
 

 

 

 

SYNTHESIS, CHARACTERIZATION AND SORPTION PROPERTIES OF 

MICROPOROUS TITANOSILICATE ETS-10 FROM RICE HUSK ASH 

 

 

 

 

 

 

 

 

 

 

 

JEI CHING YIH 

 

 

 

 

 

 

 

 

 

 

 

UNIVERSITI TEKNOLOGI MALAYSIA 

 

 

 



 

 

iii

 

 

 

 

 

 

To my love one 

Wong Hon Loong 

To my beloved parents 

Jei Mok Choon and Wong Mai Yin 

To my beloved brother and sister 

Jei Jenn Ning and Jei Chien Fong 

For their love that made me firm and resolute 

 

 

 



 

 

iv

 

 

 

ACKNOWLEDGEMENTS 

 

 

 

 I am eternally grateful to many individuals for the education, knowledge and 

experience that I gained over the past two years.  First of all, I would like to express 

my sincere appreciation to my project supervisor, Associate Professor Dr. Mustaffa 

Shamsuddin for giving me the opportunity to carry out research in the fascinating 

area of microporous molecular sieves and zeolites. Besides, I also would like to 

thank my project co-supervisor, Associate Professor Dr. Azli Sulaiman for his 

professional advice and emotional support. I thank for their helpful suggestion, 

direction, advice and sympathetic guidance during the entire course of this research.   

 

 I would like to thank all the staffs from the Department of Chemistry and 

Ibnu Sina Institute for Fundamental Science Studies, UTM for their prompt and 

timely help during my study and research.  Grateful acknowledge to the Ministry of 

Science, Technology and Innovation (MOSTI) Malaysia for its financial support 

through research grant, IRPA funding 09-02-06-0057-SR005/09-05 (Vot 74509).  I 

also would like to thank Universiti Teknologi Malaysia for offering a UTM-PTP 

research scholarship. 

 

 I am also deeply grateful to everyone who has encouraged me and assisted 

me in completing this research. Next, I would also thank my labmates and 

housemates. They are so kind and always willing to share their experience and 

knowledge with me.  

 

Last but not least, I would like to send my deepest appreciation to my family 

and my love one. They are always there to help us when I am facing problems and 

give me supporting at all times.   

 



 

 

v

 

 

 

PREFACE 
 

 

 

This thesis is the result of my work carried out in the Department of Chemistry; 

Universiti Teknologi Malaysia between July 2005 to December 2006 under 

supervision of Assoc. Prof. Dr. Mustaffa Shamsuddin.  Part of my work described in 

this thesis has been reported in the following publications or presentations: 

 

 

1. Jei, C. Y., Sulaiman, A. and Shamsuddin, M. Synthesis and Characterization 

of Microporous Titanosilicate, ETS-10 from Agricultural Waste. Proceeding 

of 1st Penang International Conference of Young Chemists. Universiti Sains 

Malaysia. 2006. 

 

2. Jei, C. Y., Sulaiman, A. and Shamsuddin, M. Physicochemistry Analysis of 

ETS-10 Derived from Rice Husk Ash. Poster presentation at the 19th  

Simposium Kimia Analisis Malaysia (SKAM-18). Universiti Teknologi 

Malaysia, 2006. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

 



 

 

vi

 

 

ABSTRACT 

 

 

 

A new class of nano-sized microporous titanosilicate ETS-10 has been 

prepared through hydrothermal synthesis route in the absence of ETS-4 and organic 

template agent. Local agriculture waste – rice husk ash (RHA) has been used as the 

silica source and commercial titanium oxide namely P25 as titanium source. For 

comparison, the colloidal silica source, LUDOX-30 was also used as a silica source 

to synthesize the ETS-10. The influence of some synthesis parameters such as 

synthesis time and heating temperature on the crystallization of ETS-10 and the gel 

oxides composition have also been investigated. The physico-chemical 

characterization of these synthesized materials have been carried out by X-ray 

Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), UV-Vis 

spectroscopy (UV-VIS), Field Emission Scanning Electron Microscopy (FESEM), 

Solid State Nuclear Magnetic Resonance (NMR), nitrogen adsorption-desorption 

analysis and Raman spectroscopy. The best ETS-10 sample was successfully 

obtained under heating at 220°C for 52 hours using the following molar ratio TiO2 : 

3.75SiO2 : 1.5NaOH : 0.54KF : 21.25H2O. The ability of the synthesized ETS-10 as 

adsorbents for heavy metal ion such as Pb2+, Cd2+ and Cu2+ was investigated. The 

study of equilibrium and adsorption isotherm at 298 K was conducted using batch 

mode. The uptake rates for these heavy metal ions were extremely fast and fitted well 

with the pseudo-second order model and Langmuir equation with an affinity order of  

Pb2+ > Cd2+ > Cu2+, with values of 1.86, 1.51 and 1.45 mmol/g respectively, which 

are the highest adsorptive capacities of the heavy metal ions on zeolite materials 

reported so far. This indicates that ETS-10 is a very promising adsorbent for divalent 

heavy metals. 
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ABSTRAK 

 

 

 

Titanosilikat ETS-10 mikroliang bersaiz nano telah disintesis melalui tindak 

balas hidroterma tanpa ETS-4 sebagai benih dan agen organik. Abu sekam padi yang 

merupakan sisa buangan pertanian tempatan telah digunakan sebagai sumber silika 

dan titanium oksida komersil (P25) digunakan sebagai sumber titanium. Untuk 

tujuan perbandingan,  silika koloid (LUDOX-30) juga digunakan sebagai sumber 

silika dalam sintesis ETS-10. Parameter yang mempengaruhi proses sintesis ETS-10 

dan komposisi oksida gelnya seperti masa dan suhu tindak balas juga dikaji. Hasil 

daripada sintesis telah dicirikan menggunakan pembelauan sinar-X (XRD), 

spektroskopi infra-merah transformasi Fourier (FT-IR), spektrokopi ultra 

lembayung-nampak (UV-VIS), mikroskopi elektron imbasan pancaran medan 

(FESEM), spekstroskopi resonans magnet nuklear keadaan pepejal (RMN), analisis 

penjerapan dan penyahjerapan nitrogen and spektroskopi Raman. Sampel ETS-10 

yang paling tulen didapatkan dengan menggunakan nisbah molar TiO2 : 3.75SiO2 : 

1.5NaOH : 0.54KF : 21.25H2O pada suhu 220°C selama 52 jam. Sampel ETS-10 

tulen ini kemudiannya digunakan dalam proses penjerapan untuk tujuan 

penyingkiran ion logam berat, terutamanya Pb2+, Cd2+ dan Cu2+. Dalam kajian ini, 

keseimbangan dan penjerapan isoterma pada suhu 25°C telah dijalankan melalui 

kaedah berkelompok. Kadar penjerapan untuk logam berat tersebut sangat pantas dan 

mematuhi dengan baik model pseudo tertib kedua dan model isoterma Langmuir 

dengan urutan Pb2+ > Cd2+ > Cu2+ dengan nilai keupayaan penjerapan 1.86, 1.51 and 

1.45 mmol/g masing-masing yang merupakan muatan penjerapan paling tinggi 

berbanding dengan zeolit lain yang dilaporkan setakat ini. Ini membuktikan bahawa 

ETS-10 adalah penjerap yang paling berpotensi terutamanya untuk penjerapan logam 

berat dwivalen. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Research background  

 

Due to the modern life nowadays, a lot of new technologies bring us to the 

easier life but at the same time it also brings the worst effects to the environment. 

Heavy metals such as lead (Pb), copper (Cu) and cadmium (Cd) which are released 

into aquatic environments largely from various anthropogenic activities are serious 

concern for human health and the environment. Therefore, removal of the heavy 

metal pollutants from aqueous systems has received a considerable amount of 

attention in order to control wastewater into an acceptable level according to the 

environmental regulations worldwide.  

 

There are many water treatment processes such as chemical precipitation [1], 

adsorption [2], reverse osmosis [3], electro-dialysis [4], ultra-filtration [5,6] and ion-

exchange [7,8] that are currently available for removal of heavy metals. Among them, 

the sorption process including ion-exchange and adsorption are the attractive ones, 

due to their relatively simple and safe process. Ion exchange for cation removal is 

often competitive with the classical chemical methods as it exhibits good 

performances, reasonable costs and sometimes metal recovery ability [9]. Hence, the 

good performances adsorbent has been investigated widely for this purpose. 

 

Since its first introduction for heavy metal removal, it is undoubted that 

activated carbon has been the most and widely used adsorbent in wastewater 
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treatment applications throughout the world. In spite of its prolific use, activated 

carbon remains an expensive material since higher the quality of the activated carbon, 

the higher it cost. Therefore, this situation makes it no longer attractive to be widely 

used in the small-scale industries due to cost inefficiency. Until currently, there are 

still many researchers working on inexpensive materials in search of the low-cost 

adsorbents for heavy metal removal. As a result, the low-cost adsorbents which have 

high adsorption capacity and locally available are desired. It is evident from the 

literature survey of about 100 papers that low-cost adsorbents have demonstrated 

outstanding removal capabilities for certain metal ions as compared to activated 

carbon [10].  

 

In the past few decades, both natural and synthetic zeolites have been studied 

for heavy metal removal [11]. With increasingly stringent environmental regulations 

for heavy metal presence in drinking water and wastewater, novel zeolite ion 

exchangers with fast ion exchange rates and high uptake capacities are desired. 

Natural zeolites gained a significant interest among scientists due to their ion-

exchange capability to preferentially remove unwanted heavy metals such as 

strontium and cesium [10]. This unique property makes zeolites favourable for 

wastewater treatment. However, the abundance of natural zeolites, an unavoidable 

problem of the utilization is the coexistence of the considerable impurities within the 

zeolitic tuffs, which interferes the exchange behavior of natural zeolites with heavy 

metals. As a result, synthetic zeolites which usually posses higher exchange capacity, 

easily controlled and known physico-chemical properties relative to that natural 

zeolites, have been preferred [12].  

 

Currently many researches are being carried out on the synthesis of zeolite or 

microporous and mesoporous materials for the better heavy metal removal. In 1989, 

a new class of microporous titanosilicate molecular sieves zeolite with octahedral 

coordinated titanium framework known as (Engelhard Titanosilicate-4), ETS-4 with 

pore size 0.3 – 0.4 nm and ETS-10 with pore size 0.49 – 0.76 nm were discovered by 

Kuznicki [13-15]. This new family of microporous titanosilicates have been shown 

to possess zeolite-like properties such as catalysis, separation, absorption and ion 

exchange [16].  
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The ETS-10 comprises of corner-sharing [SiO4]4- tetrahedra and [TiO6]8- 

octahedra linked through oxygen atoms, forming a three-dimensional 12-membered 

ring network with pore-opening size of about 0.8 nm [17]. In ETS-10 the titanium 

(IV) is found in the centre of the corner-sharing octahedral and the silicon in the 

centre of corner sharing tetrahedral. This produces an anionic framework whereby, 

whenever titanium is present in the structure, there is an associated two minus charge 

which is compensated by extra-framework cations (Na+ and K+ in as-synthesised 

ETS-10) [18]. Such a unique framework property has been demonstrated to display 

unusual adsorption properties towards heavy metal ions in aqueous solution [19]. 

Unlike conventional aluminosilicate zeolites which are chemically constituted from 

SiO4 and AlO4 tetrahedrals giving rise to one negative charge for each AlO4 

tetrahedron balanced by an ion-exchangeable cation like Na+. Therefore the 

associated two minus charge in ETS-10 structure make it a very interesting and 

suitable material for extremely fast ion exchange especially for divalent heavy metal 

cations removal compared with the zeolites which only has one minus charge in the 

structure.  

 

Since the first report of ETS-10, many titanium sources have been used to 

synthesize ETS-10. TiCl3 was used as the Ti source in the initial report of synthesis 

of ETS-10 by Kuznicki [13]. Due to the relatively expensive of TiCl3, the search for 

alternative Ti source had been carried out. Thus, organotitanium compounds, TiCl4 

and TiF4 had been used as Ti precursor to prepare ETS-10. However, the commercial 

pure anatase TiO2 and commercial nano-sized TiO2 (commercially known as P25) is 

of particular interest for the synthesis of ETS-10 because they are commercially 

readily available and do not bring any unwanted guest anions like Cl- and F-.  

 

Silica is one of the basic raw materials in synthesizing ETS-10. Many 

researchers have used Ludox to synthesize the ETS-10. At present, there is still no 

report of the rice husk ash being used as silica source to synthesize the ETS-10. 

Since the rice husk is an agricultural waste material and locally available with high 

percentage of silica, it becomes very suitable for low cost ETS-10 production. These 

advantages make it an important material for water purification process, especially in 

drinking water and waste water treatment. This will lead to an improved water 

quality for healthier life and green environment in Malaysia. 
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1.2 Scope of Study 

 

In the research, the synthesis of ETS-10 was carried out using locally 

produced rice husk ash as the silica source and titanium dioxide (namely P25) as the 

titanium source in different molar oxide gel ratio. During the synthesis of ETS-10, 

optimisation of the experimental conditions such as pressure, heating temperature, 

pH, duration of stirring and reaction time were investigated. The structure and  of the 

synthesized ETS-10 from rice husk ash will be compared with the ETS-10 

synthesized from colloidal silica source, LUDOX-30. 

 

Modification of the ETS-10, will also be carried out where a novel method 

called desilication will be applied to the synthesized ETS-10. In this method, some 

silicon will be selectively removed from the ETS-10 framework in order to create an 

extra ion exchange capacity. The desilication process toward ETS-10 will be 

optimized systematically by altering the temperature, time and concentration of the 

modifier. The original ETS-10 and desilicated ETS-10 will then be modified with 

NaNO3, KNO3 and NH4NO3 to produce the sodium, potassium loaded ETS-10 and 

protonated ETS-10 in order to use it as an ion-exchanger. 

 

All the synthesized ETS-10, desilicated ETS-10 and modified ETS-10 were 

characterized by Fourier transform infrared spectroscopy (FTIR), Raman 

spectroscopy, UV-Vis spectroscopy (UV-Vis), X-ray diffraction (XRD), solid state 

nuclear magnetic resonance (NMR), field emission scanning electron microscopy 

(FESEM), thermogravimetric analysis and simultaneous differential thermal analysis 

(TG-SDTA), nitrogen adsorption-desorption study for surface area analysis and 

cation exchange capacity for the ion-exchange capacity analysis (CEC).  

 

The sorption properties of the RHA synthesized ETS-10 were tested using 

water samples containing toxic heavy metals such as Pb2+, Cd2+ and Cu2+ under 

single, binary or ternary systems. The selectivity, kinetics and equilibrium, efficiency 

and ion exchange capacity of the ETS-10 were determined by Flame Atomic 

Absorption Spectroscopy (FAAS). 
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For comparison purpose, the LUDOX synthesized ETS-10 and RHA 

synthesized zeolite such as Zeolite A, Zeolite X and Zeolite Y samples were tested 

using water samples containing toxic heavy metals such as Pb2+, Cd2+ and Cu2+ under 

single metal ion system. The selectivity, kinetics and equilibrium, efficiency and ion 

exchange capacity of this LUDOX synthesized ETS-10 and zeolite will be 

determined by Flame Atomic Absorption Spectroscopy (FAAS). 

 

 

 

1.3 Objective of Study 

 

(i) To synthesize the microporous titanosilicate 10 (ETS-10) using rice husk ash 

as a silica source. 

 

(ii) To modify the synthesized ETS-10 by desilication and ion-exchange methods. 

 

(iii) To characterize the physico-chemical properties of the synthesized and 

modified ETS-10. 

 

(iv) To study the sorption properties of the synthesized and modified ETS-10 as 

an ion exchanger for Pb2+, Cd2+ or Cu2+ in aqueous samples. 

 

(v) To compare the sorption properties of ETS-10 and zeolite under single metal 

ion system toward the removal of Pb2+, Cd2+ or Cu2+ in the aqueous samples. 




