On eigenfunctions of the integral operator with Neumann kernel

Cite as: AIP Conference Proceedings 1795, 020018 (2017); https://doi.org/10.1063/1.4972162 Published Online: 10 January 2017

Mukhiddin I. Muminov

ARTICLES YOU MAY BE INTERESTED IN

The computation of zeros of Ahlfors map for multiply connected regions
AIP Conference Proceedings 1795, 020003 (2017); https://doi.org/10.1063/1.4972147
A short introduction to the Lindblad master equation
AIP Advances 10, 025106 (2020); https://doi.org/10.1063/1.5115323

Meet the Lock-in Amplifiers that measure microwaves.

Zurich Instruments

Find out more

On Eigenfunctions of The Integral Operator with Neumann Kernel

Mukhiddin I. Muminov ${ }^{1, \mathrm{a})}$
${ }^{1}$ Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
${ }^{\text {a) }}$ Corresponding author: mukhiddin@utm.my

Abstract

In this paper we consider an integral operator \mathbf{N} acting in the space $L_{2}[0,2 \pi]$ with a generalized Neumann kernel $N(s, t)$. We find all eigenfunctions of \mathbf{N} corresponding to the number ± 1. We give some applications to solve Riemann-Hilbert boundary value problems, and construction of some conformal mappings.

INTRODUCTION

The Riemann-Hilbert (RH) problems on simply connected regions [6] and multiply connected regions [7] are reduced to Fredholm integral equations of the second kind with a generalized Neumann kernel. It has been shown that the problem of conformal mapping, Dirichlet problem, Neumann problem and mixed Dirichlet-Neumann problem can all be treated as RH problems and solved efficiently using integral equations with the generalized Neumann kernel [1, 3, 4, 5].

The index κ of the function A, contained in the generalized Neumann kernel plays an important role to solve RH problem. The RH problem is absolutely soluble if $\kappa \leq 0$ and if $\kappa>0$, RH problem is soluble if and only if the solution satisfies $2 \kappa-1$ conditions of solvability for any arbitrary contour (See Theorem on p. 222 of [2]).

In this paper we consider an integral operator \mathbf{N} acting in the space $L_{2}[0,2 \pi]$ with a generalized Neumann kernel $N(s, t)=\operatorname{Re}\left(\frac{A(s)}{A(t)} \frac{\eta^{\prime}(t)}{\eta(t)-\eta(s)}\right)$, where $L_{2}[0,2 \pi]$ is the Hilbert space of 2π periodic real functions, square-integrable over the interval [$0,2 \pi$], A is the 2π-periodic complex function on $[0,2 \pi]$ that satisfies the Hölder condition and $\eta(t)$ is twice differentiable function with $\eta(t) \neq 0$. Note that if $\kappa \leq 0(\kappa>0)$, then the number $1(-1)$ is an eigenvalue with multiplicity $n(1)=\max \{0,-2 k+1\}(n(-1)=\max \{0,2 k-1\})$ [6]. In the paper we find all of eigenfunctions of \mathbf{N} corresponding to the number ± 1 and using the properties of eigenfunctions we solve Riemann-Hilbert boundary value problems, and give a method of construction of some class of conformal mappings.

STATEMENT OF THE MAIN RESULT

Let Ω be a bounded simply connected region in the complex plane \mathbb{C} whose boundary Γ is a smooth Jordan curve and parameterized by a 2π-periodic complex function $\eta(\cdot)$ that is twice continuously differentiable on \mathbb{R} with $\dot{\eta}(s) \neq 0$ for all $s \in[0,2 \pi]$. Let γ be a Hölder continuous real function on Γ and let A be a complex function that satisfies on Γ the Hölder condition and $A(s):=A(\eta(s))$ be 2π-periodic on $[0,2 \pi]$ with $A \neq 0$. We suppose that the curve Γ has counterclockwise orientation.

Riemann-Hilbert problems: Interior problem: Determine a function f analytic in Ω, continuous on the closure $\bar{\Omega}$, such that the boundary values f^{+}satisfy on Γ

$$
\begin{equation*}
\operatorname{Re}\left[A f^{+}\right]=\gamma \tag{1}
\end{equation*}
$$

Exterior problem: Determine a function f analytic in $\mathbb{C} \backslash \Omega$, continuous on the closure $\overline{\mathbb{C} \backslash \Omega}$ with $f(\infty)=0$, such that the boundary values f^{-}satisfy on Γ

$$
\operatorname{Re}\left[A f^{-}\right]=\gamma
$$

Define the real kernels $M(\cdot, \cdot)$ and $N(\cdot, \cdot)$ as real and imaginary parts [6]

$$
M(s, t)=\operatorname{Re}\left[\frac{1}{\pi} \frac{A(s)}{A(t)} \frac{\dot{\eta}(t)}{\eta(t)-\eta(s)}\right], \quad N(s, t)=\operatorname{Im}\left[\frac{1}{\pi} \frac{A(s)}{A(t)} \frac{\dot{\eta}(t)}{\eta(t)-\eta(s)}\right] .
$$

The function $N(\cdot, \cdot)$ is called the generalized Neumann kernel formed with A and $\eta[6]$. For $A=1$ it reduces to the well-known Neumann kernel. Note that the function $N(\cdot, \cdot)$ is continuous in $[0,2 \pi] \times[0,2 \pi]$.

The following lemma was proven in [8] (See Theorem 3.1).
Lemma 1 (a) The kernel $N(\cdot, \cdot)$ is continuous with

$$
N(t, t)=\frac{1}{\pi} \operatorname{Im}\left[\frac{1}{2} \frac{\ddot{\eta}(t)}{\dot{\eta}(t)}-\frac{\dot{A}(t)}{A(t)}\right]
$$

(b) When $s, t \in[0,2 \pi]$

$$
M(s, t)=-\frac{1}{\pi} \cot \frac{s-t}{2}+M_{1}(s, t)
$$

with a continuous kernel M_{1} which take on the diagonal the values

$$
M_{1}(t, t)=\frac{1}{\pi}\left(\frac{1}{2} \operatorname{Re}\left[\frac{\ddot{\eta}(t)}{\dot{\eta}(t)}\right]-\operatorname{Re}\left[\frac{\dot{A}(t)}{A(t)}\right]\right)
$$

Define the Fredholm integral operator \mathbf{N} with kernel $N(\cdot, \cdot)$ as [6]

$$
(\mathbf{N} \gamma)(s)=\int_{0}^{2 \pi} N(s, t) \gamma(t) d t
$$

and the singular operator \mathbf{M} with $\operatorname{kernel} M(\cdot, \cdot)$ as

$$
(\mathbf{M} \gamma)(s)=\text { p.v. } \int_{0}^{2 \pi} M(s, t) \gamma(t) d t
$$

where p.v. \int denotes a Cauchy principal value integral.
The index of the function A is defined as the winding number of A with respect to 0

$$
\kappa=\operatorname{ind}(A)=\frac{1}{2 \pi} \arg A
$$

i.e. the change of the argument of A over one period divided by 2π. If $\kappa \leq 0(\kappa>0)$, then the number $1(-1)$ is an eigenvalue of N. Note that the multiplicities $n(1)$ and $n(-1)$ of the eigenvalues, respectively, 1 and -1 of N are connected with $\operatorname{ind}(A)$ as [6]

$$
\begin{equation*}
n(1)=\max \{0,-2 \kappa+1\}, \quad n(-1)=\max \{0,2 \kappa-1\} . \tag{2}
\end{equation*}
$$

Let $L_{2}[0,2 \pi]$ be the Hilbert space of 2π periodic real functions, square-integrable over the interval $[0,2 \pi]$. Furthermore, we denote by $\mathcal{H}_{ \pm} \subset L_{2}[0,2 \pi]$ a subspace of the eigenfunctions of \mathbf{N} corresponding to the eigenvalue ± 1. Note that if $\pm \kappa>0$, then dimensional of $\mathcal{H}_{ \pm}$is $n(\pm 1)>0$.

With Hölder continuous real function γ on Γ, we define the function

$$
\begin{equation*}
\Phi(z)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{\gamma}{A} \frac{d \zeta}{\zeta-z}, \quad z \in \Omega \tag{3}
\end{equation*}
$$

The main result is the following.

Theorem 1 Let the number $\pm \kappa>0$ and $\gamma \in \mathcal{H}_{ \pm}$. Then

$$
\begin{equation*}
A \Phi^{ \pm}(z)= \pm \gamma, \quad z \in \Gamma \tag{4}
\end{equation*}
$$

Moreover, in partially $\Phi^{+}\left(\Phi^{-}\right)$is a solution of the interior (exterior) RH problem (1), respectively.
Further we consider a special case of A, i.e. $A(s)=[\eta(s)]^{n}$, where n is integer number. In this case $\operatorname{ind}(A)=n$ and $N(s, t)$ has the form

$$
\begin{equation*}
N(s, t)=\frac{1}{\pi} \operatorname{Im}\left[\frac{[\eta(s)]^{n}}{[\eta(t)]^{n}} \frac{\dot{\eta}(t)}{\eta(t)-\eta(s)}\right] . \tag{5}
\end{equation*}
$$

Theorem 2 (i) Let $A(s)=[\eta(s)]^{n}$ and n be positive integer number. Then the eigenfunctions of the integral operator \mathbf{N} corresponding to -1 are

$$
\begin{equation*}
1, \quad \operatorname{Re}[\eta(s)]^{k}, \quad \operatorname{Im}[\eta(s)]^{k}, \quad k=1, \ldots, n-1 . \tag{6}
\end{equation*}
$$

(ii) Let $A(s)=[\eta(s)]^{n}$ and n be non-positive integer number. Then the eigenfunctions of the integral operator \mathbf{N} corresponding to 1 are

$$
\begin{equation*}
1, \quad \operatorname{Re}[\eta(s)]^{-k}, \quad \operatorname{Im}[\eta(s)]^{-k}, \quad k=1, \ldots,-n \tag{7}
\end{equation*}
$$

PROOF OF THE MAIN RESULTS

For a Hölder continuous function h on Γ, the function Ψ defined by

$$
\Psi(z)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{h(w)}{w-z} d w .
$$

The boundary values Ψ^{+}and Ψ^{-}of $\Psi^{ \pm}$, respectively, from inside and from outside can be calculated by Sokhotcky formulas

$$
\Psi^{ \pm}(\zeta)= \pm \frac{1}{2} h(\zeta)+\text { p.v. } \frac{1}{2 \pi i} \int_{\Gamma} \frac{h(w)}{w-\zeta} d w
$$

for $\zeta \in \Gamma$. Both boundary functions $\Psi^{ \pm}(\cdot)$ are Holder continuous on Γ.
We define the function

$$
\begin{equation*}
\Phi(z)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{\gamma+i \mu}{A} \frac{d \zeta}{\zeta-z}, \quad z \in \Omega \tag{8}
\end{equation*}
$$

where γ and μ are Hölder continuous real functions on Γ.
Application of Sokhotcky formula and straightforward calculations give the following lemma [6]
Lemma 2 The boundary values of the function Φ defined in (8) can be represented by

$$
\begin{align*}
& 2 \operatorname{Re}\left[A(s) \Phi^{ \pm}(\eta(s))\right]= \pm \gamma+\mathbf{N} \gamma+\mathbf{M} \mu \tag{9}\\
& 2 \operatorname{Im}\left[A(s) \Phi^{ \pm}(\eta(s))\right]= \pm \mu+\mathbf{N} \mu-\mathbf{M} \gamma . \tag{10}
\end{align*}
$$

Using the properties of Cauchy's integral formula and Sokhotcky formula was proven the following lemma in [6]

Lemma 3 The operators \mathbf{N}, \mathbf{M} and identity operator \mathbf{I} are connected by the following relation:

$$
\begin{gathered}
\mathbf{I}=\mathbf{N}^{2}-\mathbf{M}^{2}, \\
\mathbf{N M}+\mathbf{M} \mathbf{N}=0 .
\end{gathered}
$$

Proof of Theorem 1. Let $\kappa>0$. Then $n(-1)>0$ and $n(1)=0$. Therefore by $(2) \mathcal{H}_{-} \neq \emptyset$ and the equation

$$
\begin{equation*}
(\mathbf{I}-\mathbf{N}) f=0 \tag{11}
\end{equation*}
$$

has only trivial solution. Let $\gamma \in \mathcal{H}_{-}$. Then

$$
(\mathbf{I}+\mathbf{N}) \gamma=0 .
$$

Multiplying the last equality by \mathbf{M} taking into account Lemma 3 we have

$$
\mathbf{M} \gamma-\mathbf{N} \mathbf{M} \gamma=0
$$

Since the equation (11) has only trivial solution, last equation gives $\mathbf{M} \gamma=0$. Setting $\mu=0$ from $(9,10)$ we have

$$
\operatorname{Re}\left[A(s) \Phi^{-}(\eta(s))\right]=-\gamma, \quad \operatorname{Im}\left[A(s) \Phi^{-}(\eta(s))\right]=0
$$

Hence we have $A \Phi^{-}(z)=-\gamma$.
The proof of the equation

$$
A \Phi^{+}(z)=\gamma
$$

can be proven similarly.
Theorem 1 is proven.
Proof of Theorem 2. Let $f(w)$ be a Hölder continuous function on Γ and $f(s):=f(\eta(s))$.
(i) Let n be a positive integer number. Then -1 is an eigenvalue of \mathbf{N} and its multiplicity is equal to $n(-1)=$ $2 n-1$. We consider a function

$$
\begin{equation*}
\mathbf{N} f-i \mathbf{M} f=\frac{1}{i}[\mathbf{M}+i \mathbf{N}] f=\mathrm{p} . \mathrm{v} \cdot \frac{1}{\pi i} \int_{0}^{2 \pi} \frac{[\eta(s)]^{n}}{[\eta(t)]^{n}} \frac{f(t) \dot{\eta}(t)}{\eta(t)-\eta(s)} \tag{12}
\end{equation*}
$$

and present as

$$
\mathbf{N} f-i \mathbf{M} f=\text { p.v. } \frac{1}{\pi i} \int_{0}^{2 \pi} \frac{f(t) \dot{\eta}(t)}{\eta(t)-\eta(s)}-\text { p.v. } \frac{1}{\pi i} \int_{0}^{2 \pi}\left(1-\left[\frac{\eta(s)}{\eta(t)}\right]^{n}\right) \frac{f(t)}{1-\frac{\eta(s)}{\eta(t)}} \frac{\dot{\eta}(t) d t}{\eta(t)}
$$

or

$$
\begin{equation*}
\mathbf{N} f-i \mathbf{M} f=\text { p.v. } \frac{1}{\pi i} \int_{0}^{2 \pi} \frac{f(t) \dot{\eta}(t)}{\eta(t)-\eta(s)}-\frac{1}{\pi i} \sum_{r=0}^{n-1} \int_{0}^{2 \pi}\left[\frac{\eta(s)}{\eta(t)}\right]^{r} \frac{f(t) \dot{\eta}(t) d t}{\eta(t)} \tag{13}
\end{equation*}
$$

Changing of variables in the integrals under summation in (13) we have

$$
\begin{equation*}
\mathbf{N} f-i \mathbf{M} f=\text { p.v. } \frac{1}{\pi i} \int_{0}^{2 \pi} \frac{f(w) d w}{w-\eta(s)}-\frac{1}{\pi i} \sum_{r=0}^{n-1}[\eta(s)]^{r} \int_{\Gamma} \frac{f(w) d w}{w^{r+1}} \tag{14}
\end{equation*}
$$

We set

$$
f_{k}(s)=[\eta(s)]^{k}, \quad k=0,1, \cdots, n-1
$$

Note that the first integral in (14) is a Cauchy principal value integral. Since $f_{k}(w)=w^{k}$ is analytic in Ω, by Sokhotcky formula we get

$$
\begin{equation*}
\text { p.v. } \frac{1}{\pi i} \int_{0}^{2 \pi} \frac{f_{k}(t) \dot{\eta}(t)}{\eta(t)-\eta(s)}=[\eta(s)]^{k} \tag{15}
\end{equation*}
$$

Taking into account $[\eta(s)]^{k}=w^{k}, \quad w \in \Gamma$ by Cauchy integral we have

$$
\begin{equation*}
\frac{1}{\pi i} \sum_{r=0}^{n-1}[\eta(s)]^{r} \int_{\Gamma} \frac{f_{k}(w) d w}{w^{r+1}}=2[\eta(s)]^{k} \tag{16}
\end{equation*}
$$

Hence, from (14) as $f=f_{k}$ we get

$$
\begin{equation*}
\mathbf{N} f_{k}-i \mathbf{M} f_{k}=-f_{k}, \quad k=0,1, \cdots, n-1 \tag{17}
\end{equation*}
$$

Now multiplying (17) to $\mathbf{N}-i \mathbf{M}$ and using Lemma 3 we have

$$
i[\mathbf{N M}+\mathbf{M} \mathbf{N}] f_{k}+\left[\mathbf{N}^{2}-\mathbf{M}^{2}\right] f_{k}=-[\mathbf{N}+i \mathbf{M}] f_{k}=f_{k}-i \mathbf{M} f_{k}
$$

or

$$
f_{k}=f_{k}-i \mathbf{M} f_{k}
$$

Hence $\mathbf{M} f_{k}=0$. Then (17) equals

$$
\begin{equation*}
\mathbf{N} \operatorname{Re} f_{k}=-\operatorname{Re} f_{k}, \quad \mathbf{N} \operatorname{Im} f_{k}=-\operatorname{Im} f_{k} \quad k=0,1, \cdots, n-1 . \tag{18}
\end{equation*}
$$

So, the operator \mathbf{N} has $2 n-1$ linearly indipendent eigenfunctions.
(ii) Let $-n$ be a nonnegative integer number. Then by (2) the number 1 is an eigenvalue with multiplicity $n(1)=2 n+1$.

The case $n=0$. In this case

$$
\mathbf{N} f-i \mathbf{M} f=\text { p.v. } \frac{1}{\pi i} \int_{0}^{2 \pi} \frac{f(t) \dot{\eta}(t)}{\eta(t)-\eta(s)} d t
$$

We set $g_{0}(t)=1$. One can check that

$$
\begin{equation*}
\mathbf{N} g_{0}-i \mathbf{M} g_{0}=g_{0} \tag{19}
\end{equation*}
$$

The case $-n>0$. We represent the equation (12) as

$$
\mathbf{N} f-i \mathbf{M} f=- \text { p.v. } \frac{1}{\pi i} \int_{0}^{2 \pi} \frac{f(t) \dot{\eta}(t)}{\eta(t)-\eta(s)}+\text { p.v. } \frac{1}{\pi i} \int_{0}^{2 \pi}\left(1-\left[\frac{\eta(t)}{\eta(s)}\right]^{-n}\right) \frac{f(t)}{1-\frac{\eta(t)}{\eta(s)}} \frac{\dot{\eta}(t) d t}{\eta(s)}
$$

or

$$
\begin{equation*}
\mathbf{N} f-i \mathbf{M} f=- \text { p.v. } \frac{1}{\pi i} \int_{0}^{2 \pi} \frac{f(t) \dot{\eta}(t)}{\eta(t)-\eta(s)}+\frac{1}{\pi i} \sum_{r=0}^{-n} \int_{0}^{2 \pi}\left[\frac{\eta(t)}{\eta(s)}\right]^{r} \frac{f(t) \dot{\eta}(t) d t}{\eta(s)} \tag{20}
\end{equation*}
$$

Changing of variables in the integrals under summation in (20) we have

$$
\mathbf{N} f-i \mathbf{M} f=- \text { p.v. } \frac{1}{\pi i} \int_{0}^{2 \pi} \frac{f(t) \dot{\eta}(t)}{\eta(t)-\eta(s)}+\frac{1}{\pi i} \sum_{r=0}^{-n} \frac{1}{[\eta(s)]^{r+1}} \int_{\Gamma} w^{r} f(w) d w .
$$

We set

$$
g_{k}(s)=\frac{1}{[\eta(s)]^{k+1}}, \quad k=0,1, \cdots,-n-1 .
$$

Then

$$
\begin{equation*}
(\mathbf{N}-i \mathbf{M}) g_{k}=g_{k} \tag{21}
\end{equation*}
$$

Using the Lemma 3 and analyzing as above we can get

$$
\mathbf{N R e} g_{k}=\operatorname{Re} g_{k}, \quad \mathbf{N} \operatorname{Im} g_{k}=\operatorname{Im} g_{k} \quad k=0,1, \cdots,-n-1 .
$$

Theorem 2 is proven.

APPLICATIONS

1. The exterior Riemann-Hilbert problem. Let $A(s)=e^{i n s}$ and C is the circle of the unit disc D. Then by Theorem 2 the number -1 is eigenvalue of the corresponding integral operator \mathbf{N} and corresponding eigenfunctions are

$$
1, \cos k s, \sin k s, k=1, \ldots, n-1
$$

Hence \mathcal{H}_{-}is a linear space of the functions

$$
1, \cos k s, \sin k s, k=1, \ldots, n-1
$$

Let the functions $\gamma(\cdot)$ and $\mu(\cdot)$ have the form

$$
\gamma(t)=\sum_{k=0}^{n-1} a_{k} \cos k t+\sum_{k=1}^{n-1} b_{k} \cos k t, \quad \mu(t)=\sum_{k=0}^{n-1} c_{k} \cos k t+\sum_{k=1}^{n-1} d_{k} \cos k t
$$

$a_{k}, b_{k}, c_{k}, d_{k}, k=1, \ldots, n-1$ are any real numbers. Then $\gamma, \mu \in \mathcal{H}_{-}$.
Let

$$
\begin{equation*}
\Psi(z)=\frac{1}{2 \pi i} \int_{C} \frac{\gamma+i \mu}{A} \frac{d \zeta}{\zeta-z}, \quad z \in \mathbb{C} \backslash D \tag{22}
\end{equation*}
$$

Then by the Theorem 1

$$
A \psi^{-}\left(e^{i n s}\right)=\gamma(s)+i \mu(s)
$$

It shows that the function $F(z)$ is a solution of the exterior Riemann-Hilbert problem.

2. Construction conformal mappings.

To construct conformal mappings we need the following theorem which was proven in [9], p. 37.
Theorem 3 Suppose G and R are bounded simply connected domains enclosed by piecewise smooth, analytic closed curves Γ and L, respectively, and $w=f(z)$ is a function satisfying satisfying the following conditions:

1) $w=f(z)$ is analytic inside G and continuous on $\bar{G}=G \cup \Gamma$,
2) $w=f(z)$ maps bijectively onto L.

Then $w=f(z)$ is univalent in G and conformally maps G onto R.
Let $A(s)=e^{-i n s}, n>0$. Then by Theorem 2 the number 1 is eigenvalue of the corresponding integral operator \mathbf{N} with multilicity $2 n+1$ and corresponding eigenfunctions are

$$
1, \cos k s, \sin k s, k=1, \ldots, n
$$

Hence \mathcal{H}_{+}is a linear space of these eigenfunctions.
Let Ω be a simply connected domain enclosed by curve Γ which has the equation

$$
\gamma(t)=\frac{\alpha(t)+i \beta(t)}{A(t)}
$$

where $\alpha, \beta \in \mathcal{H}_{+}$such that $\dot{\gamma}(t) \neq 0$ for all $t \in[0,2 \pi]$. We set

$$
F(z)=\frac{1}{2 \pi i} \int_{C} \frac{\alpha+i \beta}{A} \frac{d \zeta}{\zeta-z}, \quad z \in D
$$

The function $F(\cdot)$ is analytic in the disc D. By Theorem 1

$$
\left.F(z)\right|_{z \in C}=\frac{\alpha+i \beta}{A} .
$$

Then the image of $F(\cdot)$ on D is Ω. It follows from here that $F(\cdot)$ is continuous on \bar{D} and is bijective on C. Therefore by Theorem $3 F: D \rightarrow \Omega$ is the conformal mapping on D.

For example, if we choose $A(s)=e^{-i s}$ and $\alpha(s)=1+a \cos s, \beta(s)=-i b \sin s, a, b>0$. Then

$$
\dot{\gamma}(t)=e^{i s}[i(1+a \cos s+b \sin s)-a \sin s+b \cos s] \neq 0
$$

for all $a, b>0$ and $t \in[0,2 \pi]$. Hence the corresponding function F maps C bijectively onto Γ parameterized by the function γ. Hence the function F is conformal mapping from the disc to the simply connected region Ω with boundary Γ.

ACKNOWLEDGMENTS

This work was supported by the Malaysian Ministry of Education (MOE) through the Research Management Center (RMC), Universiti Teknologi Malaysia (Vote: QJ130000.2726.01K82).

REFERENCES

[1] Al-Hatemi, S.A.A., Murid, A.H.M., Nasser, M.M.S.: A boundary integral equation with the generalized Neumann kernel for a mixed boundary value problem in unbounded multiply connected regions. Boundary Value Problem 2013 54, (1) 1-17 (2013)
[2] Gakhov, F. D.: Boundary value problems. Pergamon, Oxford (1966)
[3] Nasser, M.M.S.: Numerical conformal mapping via a boundary integral equation with the generalized Neumann kernel. SIAM Journal on Scietific Computing 31, 1695-1715 (2009)
[4] Nasser, M.M.S., Murid, A.H.M., Al-Hatemi, S.A.A.: A boundary integral equation with the generalized Neumann kernel for a certain class of mixed boundary value problem. Journal of Applied Mathematics Article ID 254123, 17 pages (2012)
[5] Nasser, M.M.S., Murid, A.H.M., Ismail, M., Alejaili, E.M.A.: Boundary integral equation with the generalized Neumann Kernel for Laplace's equation in multiply connected regions. Applied Mathematics and Computation 217, 4710-4727 (2011)
[6] Wegmann, R., Murid, A.H.M., Nasser, M.M.S.: The Riemann- Hilbert problem and the generalized Neumann kernel. Journal of Computational and Applied Mathematics 182, 388-415 (2005)
[7] Wegmann, R., Nasser, M.M.S.: The Riemann-Hilbert problem and the generalized Neumann kernel on multiply connected regions. Journal of Computational and Applied Mathematics 214, 36-57 (2008)
[8] Murid, A.H.M., Nasser, M.M.S.: Eigenproblem of the generalized Neumann kernel. Bulletin of the Malaysian Mathematical Sciences Society 26, (2) 1333 (2003)
[9] Wen, Guo-Chun, Conformal mappings and boundary value problems, AMS, 1992.

