On eigenfunctions of the integral operator with Neumann kernel

Cite as: AIP Conference Proceedings **1795**, 020018 (2017); https://doi.org/10.1063/1.4972162 Published Online: 10 January 2017

Mukhiddin I. Muminov

ARTICLES YOU MAY BE INTERESTED IN

The computation of zeros of Ahlfors map for multiply connected regions AIP Conference Proceedings **1795**, 020003 (2017); https://doi.org/10.1063/1.4972147

A short introduction to the Lindblad master equation AIP Advances 10, 025106 (2020); https://doi.org/10.1063/1.5115323

AIP Conference Proceedings 1795, 020018 (2017); https://doi.org/10.1063/1.4972162

On Eigenfunctions of The Integral Operator with Neumann Kernel

Mukhiddin I. Muminov^{1,a)}

¹ Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia

^{a)}Corresponding author: mukhiddin@utm.my

Abstract. In this paper we consider an integral operator N acting in the space $L_2[0, 2\pi]$ with a generalized Neumann kernel N(s, t). We find all eigenfunctions of N corresponding to the number ±1. We give some applications to solve Riemann-Hilbert boundary value problems, and construction of some conformal mappings.

INTRODUCTION

The Riemann-Hilbert (RH) problems on simply connected regions [6] and multiply connected regions [7] are reduced to Fredholm integral equations of the second kind with a generalized Neumann kernel. It has been shown that the problem of conformal mapping, Dirichlet problem, Neumann problem and mixed Dirichlet-Neumann problem can all be treated as RH problems and solved efficiently using integral equations with the generalized Neumann kernel [1, 3, 4, 5].

The index κ of the function A, contained in the generalized Neumann kernel plays an important role to solve RH problem. The RH problem is absolutely soluble if $\kappa \le 0$ and if $\kappa > 0$, RH problem is soluble if and only if the solution satisfies $2\kappa - 1$ conditions of solvability for any arbitrary contour (See Theorem on p. 222 of [2]).

In this paper we consider an integral operator **N** acting in the space $L_2[0, 2\pi]$ with a generalized Neumann kernel $N(s, t) = \operatorname{Re}(\frac{A(s)}{A(t)}, \frac{\eta'(t)}{\eta(t)-\eta(s)})$, where $L_2[0, 2\pi]$ is the Hilbert space of 2π periodic real functions, square-integrable over the interval $[0, 2\pi]$, A is the 2π -periodic complex function on $[0, 2\pi]$ that satisfies the Hölder condition and $\eta(t)$ is twice differentiable function with $\eta(t) \neq 0$. Note that if $\kappa \leq 0$ ($\kappa > 0$), then the number 1 (-1) is an eigenvalue with multiplicity $n(1) = \max\{0, -2k + 1\}$ ($n(-1) = \max\{0, 2k - 1\}$) [6]. In the paper we find all of eigenfunctions of **N** corresponding to the number ± 1 and using the properties of eigenfunctions we solve Riemann-Hilbert boundary value problems, and give a method of construction of some class of conformal mappings.

STATEMENT OF THE MAIN RESULT

Let Ω be a bounded simply connected region in the complex plane \mathbb{C} whose boundary Γ is a smooth Jordan curve and parameterized by a 2π -periodic complex function $\eta(\cdot)$ that is twice continuously differentiable on \mathbb{R} with $\dot{\eta}(s) \neq 0$ for all $s \in [0, 2\pi]$. Let γ be a Hölder continuous real function on Γ and let A be a complex function that satisfies on Γ the Hölder condition and $A(s) := A(\eta(s))$ be 2π -periodic on $[0, 2\pi]$ with $A \neq 0$. We suppose that the curve Γ has counterclockwise orientation.

Riemann-Hilbert problems: Interior problem: Determine a function f analytic in Ω , continuous on the closure $\overline{\Omega}$, such that the boundary values f^+ satisfy on Γ

$$\operatorname{Re}[Af^+] = \gamma. \tag{1}$$

2nd International Conference and Workshop on Mathematical Analysis 2016 (ICWOMA2016) AIP Conf. Proc. 1795, 020018-1–020018-7; doi: 10.1063/1.4972162 Published by AIP Publishing. 978-0-7354-1461-7/\$30.00 Exterior problem: Determine a function f analytic in $\mathbb{C} \setminus \Omega$, continuous on the closure $\overline{\mathbb{C} \setminus \Omega}$ with $f(\infty) = 0$, such that the boundary values f^- satisfy on Γ

$$\operatorname{Re}[Af^{-}] = \gamma$$

Define the real kernels $M(\cdot, \cdot)$ and $N(\cdot, \cdot)$ as real and imaginary parts [6]

$$M(s,t) = \operatorname{Re}\left[\frac{1}{\pi}\frac{A(s)}{A(t)}\frac{\dot{\eta}(t)}{\eta(t)-\eta(s)}\right], \qquad N(s,t) = \operatorname{Im}\left[\frac{1}{\pi}\frac{A(s)}{A(t)}\frac{\dot{\eta}(t)}{\eta(t)-\eta(s)}\right].$$

The function $N(\cdot, \cdot)$ is called the generalized Neumann kernel formed with A and η [6]. For A = 1 it reduces to the well-known Neumann kernel. Note that the function $N(\cdot, \cdot)$ is continuous in $[0, 2\pi] \times [0, 2\pi]$.

The following lemma was proven in [8] (See Theorem 3.1).

Lemma 1 (a) The kernel $N(\cdot, \cdot)$ is continuous with

$$N(t,t) = \frac{1}{\pi} \operatorname{Im} \left[\frac{1}{2} \frac{\ddot{\eta}(t)}{\dot{\eta}(t)} - \frac{\dot{A}(t)}{A(t)} \right].$$

(*b*) *When* $s, t \in [0, 2\pi]$

$$M(s,t) = -\frac{1}{\pi} \cot \frac{s-t}{2} + M_1(s,t),$$

with a continuous kernel M_1 which take on the diagonal the values

$$M_1(t,t) = \frac{1}{\pi} \left(\frac{1}{2} \operatorname{Re} \left[\frac{\ddot{\eta}(t)}{\dot{\eta}(t)} \right] - \operatorname{Re} \left[\frac{\dot{A}(t)}{A(t)} \right] \right).$$

Define the Fredholm integral operator **N** with kernel $N(\cdot, \cdot)$ as [6]

$$(\mathbf{N}\gamma)(s) = \int_{0}^{2\pi} N(s,t)\gamma(t)dt,$$

and the singular operator **M** with kernel $M(\cdot, \cdot)$ as

$$(\mathbf{M}\boldsymbol{\gamma})(s) = \mathbf{p.v.} \int_{0}^{2\pi} M(s,t)\boldsymbol{\gamma}(t)dt,$$

where p.v. \int denotes a Cauchy principal value integral.

The index of the function A is defined as the winding number of A with respect to 0

$$\kappa = \operatorname{ind}(A) = \frac{1}{2\pi} \operatorname{arg} A,$$

i.e. the change of the argument of A over one period divided by 2π . If $\kappa \le 0$ ($\kappa > 0$), then the number 1 (-1) is an eigenvalue of N. Note that the multiplicities n(1) and n(-1) of the eigenvalues, respectively, 1 and -1 of N are connected with ind(A) as [6]

$$n(1) = \max\{0, -2\kappa + 1\}, \quad n(-1) = \max\{0, 2\kappa - 1\}.$$
(2)

Let $L_2[0, 2\pi]$ be the Hilbert space of 2π periodic real functions, square-integrable over the interval $[0, 2\pi]$. Furthermore, we denote by $\mathcal{H}_{\pm} \subset L_2[0, 2\pi]$ a subspace of the eigenfunctions of **N** corresponding to the eigenvalue ± 1 . Note that if $\pm \kappa > 0$, then dimensional of \mathcal{H}_{\pm} is $n(\pm 1) > 0$.

With Hölder continuous real function γ on Γ , we define the function

$$\Phi(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{\gamma}{A} \frac{d\zeta}{\zeta - z}, \quad z \in \Omega.$$
(3)

The main result is the following.

Theorem 1 Let the number $\pm \kappa > 0$ and $\gamma \in \mathcal{H}_{\pm}$. Then

$$A\Phi^{\pm}(z) = \pm \gamma, \quad z \in \Gamma.$$
(4)

Moreover, in partially $\Phi^+(\Phi^-)$ is a solution of the interior (exterior) RH problem (1), respectively.

Further we consider a special case of A, i.e. $A(s) = [\eta(s)]^n$, where n is integer number. In this case ind(A) = n and N(s,t) has the form

$$N(s,t) = \frac{1}{\pi} \operatorname{Im}\left[\frac{[\eta(s)]^n}{[\eta(t)]^n} \frac{\dot{\eta}(t)}{\eta(t) - \eta(s)}\right].$$
(5)

Theorem 2 (*i*) Let $A(s) = [\eta(s)]^n$ and *n* be positive integer number. Then the eigenfunctions of the integral operator **N** corresponding to -1 are

1,
$$\operatorname{Re}[\eta(s)]^k$$
, $\operatorname{Im}[\eta(s)]^k$, $k = 1, \dots, n-1$. (6)

(*ii*) Let $A(s) = [\eta(s)]^n$ and n be non-positive integer number. Then the eigenfunctions of the integral operator N corresponding to 1 are

1,
$$\operatorname{Re}[\eta(s)]^{-k}$$
, $\operatorname{Im}[\eta(s)]^{-k}$, $k = 1, \dots, -n$. (7)

PROOF OF THE MAIN RESULTS

For a Hölder continuous function h on Γ , the function Ψ defined by

$$\Psi(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{h(w)}{w - z} dw.$$

The boundary values Ψ^+ and Ψ^- of Ψ^{\pm} , respectively, from inside and from outside can be calculated by Sokhotcky formulas

$$\Psi^{\pm}(\zeta) = \pm \frac{1}{2}h(\zeta) + \text{p.v.} \frac{1}{2\pi i} \int_{\Gamma} \frac{h(w)}{w - \zeta} dw$$

for $\zeta \in \Gamma$. Both boundary functions $\Psi^{\pm}(\cdot)$ are Holder continuous on Γ .

We define the function

$$\Phi(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{\gamma + i\mu}{A} \frac{d\zeta}{\zeta - z}, \quad z \in \Omega,$$
(8)

where γ and μ are Hölder continuous real functions on Γ .

Application of Sokhotcky formula and straightforward calculations give the following lemma [6]

Lemma 2 The boundary values of the function Φ defined in (8) can be represented by

$$2\operatorname{Re}[A(s)\Phi^{\pm}(\eta(s))] = \pm \gamma + \mathbf{N}\gamma + \mathbf{M}\mu, \tag{9}$$

$$2\mathrm{Im}[A(s)\Phi^{\pm}(\eta(s))] = \pm \mu + \mathbf{N}\mu - \mathbf{M}\gamma.$$
(10)

Using the properties of Cauchy's integral formula and Sokhotcky formula was proven the following lemma in [6]

Lemma 3 The operators N, M and identity operator I are connected by the following relation:

$$\mathbf{I} = \mathbf{N}^2 - \mathbf{M}^2,$$

$$\mathbf{NM} + \mathbf{MN} = 0.$$

Proof of Theorem 1. Let $\kappa > 0$. Then n(-1) > 0 and n(1) = 0. Therefore by (2) $\mathcal{H}_{-} \neq \emptyset$ and the equation

 $(\mathbf{I} - \mathbf{N})f = 0 \tag{11}$

has only trivial solution. Let $\gamma \in \mathcal{H}_{-}$. Then

$$(\mathbf{I} + \mathbf{N})\boldsymbol{\gamma} = 0.$$

Multiplying the last equality by M taking into account Lemma 3 we have

$$\mathbf{M}\boldsymbol{\gamma} - \mathbf{N}\mathbf{M}\boldsymbol{\gamma} = 0.$$

Since the equation (11) has only trivial solution, last equation gives $M\gamma = 0$. Setting $\mu = 0$ from (9, 10) we have

$$\operatorname{Re}[A(s)\Phi^{-}(\eta(s))] = -\gamma, \qquad \operatorname{Im}[A(s)\Phi^{-}(\eta(s))] = 0.$$

Hence we have $A\Phi^{-}(z) = -\gamma$.

The proof of the equation

$$A\Phi^+(z) = \gamma$$

can be proven similarly.

Theorem 1 is proven.

Proof of Theorem 2. Let f(w) be a Hölder continuous function on Γ and $f(s) := f(\eta(s))$.

(i) Let *n* be a positive integer number. Then -1 is an eigenvalue of **N** and its multiplicity is equal to n(-1) = 2n - 1. We consider a function

$$\mathbf{N}f - i\mathbf{M}f = \frac{1}{i}[\mathbf{M} + i\mathbf{N}]f = p.v.\frac{1}{\pi i}\int_{0}^{2\pi} \frac{[\eta(s)]^n}{[\eta(t)]^n} \frac{f(t)\dot{\eta}(t)}{\eta(t) - \eta(s)}$$
(12)

and present as

$$\mathbf{N}f - i\mathbf{M}f = p.v.\frac{1}{\pi i} \int_{0}^{2\pi} \frac{f(t)\dot{\eta}(t)}{\eta(t) - \eta(s)} - p.v.\frac{1}{\pi i} \int_{0}^{2\pi} \left(1 - \left[\frac{\eta(s)}{\eta(t)}\right]^n\right) \frac{f(t)}{1 - \frac{\eta(s)}{\eta(t)}} \frac{\dot{\eta}(t)dt}{\eta(t)}$$

or

$$\mathbf{N}f - i\mathbf{M}f = \mathbf{p}.\mathbf{v}.\frac{1}{\pi i} \int_{0}^{2\pi} \frac{f(t)\dot{\eta}(t)}{\eta(t) - \eta(s)} - \frac{1}{\pi i} \sum_{r=0}^{n-1} \int_{0}^{2\pi} \left[\frac{\eta(s)}{\eta(t)}\right]^{r} \frac{f(t)\dot{\eta}(t)dt}{\eta(t)}.$$
(13)

Changing of variables in the integrals under summation in (13) we have

$$\mathbf{N}f - i\mathbf{M}f = \mathbf{p.v.} \frac{1}{\pi i} \int_{0}^{2\pi} \frac{f(w)dw}{w - \eta(s)} - \frac{1}{\pi i} \sum_{r=0}^{n-1} [\eta(s)]^r \int_{\Gamma} \frac{f(w)dw}{w^{r+1}}.$$
(14)

We set

$$f_k(s) = [\eta(s)]^k, \qquad k = 0, 1, \cdots, n-1.$$

Note that the first integral in (14) is a Cauchy principal value integral. Since $f_k(w) = w^k$ is analytic in Ω , by Sokhotcky formula we get

$$p.v.\frac{1}{\pi i} \int_{0}^{2\pi} \frac{f_k(t)\dot{\eta}(t)}{\eta(t) - \eta(s)} = [\eta(s)]^k.$$
(15)

Taking into account $[\eta(s)]^k = w^k$, $w \in \Gamma$ by Cauchy integral we have

$$\frac{1}{\pi i} \sum_{r=0}^{n-1} [\eta(s)]^r \int_{\Gamma} \frac{f_k(w) \, dw}{w^{r+1}} = 2[\eta(s)]^k.$$
(16)

Hence, from (14) as $f = f_k$ we get

$$\mathbf{N}f_k - i\mathbf{M}f_k = -f_k, \qquad k = 0, 1, \cdots, n-1.$$
 (17)

Now multiplying (17) to $\mathbf{N} - i\mathbf{M}$ and using Lemma 3 we have

$$i[\mathbf{NM} + \mathbf{MN}]f_k + [\mathbf{N}^2 - \mathbf{M}^2]f_k = -[\mathbf{N} + i\mathbf{M}]f_k = f_k - i\mathbf{M}f_k$$

or

$$f_k = f_k - i\mathbf{M}f_k.$$

Hence $\mathbf{M}f_k = 0$. Then (17) equals

$$\mathbf{N}\operatorname{Re} f_k = -\operatorname{Re} f_k, \quad \mathbf{N}\operatorname{Im} f_k = -\operatorname{Im} f_k \qquad k = 0, 1, \cdots, n-1.$$
(18)

So, the operator N has 2n - 1 linearly indipendent eigenfunctions.

(ii) Let -n be a nonnegative integer number. Then by (2) the number 1 is an eigenvalue with multiplicity n(1) = 2n + 1.

The case n = 0. In this case

$$\mathbf{N}f - i\mathbf{M}f = \mathbf{p.v.}\frac{1}{\pi i}\int_{0}^{2\pi} \frac{f(t)\dot{\eta}(t)}{\eta(t) - \eta(s)}dt$$

We set $g_0(t) = 1$. One can check that

$$\mathbf{N}g_0 - i\mathbf{M}g_0 = g_0. \tag{19}$$

The case -n > 0. We represent the equation (12) as

$$\mathbf{N}f - i\mathbf{M}f = -\mathbf{p.v.} \frac{1}{\pi i} \int_{0}^{2\pi} \frac{f(t)\dot{\eta}(t)}{\eta(t) - \eta(s)} + \mathbf{p.v.} \frac{1}{\pi i} \int_{0}^{2\pi} \left(1 - \left[\frac{\eta(t)}{\eta(s)}\right]^{-n}\right) \frac{f(t)}{1 - \frac{\eta(t)}{\eta(s)}} \frac{\dot{\eta}(t)dt}{\eta(s)}$$

or

$$\mathbf{N}f - i\mathbf{M}f = -\mathbf{p.v.} \frac{1}{\pi i} \int_{0}^{2\pi} \frac{f(t)\dot{\eta}(t)}{\eta(t) - \eta(s)} + \frac{1}{\pi i} \sum_{r=0}^{-n} \int_{0}^{2\pi} \left[\frac{\eta(t)}{\eta(s)}\right]^{r} \frac{f(t)\dot{\eta}(t)dt}{\eta(s)}.$$
 (20)

Changing of variables in the integrals under summation in (20) we have

$$\mathbf{N}f - i\mathbf{M}f = -\mathbf{p.v.} \frac{1}{\pi i} \int_{0}^{2\pi} \frac{f(t)\dot{\eta}(t)}{\eta(t) - \eta(s)} + \frac{1}{\pi i} \sum_{r=0}^{-n} \frac{1}{[\eta(s)]^{r+1}} \int_{\Gamma} w^{r} f(w) \, dw.$$

We set

$$g_k(s) = \frac{1}{[\eta(s)]^{k+1}}, \qquad k = 0, 1, \cdots, -n-1.$$

Then

$$(\mathbf{N} - i\mathbf{M})g_k = g_k. \tag{21}$$

Using the Lemma 3 and analyzing as above we can get

$$\mathbf{N}\operatorname{Re} g_k = \operatorname{Re} g_k, \quad \mathbf{N}\operatorname{Im} g_k = \operatorname{Im} g_k, \quad k = 0, 1, \cdots, -n-1.$$

Theorem 2 is proven.

APPLICATIONS

1. The exterior Riemann-Hilbert problem. Let $A(s) = e^{ins}$ and C is the circle of the unit disc D. Then by Theorem 2 the number -1 is eigenvalue of the corresponding integral operator N and corresponding eigenfunctions are

$$1, \cos ks, \sin ks, k = 1, \dots, n-1.$$

Hence \mathcal{H}_{-} is a linear space of the functions

$$1, \cos ks, \sin ks, k = 1, \dots, n-1.$$

Let the functions $\gamma(\cdot)$ and $\mu(\cdot)$ have the form

$$\gamma(t) = \sum_{k=0}^{n-1} a_k \cos kt + \sum_{k=1}^{n-1} b_k \cos kt, \quad \mu(t) = \sum_{k=0}^{n-1} c_k \cos kt + \sum_{k=1}^{n-1} d_k \cos kt,$$

 $a_k, b_k, c_k, d_k, k = 1, \dots, n-1$ are any real numbers. Then $\gamma, \mu \in \mathcal{H}_-$.

Let

$$\Psi(z) = \frac{1}{2\pi i} \int_C \frac{\gamma + i\mu}{A} \frac{d\zeta}{\zeta - z}, \qquad z \in \mathbb{C} \setminus D.$$
(22)

Then by the Theorem 1

$$A\psi^{-}(e^{ins}) = \gamma(s) + i\mu(s).$$

It shows that the function F(z) is a solution of the exterior Riemann-Hilbert problem.

2. Construction conformal mappings.

To construct conformal mappings we need the following theorem which was proven in [9], p.37.

Theorem 3 Suppose G and R are bounded simply connected domains enclosed by piecewise smooth, analytic closed curves Γ and L, respectively, and w = f(z) is a function satisfying satisfying the following conditions:

1) w = f(z) is analytic inside G and continuous on $\overline{G} = G \cup \Gamma$,

2) w = f(z) maps bijectively onto L.

Then w = f(z) is univalent in G and conformally maps G onto R.

Let $A(s) = e^{-ins}$, n > 0. Then by Theorem 2 the number 1 is eigenvalue of the corresponding integral operator N with multilicity 2n + 1 and corresponding eigenfunctions are

$$1, \cos ks, \sin ks, k = 1, \dots, n.$$

Hence \mathcal{H}_+ is a linear space of these eigenfunctions.

Let Ω be a simply connected domain enclosed by curve Γ which has the equation

$$\gamma(t) = \frac{\alpha(t) + i\beta(t)}{A(t)},$$

where $\alpha, \beta \in \mathcal{H}_+$ such that $\dot{\gamma}(t) \neq 0$ for all $t \in [0, 2\pi]$. We set

$$F(z) = \frac{1}{2\pi i} \int_C \frac{\alpha + i\beta}{A} \frac{d\zeta}{\zeta - z}, \qquad z \in D.$$

The function $F(\cdot)$ is analytic in the disc D. By Theorem 1

$$F(z)\Big|_{z\in C} = \frac{\alpha + i\beta}{A}.$$

Then the image of $F(\cdot)$ on D is Ω . It follows from here that $F(\cdot)$ is continuous on \overline{D} and is bijective on C. Therefore by Theorem 3 $F : D \to \Omega$ is the conformal mapping on D.

For example, if we choose $A(s) = e^{-is}$ and $\alpha(s) = 1 + a \cos s$, $\beta(s) = -ib \sin s$, a, b > 0. Then

 $\dot{\gamma}(t) = e^{is}[i(1 + a\cos s + b\sin s) - a\sin s + b\cos s] \neq 0$

for all a, b > 0 and $t \in [0, 2\pi]$. Hence the corresponding function F maps C bijectively onto Γ parameterized by the function γ . Hence the function F is conformal mapping from the disc to the simply connected region Ω with boundary Γ .

ACKNOWLEDGMENTS

This work was supported by the Malaysian Ministry of Education (MOE) through the Research Management Center (RMC), Universiti Teknologi Malaysia (Vote: QJ130000.2726.01K82).

REFERENCES

- Al-Hatemi, S.A.A., Murid, A.H.M., Nasser, M.M.S.: A boundary integral equation with the generalized Neumann kernel for a mixed boundary value problem in unbounded multiply connected regions. Boundary Value Problem 2013 54, (1) 1–17 (2013)
- [2] Gakhov, F. D.: Boundary value problems. Pergamon, Oxford (1966)
- [3] Nasser, M.M.S.: Numerical conformal mapping via a boundary integral equation with the generalized Neumann kernel. SIAM Journal on Scietific Computing 31, 1695–1715 (2009)
- [4] Nasser, M.M.S., Murid, A.H.M., Al-Hatemi, S.A.A.: A boundary integral equation with the generalized Neumann kernel for a certain class of mixed boundary value problem. Journal of Applied Mathematics Article ID 254123, 17 pages (2012)
- [5] Nasser, M.M.S., Murid, A.H.M., Ismail, M., Alejaili, E.M.A.: Boundary integral equation with the generalized Neumann Kernel for Laplace's equation in multiply connected regions. Applied Mathematics and Computation 217, 4710–4727 (2011)
- [6] Wegmann, R., Murid, A.H.M., Nasser, M.M.S.: The Riemann- Hilbert problem and the generalized Neumann kernel. Journal of Computational and Applied Mathematics 182, 388–415 (2005)
- [7] Wegmann, R., Nasser, M.M.S.: The Riemann-Hilbert problem and the generalized Neumann kernel on multiply connected regions. Journal of Computational and Applied Mathematics 214, 36–57 (2008)
- [8] Murid, A.H.M., Nasser, M.M.S.: Eigenproblem of the generalized Neumann kernel. Bulletin of the Malaysian Mathematical Sciences Society 26, (2) 1333 (2003)
- [9] Wen, Guo-Chun, Conformal mappings and boundary value problems, AMS, 1992.