0)f , respectively.  We notice that increasing the value of Pr, will increase the 

values of '(0)θ−  that is increasing Pr enhances the heat transfer at the sheet.  Thus, 

fluids having a smaller Prandtl number are more sensitive to the buoyancy force than 

fluids with a larger Prandtl number.  These results are in agreement with those 

reported by Chen (1998), see Figures 3b and 4b in his paper.  

 

Table 5.2: Values of )0(f ′′  and )0(θ ′  for critical values of cλ  (<0) and different 
values of Pr. 

 cλ  )0(f ′′  - )0(θ ′  
0.70 -0.26653   -1.20032   0.69854 
0.72 -0.27355   -1.20268   0.71280 
1.00 -0.39356   -1.24525   0.89693 
3.00 -2.01309   -1.75017   1.72057 
7.00 -6.08544   -2.61278   2.67616 
10.00 -9.23648   -3.11007   3.21465 
50.00 -52.35663   -6.88706   7.28834 
100.00 -103.75937  -10.03744  10.10021 

 

  
 
         
 
 
  )0(f ′′  
  
 
          Pr = 0.7,1,3,7,10           Pr = 0.7,1,3,7,10 
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Figure 5.2: Variations of the skin friction with λ  for different values of Pr. 
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Figure 5.3: Variations of the heat flux with λ  for different values of Pr. 

 

Further, we have solved numerically equations (5.2.6) to (5.2.8) for several 

values of the governing parametersε ,Ω  and cλ  with Pr = 0.72 (air) and 6.8 (water), 

respectively.  In all the results we vary ε  from 0 to 1 since values of ε  above 1 is 

equivalent to having the perceived gravity reverse its direction over part of the g-

jitter cycle.  The computations were always started with the appropriate steady 

solution to the ε  = 0 case and convergence to a steady periodic state was demanded 

to have taken place when 

 

6max '( ,0) '( 2,0) 10θ τ θ τ −− − <             (5.3.1) 
 

over a whole period.  The results are summarized in Tables 5.3 and 5.4 and in Figures 

5.4 to 5.11.  Tables 5.2 and 5.3 contain the values of the mean heat transfer rate 

'(0)Θ  and the mean skin friction ''(0)F over one period using trapezoidal rule to 

obtain their respective means.  We can notice a very clear difference between these 

tables due to the different values of Pr and .cλ   However, it can be seen that the 

overall effect of even very large g-jitter amplitudes Ω  on the rate of heat transfer and 

the skin friction is fairly small.  Figures 5.4 to 5.7 show the variation of the skin 

friction quantity, ''( ,0)f τ− , and surface heat transfer, '( ,0)θ τ− , for Pr = 0.72 and 

6.8, Ω = 0.2, 1 and 5, cλ = -0.13 and -2.13 (opposing flow) and some values of ε .  

All Figures 5.4 to 5.7 show that the effect of increasing ε  is to give an almost 

proportional increase or decrease in skin friction and heat transfer.  The upper and 
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lower peaks occur near 0.5τ =  and 1.5 for heat transfer, as can be seen from Figures 

5.4 and 5.6 but the peaks in the response occur after these values.  The corresponding 

curves for heat transfer show different trends as can be seen from Figures 5.5 and 

5.7.  However, the main differences between Figures 5.4 to 5.7 lie in the range of 

values that ''( ,0)f τ−  and '( ,0)θ τ−  take, which is clearly related to the values of Pr.  

When Pr increases, the thermal conductivity decreases in importance relative to the 

viscosity, and advection occurs more easily than conduction.  Therefore, the thermal 

boundary layer decreases in thickness as Pr increases, and this is the cause in the 

overall increase in the value of the surface rate of heat transfer.  However it depends 

also on the buoyancy parameter λ .  Thus the heat transfer increases when both 

)0(<λ  and Pr increase as shown in Figures 5.5 and 5.7.  Finally, the influence of the 

mixed convection parameter λ  and Ω  on the time-periodic flow is shown in Figures 

5.8 to 5.11.  Here we have chosen ε  = 0.5, and the same values of Pr and Ω  as 

above, but a wider range of values of λ  than is used in the previous figures.  It can 

be seen from Figures 5.8 to 5.11 that the changes in the peak response in both 

''( ,0)f τ−  and '( ,0)θ τ−  are seen to be more substantial for an opposing flow ( 0)λ <  

than for an assisting flow ( 0)λ > , respectively.  But, as Pr and Ω  increase, the peak 

response for the rate of heat transfer progressively disappears.  Indeed, the rate of 

heat transfer is almost constant when Ω  > 5, as can be seen from Figures 5.9c and 

5.11c. 

 
Table 5.3: Values of the mean heat transfer rate )0(Θ′  and the mean skin friction rate 

)0(F ′′  for Pr = 0.72 and 13.0−=cλ . 
 
ε  

)0(Θ′  )0(F ′′  
2.0=Ω  1=Ω  5=Ω  2.0=Ω  1=Ω  5=Ω  

0.000 
0.100 
0.200 
0.300 
0.400 
0.500 
0.600 
0.700 
0.800 
0.900 
1.000 

0.7868 
0.7868 
0.7868 
0.7867 
0.7866 
0.7866 
0.7864 
0.7863 
0.7861 
0.7859 
0.7857 

0.7868 
0.7868 
0.7868 
0.7868 
0.7868 
0.7868 
0.7868 
0.7868 
0.7868 
0.7868 
0.7868 

0.7868 
0.7867 
0.7867 
0.7867 
0.7867 
0.7867 
0.7867 
0.7867 
0.7867 
0.7867 
0.7867 

1.0792 
1.0792 
1.0792 
1.0793 
1.0793 
1.0795 
1.0796 
1.0797 
1.0799 
1.0800 
1.0802 

1.0792 
1.0792 
1.0792 
1.0792 
1.0792 
1.0792 
1.0792 
1.0793 
1.0793 
1.0793 
1.0793 

1.0792 
1.0793 
1.0793 
1.0793 
1.0793 
1.0793 
1.0793 
1.0793 
1.0793 
1.0793 
1.0793 
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Table 5.4: Values of the mean heat transfer rate )0(Θ′  and the mean skin friction rate 
)0(F ′′  for  Pr = 6.8 and 93.2−=cλ . 

 
ε  

)0(Θ′  )0(F ′′  
2.0=Ω  1=Ω  5=Ω  2.0=Ω  1=Ω  5=Ω  

0.000 
0.100 
0.200 
0.300 
0.400 
0.500 
0.600 
0.700 
0.800 
0.900 
1.000 

2.9040 
2.9039 
2.9035 
2.9028 
2.9019 
2.9006 
2.8991 
2.8972 
2.8950 
2.8924 
2.8894 

2.9040 
2.9040 
2.9039 
2.9038 
2.9036 
2.9034 
2.9031 
2.9028 
2.9024 
2.9020 
2.9016 

2.9040 
2.9040 
2.9040 
2.9040 
2.9040 
2.9040 
2.9040 
2.9039 
2.9039 
2.9039 
2.9039 

1.6544 
1.6546 
1.6554 
1.6568 
1.6587 
1.6612 
1.6643 
1.6680 
1.6723 
1.6773 
1.6831 

1.6544 
1.6544 
1.6545 
1.6548 
1.6551 
1.6555 
1.6561 
1.6567 
1.6574 
1.6582 
1.6591 

1.6544 
1.6544 
1.6544 
1.6544 
1.6544 
1.6544 
1.6544 
1.6544 
1.6545 
1.6545 
1.6545 
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Figure 5.4: Variations of 
reduced skin friction rate 
for 13.0−=cλ , Pr = 0.7 and 
different values ofε . 

 Figure 5.5: Variations of heat 
flux on the wall for 13.0−=cλ , 
Pr = 0.7 and different values 
ofε . 
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Figure 5.6: Variations of 
reduced skin friction 
withτ for 93.2−=cλ , Pr = 6.8 
and different values ofε . 

 Figure 5.7: Variations of heat 
flux on the wall with τ  
for 93.2−=cλ , Pr = 6.8 and 
different values ofε . 
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Figure 5.8: Variations of 
reduced skin friction with τ  
for 5.0=ε , Pr = 0.72 and 
different values ofλ . 

 Figure 5.9: Variations of heat 
flux on the wall with τ  
for 5.0=ε , Pr = 0.72 and 
different values ofλ . 
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Figure 5.10: Variations of 
reduced skin friction with τ  
for 5.0=ε , Pr = 6.8 and 
different values ofλ . 

 Figure 5.11: Variations of 
heat flux on the wall with τ  
for 5.0=ε , Pr = 6.8 and 
different values ofλ . 

 



 
 
 
 

 
CHAPTER VI 

 
 
 
 

CONCLUSION 
 
 
 
 
6.1 Summary of research 
 
 

In this report we have considered two separate problems concerning the heat 

transfer coefficients of a continuous stretching surface. In the first problem, we 

considered the heat transfer coefficients of a continuous stretching surface subject to 

uniform surface temperature, variable surface temperature and uniform heat flux. The 

second problem considered is concerned with the effect of g-jitter induced free 

convection adjacent to a vertical stretching sheet. Specifically, the two dimensional, 

laminar and incompressible flows are considered for the first and second problems, 

respectively. The problems have been solved numerically using implicit finite 

difference method known as Keller-box method. Numerical results are presented 

graphically and in the forms of tables. 

 

The first problem is discussed in Chapter IV, where we have focused on the 

heat transfer coefficients of a continuous stretching surface with a power law 

velocity and temperature distribution 0.41 3m− ≤ ≥  and for 3 3n− ≤ ≤ . For uniform 

surface temperature, ( )0n =  it was found that all the temperature profile, ( )θ η  

exhibit asymptotic decay for all m (see Figures 4.1, 4.2). Furthermore, the variable 

surface temperature, ( )0n ≠  case is characterized by the variation of n and m. The 

magnitude of n affects the direction and quantity of heat flow. For example if 3m =  

and  2n = −  there is no heat exchange between the surface and the ambient. On the 

other hand, for 2n > −  heat is transferred from continuous stretching surface to the 

ambient and heat is transferred to continuous stretching surface for 3 2n− ≤ < −  (see 
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Table 4.4). Finally, for uniform heat flux, ( )( )0.5 1n m= − , it was found that 

increasing m, increases the quantity of heat flow to the ambient. In uniform and 

variable surface temperature cases, the heat transfer coefficient, ReNu  increases 

with increasing m and Prandtl number (see Figures 4.3, 4.6, 4.7), however, heat 

transfer coefficient, ReNu  decrease with increasing m ( see Figure 4.10). In this 

chapter, the plotted temperature profiles, ( )θ η  decrease with increasing Prandtl 

number. 

 

   In Chapter V, we have studied the problem of the effect of small but 

fluctuating gravitational field, characteristic of the g-jitter, on the flow and heat 

transfer adjacent to a vertical stretching sheet.  The velocity and temperature of the 

sheet were assumed to vary linearly with the distance x along the sheet.  Effects of 

the buoyancy parameter, amplitude of the g-jitter modulation, Prandtl number and 

frequency of the oscillation on the flow and heat transfer characteristics have been 

examined in detail.  Similarity solutions have also been obtained for the case of a 

steady solution, case ( 0)ε =  and it was shown that for an opposing flow these 

equations have solutions only for a limited range of values of the mixed convection 

parameter.  It can be concluded that both the skin friction and the surface heat 

transfer increase as the mixed convection parameter increase for a given Pr.  It is 

also concluded that so long as the values of Pr and ( )c Prλ  are kept constant, the 

effect of increasing the values of ε  is to give an almost proportional increase or 

decrease in the skin friction and surface heat transfer responses.  It was also shown 

that for a high Prandtl number and some values of λ  andΩ , the skin friction 

becomes more excitable than the rate of heat transfer as can be seen from Figures 5.8 

to 5.11.  The gravitational modulation is more effective in investigating transition 

from conductive to a convective temperature field at higher frequencies.  It is hoped 

that the various induced flow behaviors predicted in this work will further serve as a 

well-behaved flow condition for practical microgravity processing system design and 

development. 
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6.2 Suggestions for future research 
 
 

There are quite a number of interesting possibilities to continue our present 

research in the continuous stretching surface with power law velocity and 

temperature distribution. One possibility is to consider a problem in other media and 

effect such as micropolar fluid, effect of viscous dissipation and unsteady flow. 

Mohammadein and Rama (2001) considered the problem for continuous stretching 

surface in micropolar fluid with self similar velocity and temperature distribution 

using Runge Kutta method. Therefore, our research can be continuing to use the 

Keller box method to deal with the problem with power law velocity and temperature 

distribution. 

 

On the other hand, Partha et al (2005) proposed the similarity solution for a 

mixed convection flow and heat transfer from an exponentially stretching surface 

subject to exponential velocity and temperature distribution with effect of viscous 

dissipation. The work of Partha et al (2005) can be extended by using the power law 

velocity and temperature distribution. Ishak et al (2007) studied the mixed 

convection on the stagnation point flow toward a vertical, continuously stretching 

sheet for steady flow. We can extend Ishak et al (2007) by study their problem in 

unsteady flow as well as the effect of g-jitter.  



71 

 

 
 
 

 
REFERENCES 

 
 
 
 

1. Mell, W.E, Mc Grattan, K.B., Nakamura,Y., and  Baum, H.R. Simulation of combustion 

systems with realistic g-jitter. Sixth International Microgravity Combustion Workshop. 

May 22-24, 2001. NASA Glenn Research Center, Cleveland, OH, CP-2001-210826, 

2001. 333-336. 

 

2. Yoshiaki, H., Keisuke, I., Toru, M., Satoshi, M., Shinichi, Y. and Kyoichi, K. 

Numerical analysis of crystal growth of an InAs-GaAs binary semiconductor under 

microgravity conditions. J. Phys. D: Appl. Phys., 2000. 33: 2508-2518. 

 

3. Wilcox, W.R., and  Regel, L.L. Microgravity effects on material processing: A Review. 

Conference Proceedings of EOROMAT 2001, Rimini, Italy. July 10-14, 2001. 

Associazione Italiana di Metallurgia, 1-200121 Milano, 2001. 1-9. 

 

4. Benjapiyaporn, C., Timchenko, V., Leornadi, E. and  Davis, G.D.V.Effects of space 

environment on flow and concentration during directional solidification. Int. J. Fluid 

Dynamics, 2000. 4: Article 3. 

 

5. Duval, W.M.B. and Tryggvason, B.V. Effects of G-Jitter on Interfacial Dynamics of 

Two Miscible Liquids: Application of MIM 37th Aerospace Sciences Meeting and 

Exhibit sponsored by the American Institute of Aeronautics and Astronautics, Reno 

Nevada. January 11-19, 1999. Lewis Field Cleveland, Ohio: National Aeronautics and 

Space Administration, Glenn Research Center. 1999. 

 

6. Boucher,R.L. Mechanically Induced g-jitter from Space Station Rotary Joints. 

Spacebound Objective ESPACE 2000. May 14-17, 2000. The Canadian Space Agency, 

Vancouver, British Colombia, 2000. 

 



72 

 

7. Nelson, E.S. An examination of anticipated g-jitter in Space Station and its effects on 

materials processes. NASA TM 103775, 1991. 

 

8. Monti, R., and Sovino, R. G-sensitivity of microgravity experimentation-fundamental of 

disturbance response. Microgravity and Science Technology, 1998. 11. 2: 53-58. 

 

9. Alexander J.I.D., Amirondine, S., Ouzzani, J., and Rosenberger, F. Analysis of the low 

gravity tolerance of Bridgman-Stockbarger crystal  growth II: Transient and periodic 

acceleration: J Cryst Growth, 1991. 113(1-2): 21-38. 

 

10. Kamotani,Y., Chao,L, A., Ostrach, S., and Zhang,H. Effect of g-jitter on free-surface 

motion in a cavity.  J Spacecraft and Rockets, 1995. 32, n.1: 177-183. 

 

11. Neumann, G. Three -Dimensional Numerical simulation of buoyancy-driven convection 

in vertical cylinders heated from below. J Fluid Mechanics, 1990. 214: 559-578. 

 

12. Schneider, S.,and Straub, J. Influence of the Prandtl number on laminar natural 

convection in a cylinder caused by g-jitter. Journal of Crystal Growth, 1989. 97. n.1: 

235-242. 

 

13. Pan, Bo, Shang, D-Y., Li, B.Q. and de Groh, H.C. Magnetic field effects on g-jitter 

induced flow and solute transport. Int. J. Heat Mass Transfer, 2002. 45: 125-144. 

 

14. Shu, Y., LI, B.Q., de Groh, H.C. Numerical study of g-jitter induced double diffusive 

convection in microgravity. Numerical Heat Transfer B: Application, 2001. 39: 245-

265. 

 

15. Ramos, J.I. Heat and mass transfer in annular jets: II. g-jitter. Appl. Mathematics and 

Computation, 2000. 110: 165-183. 

 

16. Li,B.Q. g-Jitter induced free convection in a transverse magnetic field. Int. of Heat and 

Mass Transfer, 1996. 39: 2853-2890. 

 



73 

 

17. Li,B.Q.  The effect of magnetic fields on low frequency oscillating natural convection. 

Int. J. Engrg. Sci.,1996. 34: 1369-1383. 

 

18. Alexander, J.I.D., Garandet J.P., Favier, J.J. and Lizee, A. g-Jitter effects on segregation 

during directional solidification of tin-bismuth in the MEPHISTO furnace facility. J. 

Crystal Growth, 1997. 178: 657-661. 

 

19. Jaluria, Y. HMT The Science and Applications of Heat and Mass Transfer. Report, 

Review and Computer Programs. Pergamon Press, New York. 1980. 

 

20. Rahman M.M. and Lampinen, M.J. Numerical study of natural convection from a 

vertical surface due to combined buoyancies. Numerical Heat Transfer, Part A ,1995. 

28: 409-429. 

 

21. Rees, D.A.S. and Pop, I. g-jitter induced free convection near a stagnation point. Heat 

and Mass Transfer,2001. 37: 403-408. 

 

22. Banks, W.H.H. Laminar free convection flow at a stagnation point of attachment on an 

isothermal surfaces. Journal of Engineering Mathematics, 1974. 8: 45-56. 

 

23. Bhattacharyya, S. and Gupta, A.S. MHD Flow and Heat Transfer at a General Three-

Dimensional Stagnation Point. International Journal of Non-Linear Mechanics, 

1998.33: 125-134. 

 

24. Langbein, D. Oscillatory convection in a spherical cavity due to g-jitter. ESA Mater. Sci. 

under Microgravity, International Organization, 1983: 359-363. 

 

25. Heiss, T., Schneider, S. and  Straub, J. G-jitter effects on natural convection in a 

cylinder: A three-dimensional numerical calculation. ESA, Proceedings of the Sixth 

European Symposium on Material Sciences under Microgravity Conditions. 1987. 

International Organization. 1987. 517-523. 

 



74 

 

26. Doi, T., Prakash, A., Azuma, H., Yoshihara, S. and Kawahara, H. Oscillatory 

convection induced by g-jitter in a horizontal liquid layer. AIAA, Aerospace Sciences 

Meeting and Exhibit, 33rd. Jan 9-12, 1995. Reno, NV, United States. 1995. 

 

27. Okano, Y., Umemura, S. and Dost, S. G-jitter effect on the flow in a three-dimensional 

rectangular cavity. Journal of Materials Processing and Manufacturing Science. 2001. 

10(1): 3-6. 

 

28. Gresho, P.M.,and Sani, R.L. The effects of gravity modulation on the stability of a 

heated fluid layer. J. Fluid Mech,1970. 40: 783-806. 

 

29. Biringen, S. and Peltier L.J. Computational study of 3-D Benard convection with 

gravitational modulation. Phys Fluids ,1990. A 2: 279-283. 

 

30. Biringen, S. and Danabasoglu, G. Computation of convective flow with gravity 

modulation in rectangular cavities. AIAA J. Thermophys heat transfer, 1990. 4 :357-365. 

 

31. Farooq, A., and Homsy, G.M. Streaming flows due to g-jitter induced natural 

convection.  J. Fluid Mech., 1994. 271 : 351-378. 

 

32. Schlichting, H. Boundary layer theory. 7th. ed. McGraw-Hill: New York. 1979. 

 

33. Lighthill, J. Acoustic streaming. J. Sound Vib. 1978. 61: 391-418. 

 

34. Alexander J.I.D. Low-Gravity Experiment sensitivity to residual acceleration: A review. 

Microgravity Science and Technology, 1990. III(2): 52-68. 

 

35. Farooq, A.,and Homsy, G.M. Linear and nonlinear dynamics of a differentially heated 

slot under gravity modulation. J Fluid Mech., 1996. 313 : 1-38. 

 

36. Amin, N.The effect of g-jitter on heat transfer. Proc. R. Soc. Lond., 1988. A 419: 151-

172. 

 



75 

 

37. Potter, J.M. and Riley, N. Free convection from a heated sphere at large Grashof 

number. J. Fluid Mech., 1980. 100: 769-783.  

 

38. Nazar, R., Amin, N. and Pop, I. Free convection boundary layer on an isothermal sphere 

in a micropolar fluid. International Communications in Heat and Mass Transfer, 2002. 

29(3): 377 - 386. 

 

39. Nazar, R., Amin, N. , Grosan, T. and Pop, I. Free convection boundary layer on a sphere 

with constant heat flux in a micropolar fluid.  International Communications in Heat 

and Mass Transfer, 2002. 29(8): 1129 - 1138. 

 

40. Beghein, C., Haghighata, F., Allard, F. Numerical study of double-diffusive natural 

convection in a square cavity. International Journal of Heat and Mass Transfer, 1992. 

35: 833-846. 

 

41. Mahajan, R.L. and Angirasa, D. Combined heat and mass transfer by natural convection 

with opposing buoyancies. Transactions of ASME Journal Heat Transfer, 1993. 115: 

606-612. 

 

42. Hussain, S., Hossain, M.A., Willson, M. Natural convection flow from a vertical 

permeable flat plate with variable surface temperature and species concentration. 

Engineering Computations, 2000. 17: 789-812. 

 

43. Keller, H.B. and Cebeci,T. Accurate numerical methods in boundary-layer flows.I. 

Two-dimensional laminar flows.\emph{ Proc. of the second Int. Conference on 

Numerical Methods in Fluid Dynamics}. Springer, New York, 1971. 92-100. 

 

44. Paterson, W.R and Hayhurst, A.N. Mass or heat transfer from a sphere to flowing fluid. 

Chemical Engineering Science, 2000. 55: 1925-1927. 

 

45. Elperin, T. and Fominykh, A. Effect of solute concentrate level on the rate of coupled 

mass and heat transfer during solid sphere dissolution in a uniform fluid flow. Chemical 

Engineering Science, 2001. 56: 3065-3074. 



76 

 

46. Sharidan, S., Amin, N. and Pop, I. g-Jitter fully developed heat and mass transfer by 

mixed convection flow in a vertical channel.  International Communications in Heat 

and Mass Transfer, 2005. 32: 657 - 665. 

 

47. Jue, T.C. and Ramaswamy, B. Numerical analysis of thermosolutal flows in a cavity 

with gravity modulation effects. Heat and Mass Transfer, 2002. 38(7-8): 665-672. 

 

48. Slouti, A., Takhar, H.S. and Nath, G. Unsteady free convection flow in the stagnation-

point  region of a three-dimensional body. International Journal Heat and Mass 

Transfer, 1998. 41: 3397-3408. 

 

49. Lok, Y.Y., Amin, N. and Pop, I. Unsteady boundary layer flow of a micropolar fluid 

near the rear stagnation point of a plane surface. Int. J. Thermal Sci., 2003. 42: 995-

1001. 

 

50. Rosenhead, D. Laminar Boundary Layers. Oxford University Press, London. 1962. 

 

51. Meksyen, D. New Methods in Laminar Boundary Layer Theory. Pergamon, New York. 

1961. 

 

52. Wang, C.Y. Axisymmetric Stagnation Point Flow on a Cylinder. Q. Appl. Math, 

1974.32: 207-213. 

 

53. Sano, S and Wakitani, S. Unsteady Free Convection Near a Forward Stagnation Point at 

Small Prandtl Number. Journal of the Physical Society of Japan, 1984. 53: 1277-1283. 

 

54. Amin N, and Riley, N. Mixed Convection at a Stagnation Point. Quarterly Journal 

Mechanics and Applied Mathematics, 1995. 48: 111-121. 

 

55. Amin N, and Riley N. Free Convection at an Axisymmetric Stagnation Point. Journal of 

Fluid Mechanics, 1996. 314: 105-112. 

 



77 

 

56. Seshadri, R., Sreeshylan, N. and Nath, G. Unsteady Mixed Convection Flow in the 

Stagnation Region of a Heated Vertical Plate Due to Impulsively Motion. International 

Journal of Heat and Mass Transfer, 2002. 45: 1345-1352. 

 

57. Nazar, R., Amin, N. and Pop, I. Unsteady Mixed Convection Near the Forward 

Stagnation Point of a Two-Dimensional Symmetric Body. International  

Communications in Heat and Mass Transfer, 2003. 30: 673-682. 

 

58. Rees, D.A.S. and Pop, I. The effect of g-jitter on a free convection near a stagnation 

point in a porous medium. Int. of Heat and Mass Transfer, 2001. 44: 877-883. 

 

59. Rees, D.A.S.and Pop, I.The effect of g-jitter on vertical free convection boundary-layer 

in a porous medium. Int. comm. Heat Mass Transfer, 2000. 27 : 415-424. 

 

60. Rees, D.A.S. and Pop, I. The effect of large-amplitude g-jitter vertical free convection 

boundary layer flow in porous media. International Journal of Heat and Mass Transfer, 

2003. 46: 1097-1102 

 

61. Unsworth, K. and Chiam, T.C. A numerical solution of the two-dimensional boundary 

layer equations for micropolar fluids. J. Appl. Math. Mech. (ZAMM), 1981. 61: 463-466. 

 

62. Gorla, R.S.R., Takhar, H.S., Slaouti, A. and Pop, I. and Kumari, M. Free convection in 

power-law fluids near a three-dimensional stagnation point. International Journal Heat 

and Fluid Flow, 1995. 16: 62-68. 

 

63. Peddieson, J. and  McNitt, R.P.  Boundary layer theory for a micropolar fluid. Recent 

Adv. in Engng. Sci., 1970. 5: 405-476. 

 

64. Guram, G.S. and  Smith, C. Stagnation flows of micropolar fluids with strong and weak 

interactions. Comp. Math.with Applics., 1980. 6: 213-233. 

 

65. Lok, Y.Y., Phang, P., Amin, N. and Pop, I. Unsteady flow of a micropolar fluid near the 

forward and rear stagnation points. Int. J. Engng. Sci., 2003. 41: 173-186. 



78 

 

66. Kumari, M. and Nath, G. Unsteady incompressible boundary layer flow of a micropolar 

fluid at a stagnation point. Int. J. Engng. Sci., 1984. 22: 755-768. 

 

67. Lok, Y.Y., Amin, N. and Pop, I. Steady two-dimensional asymmetric stagnation point 

flow of a micropolar fluid. J. Appl. Math. Mech. (ZAMM), 2003. 83: 594-602. 

 

68. Howarth, L. The boundary layer in three-dimensional flow. Part II. The flow near a 

stagnation point. Philos. Mag.,1951. 42: 1433-1440. 

 

69. Poots, G. Laminar free convection on the lower stagnation point on an isothermal 

curved surface. International Journal of Heat and Mass Transfer, 1964. 7: 863-873. 

 

70. Banks, W.H.H. Three-dimensional free convection flow near a two-dimensional surface. 

Journal of Engineering Mathematics, 1972. 6: 109-115. 

 

71. Ingham, D.B., Merkin, J.H. and Pop, I. Unsteady free convection of a stagnation point 

of attachment on an isothermal surface.  International Journal Mathematics and 

Mathematical Science, 1984. 7: 599-614. 

 

72. Keller, H. B. and Cebeci, T. (1972). Accurate Numerical Methods for Boundary Layer 

Flows, II: Two-Dimensional Turbulent Flows, AIAA Journal. 10: 1193-1199. 

 

73. Cebeci, T. and Bradshaw, P. (1977). Momentum Transfer in Boundary Layers. 

Washington: Hemisphere. 

 

74. Ali, M. E. (1994). Heat transfer characteristics of a continuous stretching surface 

W¨arme Stoff¨ubertragung. 29: 227–34. 

 

75. Cebeci, T. and Bradshaw, P. (1988). Physical and Computational Aspects of 

ConvectiveHeat Transfer. New York: Springer. 

 

76. Chen, C.H (1998). Laminar mixed convection adjacent to vertical, continuously 

stretching sheets. Heat and Mass Transfer. 33: 471–476. 



79 

 

77.  Bejan, A. (1984). Convection Heat Transfer. New York: John Wiley. 

 

78.  Ghoshdastidar, P.S. (2004). Heat Transfer. Oxford University Press. 

 

79. Ali, M E. (1995) On thermal boundary layer on a power-law stretched surface with 

suction or injection Int. J. Heat Mass Flow. 16: 280–90. 

 

80. Crane, L.J.: Flow past a stretching plane. J. Appl. Math. Phys. (ZAMP), vol. 21, p. 645 

(1970). 

 

81. Magyari, E., Keller, B.: Heat and mass transfer in the boundary layers on an  

exponentially stretching continuous surface. J. Phys. D: Appl. Phys., vol. 32, p. 577 

(1999).  

 

82. Magyari, E., Keller, B.: Exact solutions for self-similar boundary-layer flows induced 

by permeable stretching surfaces. Eur. J. Mech. B-Fluids, vol. 19, p. 109 (2000). 

 

83. Nazar, R., Amin, N., Pop, I.: Unsteady boundary layer flow due to a stretching surface in a 

rotating fluid. Mechanics Res. Comm., vol. 31, p. 121 (2004). 

 

84. Daskalakis, J.E.: Free convection effects in the boundary layer along a vertically stretching 

flat surface. Canad. J. Phys., vol. 70, p. 1253 (1993). 

 

85. Ali, M.E., Al-Yousef, F.: Laminar mixed convection from a continuously moving vertical 

surface with suction or injection. Heat Mass Transfer, vol. 33, p. 301(1998). 

 

86. Chen, C.-H.: Laminar mixed convection adjacent to vertical, continuously stretching 

sheets. Heat Mass Transfer, vol. 33, p. 471 (1998). 

 

87. Chen, C.-H.: Mixed convection cooling of heated continuously stretching surface. Heat 

Mass Transfer, vol. 36, p. 79 (2000). 

 

88. Lin, C.-R., Chen, C.-K.: Exact solution of heat transfer from a stretching surface with 



80 

 

variable heat flux. Heat Mass Transfer, vol. 33, p. 477 (1998). 

 

89. Chamkha, Ali J.: Hydromagnetic three-dimensional free convection on a vertical stretching 

surface with heat generation or absorption. Int. J. Heat Fluid Flow, vol.  20, p. 84 (1999). 

 

90. Kumari, M., Slaouti, A., Takhar, H.S., Nakamura, S., Nath, G.: Unsteady free convection 

flow over a continuous moving vertical surface. Acta Mechanica, vol. 116, p. 75 (1996). 

 

91. Antar, B.N., Nuotio-Antar, V.S.: Fundamentals of Low Gravity Fluid Dynamics and 

Heat Transfer. CRC Press, Boca Raton, FL, 1993. 

 

92. Hirata, K., Sasaki, T., Tanigawa, H.: Vibrational effects on convection in a square cavity 

at zero gravity. J. Fluid Mech., vol. 445, p. 327 (2001). 

 

93. Alexander, J.I.D.: Low gravity experiments sensitivity to residual acceleration: A 

review. Microgravity Sci. Techol., vol. III 2, p. 52(1990). 

 

94. Nelson, E.: An examination of anticipated g-jitter on space station and its effects on 

material processing. NASA Tech. Mem., No. 103775 (1991). 

 

95. Amin, N.: The effect of g-jitter on heat transfer. Proc. R. Soc. London, vol. A 419, p. 151 

(1988).   

 

96. Farooq, A., Homsy, G.M.: Streaming flows due to g-jitter induced natural convection. J. 

Fluid Mech., vol. 271, p. 351 (1994). 

 

97. Li, B.Q.: g-Jitter induced free convection in a transverse magnetic field. Int. J. Heat 

Mass Transfer, vol. 39, p. 2853 (1996). 

 

98. Li, B.Q.: The effect of magnetic fields on low frequency oscillating natural convection. 

Int. J. Engng. Sci., vol. 34, p. 1369 (1996). 

 

99. Pan, B., Li, B.Q.: Effect of magnetic fields on oscillatory mixed convection. Int. J. Heat 



81 

 

Mass Transfer, vol. 17, p. 2705 (1998). 

 

100. Rees, D.A.S., Pop, I.: The effect of g-jitter on vertical free convection boundary layer in 

a porous medium. Int. Comm. Heat Mass Transfer, vol. 27, p. 415 (2000). 

 

101. Rees, D.A.S., Pop, I.: The effect of g-jitter on free convection near a stagnation point in 

a porous medium. Int. J. Heat Mass Transfer, vol. 44, p. 877 (2001). 

 

102. Rees, D.A.S., Pop, I.: g-Jitter induced free convection near a stagnation point. Heat 

Mass Transfer, vol. 37, p. 403 (2001). 

 

103. Chamkha, Ali J.: Effects of heat generation on g-jitter induced natural convection flow 

in a channel with isothermal or isoflux walls. Heat Mass Transfer, vol. 39, p. 553 

(2003). 

 

104. Cebeci, T., Bradshaw, P.: Physical and Computational Aspects of Convective Heat 

Transfer. Springer, New York, 1984. 

 

105. Grubka, L.J., Bobba, K.M.: Heat transfer characteristics of a continuous, stretching 

surface with variable temperature. J. Heat Transfer, vol. 107, p. 248 (1985). 


	Final_Title Page.pdf
	Final_Acknowledgement.pdf
	Final_Contents.pdf
	Final_ListTables.pdf
	Final_ListFigures.pdf
	Final_ListSymbols.pdf
	Final_Cp1.pdf
	Final_Cp2.pdf
	Final_Cp3.pdf
	Final_Cp4.pdf
	Final_Cp5.pdf
	Final_Cp6.pdf
	Final_References.pdf

