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Abstract. In this paper we consider an integral operator N acting in the space L2[0, 2π] with a generalized Neumann kernel N(s, t).
We find all eigenfunctions of N corresponding to the number ±1. We give some applications to solve Riemann-Hilbert boundary

value problems, and construction of some conformal mappings.

INTRODUCTION

The Riemann-Hilbert (RH) problems on simply connected regions [6] and multiply connected regions [7] are reduced

to Fredholm integral equations of the second kind with a generalized Neumann kernel. It has been shown that the
problem of conformal mapping, Dirichlet problem, Neumann problem and mixed Dirichlet-Neumann problem can

all be treated as RH problems and solved efficiently using integral equations with the generalized Neumann kernel

[1, 3, 4, 5].

The index κ of the function A, contained in the generalized Neumann kernel plays an important role to solve RH

problem. The RH problem is absolutely soluble if κ ≤ 0 and if κ > 0, RH problem is soluble if and only if the solution

satisfies 2κ − 1 conditions of solvability for any arbitrary contour (See Theorem on p. 222 of [2]).

In this paper we consider an integral operator N acting in the space L2[0, 2π] with a generalized Neumann kernel

N(s, t) = Re(
A(s)

A(t)

η′(t)

η(t)−η(s)
), where L2[0, 2π] is the Hilbert space of 2π periodic real functions, square-integrable over the

interval [0, 2π], A is the 2π-periodic complex function on [0, 2π] that satisfies the Hölder condition and η(t) is twice

differentiable function with ˙η(t) , 0. Note that if κ ≤ 0 ( κ > 0), then the number 1 ( −1 ) is an eigenvalue with
multiplicity n(1) = max{0,−2k + 1} (n(−1) = max{0, 2k − 1}) [6]. In the paper we find all of eigenfunctions of N

corresponding to the number ±1 and using the properties of eigenfunctions we solve Riemann-Hilbert boundary value

problems, and give a method of construction of some class of conformal mappings.

STATEMENT OF THE MAIN RESULT

Let Ω be a bounded simply connected region in the complex plane C whose boundary Γ is a smooth Jordan curve and

parameterized by a 2π-periodic complex function η(·) that is twice continuously differentiable on R with η̇(s) , 0
for all s ∈ [0, 2π]. Let γ be a Hölder continuous real function on Γ and let A be a complex function that satisfies on

Γ the Hölder condition and A(s) := A(η(s)) be 2π-periodic on [0, 2π] with A , 0. We suppose that the curve Γ has

counterclockwise orientation.

Riemann-Hilbert problems: Interior problem: Determine a function f analytic in Ω, continuous on the closure

Ω, such that the boundary values f + satisfy on Γ

Re[A f +] = γ. (1)
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Exterior problem: Determine a function f analytic inC\Ω, continuous on the closure C \ Ω with f (∞) = 0, such

that the boundary values f − satisfy on Γ

Re[A f −] = γ.

Define the real kernels M(·, ·) and N(·, ·) as real and imaginary parts [6]

M(s, t) = Re

[

1

π

A(s)

A(t)

η̇(t)

η(t) − η(s)

]

, N(s, t) = Im

[

1

π

A(s)

A(t)

η̇(t)

η(t) − η(s)

]

.

The function N(·, ·) is called the generalized Neumann kernel formed with A and η [6]. For A = 1 it reduces to the
well-known Neumann kernel. Note that the function N(·, ·) is continuous in [0, 2π] × [0, 2π].

The following lemma was proven in [8] (See Theorem 3.1 ).

Lemma 1 (a) The kernel N(·, ·) is continuous with

N(t, t) =
1

π
Im

[

1

2

η̈(t)

η̇(t)
−

Ȧ(t)

A(t)

]

.

(b) When s, t ∈ [0, 2π]

M(s, t) = −
1

π
cot

s − t

2
+ M1(s, t),

with a continuous kernel M1 which take on the diagonal the values

M1(t, t) =
1

π

(

1

2
Re

[

η̈(t)

η̇(t)

]

− Re

[

Ȧ(t)

A(t)

])

.

Define the Fredholm integral operator N with kernel N(·, ·) as [6]

(Nγ)(s) =

2π
∫

0

N(s, t)γ(t)dt,

and the singular operator M with kernel M(·, ·) as

(Mγ)(s) = p.v.

2π
∫

0

M(s, t)γ(t)dt,

where p.v.
∫

denotes a Cauchy principal value integral.

The index of the function A is defined as the winding number of A with respect to 0

κ = ind(A) =
1

2π
argA,

i.e. the change of the argument of A over one period divided by 2π. If κ ≤ 0
(

κ > 0
)

, then the number 1
(

− 1
)

is

an eigenvalue of N. Note that the multiplicities n(1) and n(−1) of the eigenvalues, respectively, 1 and −1 of N are

connected with ind(A) as [6]

n(1) = max{0, −2κ + 1}, n(−1) = max{0, 2κ − 1}. (2)

Let L2[0, 2π] be the Hilbert space of 2π periodic real functions, square-integrable over the interval [0, 2π]. Fur-

thermore, we denote by H± ⊂ L2[0, 2π] a subspace of the eigenfunctions of N corresponding to the eigenvalue ±1.

Note that if ±κ > 0, then dimensional ofH± is n(±1) > 0.
With Hölder continuous real function γ on Γ, we define the function

Φ(z) =
1

2πi

∫

Γ

γ

A

dζ

ζ − z
, z ∈ Ω. (3)

The main result is the following.
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Theorem 1 Let the number ±κ > 0 and γ ∈ H±. Then

AΦ±(z) = ±γ, z ∈ Γ. (4)

Moreover, in partiallyΦ+
(

Φ
−

)

is a solution of the interior (exterior) RH problem (1), respectively.

Further we consider a special case of A, i.e. A(s) = [η(s)]n, where n is integer number. In this case ind(A) = n

and N(s, t) has the form

N(s, t) =
1

π
Im

[

[η(s)]n

[η(t)]n

η̇(t)

η(t)− η(s)

]

. (5)

Theorem 2 (i) Let A(s) = [η(s)]n and n be positive integer number. Then the eigenfunctions of the integral oper-

ator N corresponding to −1 are

1, Re[η(s)]k
, Im[η(s)]k

, k = 1, . . . , n − 1. (6)

(ii) Let A(s) = [η(s)]n and n be non-positive integer number. Then the eigenfunctions of the integral operator N

corresponding to 1 are

1, Re[η(s)]−k, Im[η(s)]−k, k = 1, . . . ,−n. (7)

PROOF OF THE MAIN RESULTS

For a Hölder continuous function h on Γ, the function Ψ defined by

Ψ(z) =
1

2πi

∫

Γ

h(w)

w − z
dw.

The boundary values Ψ+ and Ψ− of Ψ±, respectively, from inside and from outside can be calculated by Sokhotcky

formulas

Ψ
±(ζ) = ±

1

2
h(ζ) + p.v.

1

2πi

∫

Γ

h(w)

w − ζ
dw

for ζ ∈ Γ. Both boundary functionsΨ±(·) are Holder continuous on Γ.

We define the function

Φ(z) =
1

2πi

∫

Γ

γ + iµ

A

dζ

ζ − z
, z ∈ Ω, (8)

where γ and µ are Hölder continuous real functions on Γ.

Application of Sokhotcky formula and straightforward calculations give the following lemma [6]

Lemma 2 The boundary values of the function Φ defined in (8) can be represented by

2Re[A(s)Φ±(η(s))] = ±γ +Nγ +Mµ, (9)

2Im[A(s)Φ±(η(s))] = ±µ +Nµ −Mγ. (10)

Using the properties of Cauchy’s integral formula and Sokhotcky formula was proven the following lemma in

[6]

Lemma 3 The operators N,M and identity operator I are connected by the following relation:

I = N2 −M2,

NM +MN = 0.
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Proof of Theorem 1. Let κ > 0. Then n(−1) > 0 and n(1) = 0. Therefore by (2)H− , ∅ and the equation

(I − N) f = 0 (11)

has only trivial solution. Let γ ∈ H−. Then
(I + N)γ = 0.

Multiplying the last equality by M taking into account Lemma 3 we have

Mγ −NMγ = 0.

Since the equation (11) has only trivial solution, last equation gives Mγ = 0. Setting µ = 0 from (9, 10) we have

Re[A(s)Φ−(η(s))] = −γ, Im[A(s)Φ−(η(s))] = 0.

Hence we have AΦ−(z) = −γ.

The proof of the equation

AΦ+(z) = γ

can be proven similarly.

Theorem 1 is proven.

Proof of Theorem 2. Let f (w) be a Hölder continuous function on Γ and f (s) := f (η(s)).

(i) Let n be a positive integer number. Then −1 is an eigenvalue of N and its multiplicity is equal to n(−1) =
2n − 1. We consider a function

N f − iM f =
1

i
[M + iN] f = p.v.

1

πi

2π
∫

0

[η(s)]n

[η(t)]n

f (t)η̇(t)

η(t) − η(s)
(12)

and present as

N f − iM f = p.v.
1

πi

2π
∫

0

f (t)η̇(t)

η(t) − η(s)
− p.v.

1

πi

2π
∫

0

(

1 −

[

η(s)

η(t)

]n) f (t)

1 −
η(s)

η(t)

η̇(t)dt

η(t)

or

N f − iM f = p.v.
1

πi

2π
∫

0

f (t)η̇(t)

η(t) − η(s)
−

1

πi

n−1
∑

r=0

2π
∫

0

[

η(s)

η(t)

]r f (t) η̇(t)dt

η(t)
. (13)

Changing of variables in the integrals under summation in (13) we have

N f − iM f = p.v.
1

πi

2π
∫

0

f (w)dw

w − η(s)
−

1

πi

n−1
∑

r=0

[η(s)]r

∫

Γ

f (w) dw

wr+1
. (14)

We set

fk(s) = [η(s)]k
, k = 0, 1, · · · , n − 1.

Note that the first integral in (14) is a Cauchy principal value integral. Since fk(w) = wk is analytic inΩ, by Sokhotcky

formula we get

p.v.
1

πi

2π
∫

0

fk(t)η̇(t)

η(t) − η(s)
= [η(s)]k. (15)

Taking into account [η(s)]k
= wk, w ∈ Γ by Cauchy integral we have

1

πi

n−1
∑

r=0

[η(s)]r

∫

Γ

fk(w) dw

wr+1
= 2[η(s)]k. (16)
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Hence, from (14) as f = fk we get

N fk − iM fk = − fk, k = 0, 1, · · · , n − 1. (17)

Now multiplying (17) to N − iM and using Lemma 3 we have

i[NM +MN] fk + [N2 −M2] fk = −[N + iM] fk = fk − iM fk

or

fk = fk − iM fk.

Hence M fk = 0. Then (17) equals

N Re fk = −Re fk, N Im fk = −Im fk k = 0, 1, · · · , n − 1. (18)

So, the operator N has 2n − 1 linearly indipendent eigenfunctions.

(ii) Let −n be a nonnegative integer number. Then by (2) the number 1 is an eigenvalue with multiplicity

n(1) = 2n + 1.

The case n = 0. In this case

N f − iM f = p.v.
1

πi

2π
∫

0

f (t)η̇(t)

η(t)− η(s)
dt.

We set g0(t) = 1. One can check that

Ng0 − iMg0 = g0. (19)

The case −n > 0. We represent the equation (12) as

N f − iM f = −p.v.
1

πi

2π
∫

0

f (t)η̇(t)

η(t)− η(s)
+ p.v.

1

πi

2π
∫

0

(

1 −

[

η(t)

η(s)

]−n) f (t)

1 −
η(t)

η(s)

η̇(t)dt

η(s)

or

N f − iM f = −p.v.
1

πi

2π
∫

0

f (t)η̇(t)

η(t) − η(s)
+

1

πi

−n
∑

r=0

2π
∫

0

[

η(t)

η(s)

]r f (t) η̇(t)dt

η(s)
. (20)

Changing of variables in the integrals under summation in (20) we have

N f − iM f = −p.v.
1

πi

2π
∫

0

f (t)η̇(t)

η(t) − η(s)
+

1

πi

−n
∑

r=0

1

[η(s)]r+1

∫

Γ

wr f (w) dw.

We set

gk(s) =
1

[η(s)]k+1
, k = 0, 1, · · · ,−n − 1.

Then

(N − iM)gk = gk. (21)

Using the Lemma 3 and analyzing as above we can get

N Regk = Regk, N Imgk = Imgk k = 0, 1, · · · ,−n − 1.

Theorem 2 is proven.
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APPLICATIONS

1. The exterior Riemann-Hilbert problem. Let A(s) = eins and C is the circle of the unit disc D. Then by Theorem

2 the number −1 is eigenvalue of the corresponding integral operator N and corresponding eigenfunctions are

1, cos ks, sin ks, k = 1, . . . , n − 1.

HenceH− is a linear space of the functions

1, cos ks, sin ks, k = 1, . . . , n − 1.

Let the functions γ(·) and µ(·) have the form

γ(t) =

n−1
∑

k=0

ak cos kt +

n−1
∑

k=1

bk cos kt, µ(t) =

n−1
∑

k=0

ck cos kt +

n−1
∑

k=1

dk cos kt,

ak, bk, ck, dk, k = 1, . . . , n − 1 are any real numbers. Then γ, µ ∈ H−.

Let

Ψ(z) =
1

2πi

∫

C

γ + iµ

A

dζ

ζ − z
, z ∈ C \ D. (22)

Then by the Theorem 1

Aψ−(eins) = γ(s) + iµ(s).

It shows that the function F(z) is a solution of the exterior Riemann-Hilbert problem.

2. Construction conformal mappings.

To construct conformal mappings we need the following theorem which was proven in [9], p.37.

Theorem 3 Suppose G and R are bounded simply connected domains enclosed by piecewise smooth, analytic

closed curves Γ and L, respectively, and w = f (z) is a function satisfying satisfying the following conditions:

1) w = f (z) is analytic inside G and continuous on G = G ∪ Γ,

2) w = f (z) maps bijectively onto L.

Then w = f (z) is univalent in G and conformally maps G onto R.

Let A(s) = e−ins, n > 0. Then by Theorem 2 the number 1 is eigenvalue of the corresponding integral operator N

with multilicity 2n + 1 and corresponding eigenfunctions are

1, cos ks, sin ks, k = 1, . . . , n.

HenceH+ is a linear space of these eigenfunctions.

Let Ω be a simply connected domain enclosed by curve Γ which has the equation

γ(t) =
α(t) + iβ(t)

A(t)
,

where α, β ∈ H+ such that γ̇(t) , 0 for all t ∈ [0, 2π]. We set

F(z) =
1

2πi

∫

C

α + iβ

A

dζ

ζ − z
, z ∈ D.

The function F(·) is analytic in the disc D. By Theorem 1

F(z)
∣

∣

∣

∣

z∈C
=
α + iβ

A
.
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Then the image of F(·) on D is Ω. It follows from here that F(·) is continuous on D and is bijective on C. Therefore
by Theorem 3 F : D→ Ω is the conformal mapping on D.

For example, if we choose A(s) = e−is and α(s) = 1 + a cos s, β(s) = −ib sin s, a, b > 0. Then

γ̇(t) = eis[i(1 + a cos s + b sin s) − a sin s + b cos s] , 0

for all a, b > 0 and t ∈ [0, 2π]. Hence the corresponding function F maps C bijectively onto Γ parameterized by the
function γ. Hence the function F is conformal mapping from the disc to the simply connected regionΩ with boundary

Γ.
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