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Abstract. In this paper we consider an integral operator N acting in the space L,[0, 27] with a generalized Neumann kernel N(s, 1).
We find all eigenfunctions of N corresponding to the number +1. We give some applications to solve Riemann-Hilbert boundary
value problems, and construction of some conformal mappings.

INTRODUCTION

The Riemann-Hilbert (RH) problems on simply connected regions [6] and multiply connected regions [7] are reduced
to Fredholm integral equations of the second kind with a generalized Neumann kernel. It has been shown that the
problem of conformal mapping, Dirichlet problem, Neumann problem and mixed Dirichlet-Neumann problem can
all be treated as RH problems and solved efficiently using integral equations with the generalized Neumann kernel
[1,3,4,5].

The index « of the function A, contained in the generalized Neumann kernel plays an important role to solve RH
problem. The RH problem is absolutely soluble if k < 0 and if « > 0, RH problem is soluble if and only if the solution
satisfies 2« — 1 conditions of solvability for any arbitrary contour (See Theorem on p. 222 of [2]).

In this paper we consider an integral operator N acting in the space L,[0, 2] with a generalized Neumann kernel
N(s,t) = Re(% ”(gg])(s) ), where L, [0, 2] is the Hilbert space of 27 periodic real functions, square-integrable over the
interval [0, 2], A is the 2r-periodic complex function on [0, 27] that satisfies the Holder condition and 7(¢) is twice
differentiable function with 5(r) # 0. Note that if k < 0 ( « > 0), then the number 1 ( —1 ) is an eigenvalue with
multiplicity n(1) = max{0, -2k + 1} (n(—1) = max{0,2k — 1}) [6]. In the paper we find all of eigenfunctions of N
corresponding to the number +1 and using the properties of eigenfunctions we solve Riemann-Hilbert boundary value
problems, and give a method of construction of some class of conformal mappings.

STATEMENT OF THE MAIN RESULT

Let © be a bounded simply connected region in the complex plane C whose boundary I" is a smooth Jordan curve and
parameterized by a 2r-periodic complex function 7(-) that is twice continuously differentiable on R with 7(s) # 0
for all s € [0,2r]. Let y be a Holder continuous real function on I" and let A be a complex function that satisfies on
I' the Holder condition and A(s) := A(#(s)) be 2n-periodic on [0, 27] with A # 0. We suppose that the curve I has
counterclockwise orientation.

Riemann-Hilbert problems: Interior problem: Determine a function f analytic in Q, continuous on the closure
Q, such that the boundary values f* satisfy on T’

Re[Af*] =7. ey
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Exterior problem: Determine a function f analytic in C\ ©, continuous on the closure C \ Q with f(c0) = 0, such
that the boundary values f~ satisfy on I"

Re[Af] = y.
Define the real kernels M(:,-) and N(:, ) as real and imaginary parts [6]
M(s.1) = Re[l@L . N = Im[l@&],
7 At) (0) - 1(s) 7 At) n(0) - 1(s)

The function N(:,-) is called the generalized Neumann kernel formed with A and n [6]. For A = 1 it reduces to the
well-known Neumann kernel. Note that the function N(-, ) is continuous in [0, 2z] X [0, 27].

The following lemma was proven in [8] (See Theorem 3.1 ).

Lemma 1 (a) The kernel N(-,-) is continuous with
1 Li(t) A()
t,t)= —Im|=—= - —|.
NeD =2 m[Zf](t) A(t)]

(b) When s,t € [0,2r]
1 —t
M(s, 1) = —= cot ~— + My(s, 1),
b/ 2

with a continuous kernel M| which take on the diagonal the values

M, 1) = l(lRe[i?(—t)] _ Re[@}).
m\2 @) A(t)

Define the Fredholm integral operator N with kernel N(:, -) as [6]

2n
(Ny)(s) = fN(S, Ny (t)dt,
0

and the singular operator M with kernel M(:, ) as
2r
(My)(s) = p.v. f M(s, Dy,
0

where p.v. f denotes a Cauchy principal value integral.
The index of the function A is defined as the winding number of A with respect to 0

1
k =1ind(A) = Z—argA,
by

i.e. the change of the argument of A over one period divided by 2x. If « < 0 (K > 0), then the number 1 ( - 1) is
an eigenvalue of N. Note that the multiplicities n(1) and n(—1) of the eigenvalues, respectively, 1 and —1 of N are
connected with ind(A) as [6]

n(1) = max{0, =2« + 1}, n(=1) = max{0, 2« — 1}. 2)

Let L,[0, 2x] be the Hilbert space of 2 periodic real functions, square-integrable over the interval [0, 2r]. Fur-
thermore, we denote by H, C L,[0,2n] a subspace of the eigenfunctions of N corresponding to the eigenvalue +1.
Note that if +x > 0, then dimensional of H. is n(x1) > 0.

With Holder continuous real functiony on I', we define the function

_ 1 [y df
CD(Z)‘szrAg—z’ zeQ. 3)

The main result is the following.
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Theorem 1 Let the number +k > 0 andy € H.. Then

AD*(z) = +y, zel. 4
Moreover, in partially ®* ((D’) is a solution of the interior (exterior) RH problem (1), respectively.

Further we consider a special case of A, i.e. A(s) = [n(s)]", where n is integer number. In this case ind(A) = n

and N(s, 1) has the form
1 [In(s)]* 70
= Sm |22 A |
Nis,2) T [7(D]" n(®) — n(s) ©)

Theorem 2 (i) Let A(s) = [n(s)]" and n be positive integer number. Then the eigenfunctions of the integral oper-
ator N corresponding to —1 are

1, Re[p»¥, Imn(s), k=1,...,n—-1. (6)

(ii) Let A(s) = [n(s)]" and n be non-positive integer number. Then the eigenfunctions of the integral operator N
corresponding to 1 are
L, Relp)I™, Impl™, — k=1,...,-n. ©)

PROOF OF THE MAIN RESULTS

For a Holder continuous function 4 on I', the function ¥ defined by

W) = f LI

2mi w—z
r

The boundary values W* and ¥~ of W*, respectively, from inside and from outside can be calculated by Sokhotcky

formulas
h(w)
—dw

N 1
¥ (5)‘izh(§)+p'v‘2mfw—g
r

for £ € T. Both boundary functions W*(-) are Holder continuous on T".

We define the function : J
y+ip df
D(z) = — —, eqQ, 8

@ =3 fr A -z °© ®

where y and p are Holder continuous real functions on I'.
Application of Sokhotcky formula and straightforward calculations give the following lemma [6]

Lemma 2 The boundary values of the function © defined in (8) can be represented by
2Re[A()D*((s)] = =y + Ny + My, €))
20m[A()D*(7(5))] = £ + Nu — My. (10)

Using the properties of Cauchy’s integral formula and Sokhotcky formula was proven the following lemma in

[6]
Lemma 3 The operators N, M and identity operator 1 are connected by the following relation:
I=N°-M,

NM + MN = 0.
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Proof of Theorem 1. Let « > 0. Then n(—1) > 0 and n(1) = 0. Therefore by (2) H_ # 0 and the equation

~-N)f =0 (1n
has only trivial solution. Let y € H_. Then

I+Ny=0.
Multiplying the last equality by M taking into account Lemma 3 we have

My -NMy = 0.
Since the equation (11) has only trivial solution, last equation gives My = 0. Setting 4 = 0 from (9, 10) we have

Re[A()®™(n(s)] = =y, Im[A(s)®(1(s))] =

Hence we have AD™(z) = —y.
The proof of the equation
AD' () =y

can be proven similarly.

Theorem 1 is proven.

Proof of Theorem 2. Let f(w) be a Holder continuous function on I and f(s) := f(5n(s)).

(i) Let n be a positive integer number. Then —1 is an eigenvalue of N and its multiplicity is equal to n(-1) =
2n — 1. We consider a function

2r
vk f ()" f@ir)
i

Nf -iMf = M IN1f 12
S M= OF 70— 1(5) (2
and present as
2
. f(t)n(t) 1 f (S) f(t) n(dt
Nf -iMf = — p-v.— —
f=ME=eva ) s - PV n(t) -5 0
or .
f QUQ) 1 f T](s) " f@) nde
Nf-iM - — . 13
N DR AN ol (13
Changing of variables in the integrals under summation in (13) we have
dw 15 d
Nf - iMf =p.v [ sosan - LNy [ L4 (14)
w

w-—n(s) i e J

We set
fi =), k=01, ,n—1.
Note that the first integral in (14) is a Cauchy principal value integral. Since f;(w) = w* is analytic in Q, by Sokhotcky
formula we get
2r
1 _filo)n@)

_ k
by | 2 oy = IO (15)
0

Taking into account [57(s)]* = wk, w € I' by Cauchy integral we have

n—1

1 d
— St [ L8 ot (16)

r+1
r=0
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Hence, from (14) as f = fi we get
Nfi — Mfi = —fi, k=0,1,---,n—1. an
Now multiplying (17) to N — iM and using Lemma 3 we have
i[NM + MN1f; + [N* = M?1f; = —[N + iM]f; = fi — iMf;
or

Ji = fi — M.
Hence Mf; = 0. Then (17) equals

NRef, = —Ref;, NImf, = -Imfy k=0,1,---,n— 1. (18)

So, the operator N has 2n — 1 linearly indipendent eigenfunctions.
(i1)) Let —n be a nonnegative integer number. Then by (2) the number 1 is an eigenvalue with multiplicity

n(l)=2n+1.
The case n = 0. In this case
2
(Wi

Nf —iMf =p.v. .
e N TORETE)

We set go(t) = 1. One can check that
Ngo — iMgo = go- (19)

The case —n > 0. We represent the equation (12) as

2r 2r
1 nn(t 1 ™" t (1)dt
N - g = p [LOH0 L[ 20)7) S0 o
xiJ -t T i a1 ) T- 10 i)
0 0 n(s)
or
1 2r 1 —n 2r d
nn(t n f@)n@)de
Nf—iMf = —povo~ [ LMD, _Zf[ﬁ] ALY (20)
wi ) =0 " xi gt L]0
Changing of variables in the integrals under summation in (20) we have
U fomm 13
, G f .
Nf-iMf=-pv.— | ——— +— w' f(w)dw.
foM =y ) n0=n(s) " 7 Z; UBIEN /
We set
1
=—, k=0,1,---,-n—1.
849 = Lo "
Then
(N —iM)gi = gk 2y
Using the Lemma 3 and analyzing as above we can get
NReg;r = Regy, NImg; =Img; k=0,1,---,-n—1.

Theorem 2 is proven.
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APPLICATIONS

1. The exterior Riemann-Hilbert problem. Let A(s) = ¢ and C is the circle of the unit disc D. Then by Theorem
2 the number —1 is eigenvalue of the corresponding integral operator N and corresponding eigenfunctions are

1,cosks,sinks,k=1,...,n—1.
Hence H_ is a linear space of the functions
1,cosks,sinks,k=1,...,n—1.

Let the functions y(:) and u(-) have the form

n—1 n—1 n—1 n—1
y(t) = Z ai cos kt + Z brpcoskt, u(t)= Z cr coskt + Z dy cos kt,
k=0 k=1 k=0 k=1
ag, by, cr,dy,k = 1,...,n — 1 are any real numbers. Then y,u € H_.
Let : J
Yy +ip df
Y(z) = — —_, e C\ D. 22
© = 2 fc FREEE (%)

Then by the Theorem 1 '
AP (™) = y(5) + iu(s).

It shows that the function F(z) is a solution of the exterior Riemann-Hilbert problem.

2. Construction conformal mappings.
To construct conformal mappings we need the following theorem which was proven in [9], p.37.

Theorem 3 Suppose G and R are bounded simply connected domains enclosed by piecewise smooth, analytic
closed curves I" and L, respectively, and w = f(2) is a function satisfying satisfying the following conditions:

1) w = f(z) is analytic inside G and continuous on G=GUT,

2) w = f(z) maps bijectively onto L.

Then w = f(2) is univalent in G and conformally maps G onto R.

Let A(s) = 75, n > 0. Then by Theorem 2 the number 1 is eigenvalue of the corresponding integral operator N
with multilicity 2z + 1 and corresponding eigenfunctions are

1,cosks,sinks,k=1,...,n.

Hence H. is a linear space of these eigenfunctions.
Let Q be a simply connected domain enclosed by curve I which has the equation

a(t) +iB@)

(@) = a0

where «, 8 € H, such that y(¢) # 0 for all ¢ € [0, 2r]. We set

1 a+if d{
F@)=—— | ——— eD.
(2) T j; A -7 z
The function F(-) is analytic in the disc D. By Theorem 1

a+ip

F(2) e )
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Then the image of F(:) on D is Q. It follows from here that F(-) is continuous on D and is bijective on C. Therefore
by Theorem 3 F : D — Q is the conformal mapping on D.
For example, if we choose A(s) = ¢ and a(s) = 1 +acos s, B(s) = —ibsins,a,b > 0. Then

#(t) = €*[i(1 + acos s + bsins) —asins + bcoss] # 0

forall a,b > 0 and ¢ € [0, 2x]. Hence the corresponding function F maps C bijectively onto I' parameterized by the
function y. Hence the function F is conformal mapping from the disc to the simply connected region Q with boundary

I.
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