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ABSTRACT

Naïve bayes classifier is a probabilistic supervised machine learning algorithm, 

that can be launched on most general-purpose devices to solve wide range of 

classification problems. However, when it comes to real time applications, the 

general-purpose devices are limited in term of their computational throughput, 

thus this algorithm couldn’t be used for that purpose. The aim of this project is to 

accelerate this algorithm in hardware environment to improve its performance by 

exploring its hidden concurrency and map it into parallel hardware as an optimized IP 

package, suitable for FPGA-SoC applications. Thus, it could be used as a middle 

box system for real time malware detection. In order for the proposed hardware to 

meet the requirements of this research, it should be able to handle both training, and 

inference part in hardware, and also should be able to receive a flow of 20 

features, each of 32-bitsize, organized in 4-gram format. To meet these 

requirements, an enhanced version of the algorithm was developed and tested in C-

programming. Then an equivalent design with a 5-stages pipelined architecture, 

and single instruction multiple data capabilities, was built in hardware to address 

the case. At the end, the proposed hardware found to be 65 times faster in term of its 

computational throughput compared to an existing design, and that with keeping the 

accuracy level as high as 94%, under the conditions of experiment carried.
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ABSTRAK

Pengelas Naïve bayes adalah algoritma pembelajaran mesin berkebarangkalian

yang boleh dilancarkan pada kebanyakan peranti serbaguna untuk menyelesaikan

pelbagai masalah pengelasan. Walau bagaimanapun, untuk aplikasi waktu nyata,

peranti serbaguna ini terhad dari segi hasil pengiraannya, oleh itu algoritma ini tidak

dapat digunakan untuk tujuan tersebut. Tujuan projek ini adalah untukmempercepatkan

algoritma ini dalam keadaan perkakasan untuk meningkatkan prestasinya dengan

meneroka keserentakan yang tersembunyi danmemetakannya kepada perkakasan selari

sebagai IP pakej teroptimum, sesuai untuk aplikasi-aplikasi FPGA-SoC. Oleh itu, ia

dapat digunakan sebagai sistem kotak tengah untuk pengesanan pengisian hasad masa

nyata. Agar perkakasan yang dicadangkan memenuhi keperluan penyelidikan ini,

ia seharusnya dapat menangani bahagian latihan dan inferens dalam perkakasan dan

juga berupaya menerima aliran 20 ciri objek, masing-masing 32-bit, disusun dalam

format 4-gram. Untuk memenuhi keperluan ini, versi algoritma tersebut ditambah

baik dan diuji menggunakan pengaturcaraan C. Kemudian reka bentuk yang setara

dengan seni bina talian paip 5-tahap, dan satu arahan pelbagai keupayaan data, dibina

dalam perkakasan untuk menangani kes tersebut. Pada akhirnya, perkakasan yang

dicadangkan menghasilkan 65 kali lebih cepat dari segi hasil pengiraannya berbanding

dengan reka bentuk sedia ada dengan mengekalkan tahap ketepatan setinggi 94% di

bawah keadaan eksperimen yang telah dĳalankan.
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CHAPTER 1

INTRODUCTION

1.1 Background

By the current time, machine learning (ML) is one of the most important

aspects that characterized the modern development in technology. It almost intercepts

with every domain of our modern life [9]. From business to engineering, machine

learning assists computers with well written algorithms to progressively improving its

performance. The powerful of machine learning algorithms lays behind its ability to let

the computers learn from there past experience without being explicitly programmed.

This unique ability of ML to learn is developed by building mathematical model feed

with sample data known as training data [10]. Image processing, speech recognition,

product recommendation, medical diagnosis, traffic predication, spam mail detection,

and malware filtering are some of the most current trending applications of machine

leaning [11]. However, this noticeable leap in machine learning development was

motivated by the expansion of cyberspace that provide these algorithms with the sample

data that they need for training.

During the past years of our recent history, there were at least 12 definitions

attempted to describe what we define as cyberspace [12]. This reflects who dramatically

the cyberspace growth in the past decades. But unfortunately, this cyberspace is felt

with harmful software that can harm the connected users as well. In general, malicious

software, or malwares, has the ability to play very critical role in any intrusion attack

that attempts to hack or harm the connected devices. Generally, we can consider any

software that harms the network users as a malware. This can include all sorts of trojan

horses, worms, viruses, rootkits, spyware and scareware [13]. With tons of malware

roaming all the way around our cyberspace, installing malware detection system is

critical for any network user. Based on internet crime complaint center (IC3), that

created by the FBI recently in 2000 [14], up to 4,883,231 complaints reported have

been received by the center since its creation. From those reported, up to 49,711 reports
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have been received in its first year of operation. Furthers details about the numbers of

complaints and the amount of money lost by such incidents are presented in Figure 1.1

[1]. These huge numbers that recorded by just one center around the world, are big

enough to make one aware from being connected to a such a global network without

having a robust security system running at the background.

Figure 1.1: Complaints count and amount of money lost over the years between 2015
and 2019 recorded by IC3 [1]

In network security, malware static analysis methods are used to classify the

software as either malware or not by extracting several features from its files without

the actual need to execute its suspected codes [15], [16]. This means that if it is known

what the malware will attempt to do in the system, it is possible to create a specific

signature for it to detect its presence in the network at earlier time to prevent any future

attack. Recently, this method is gaining more popularity because of the noticeable

development in machine learning classification techniques.

Naïve bayes, is a probabilistic algorithm used to categorize elements into classes

based on conditional probability, thus it could be used in malware detection as well.

The aim of this project is to accelerate an existing version of this algorithm in hardware

environment by exploring its hidden concurrency and map it into parallel hardware

using pipeline and SIMD approach. This should allow it to work smoothly in the
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background to protect the connected devices in real time as a standalone device that

can work independently from the central processing unit (CPU) of the device used.

1.2 Problem Statement

Knowing whether a network packet is malware or not, has to be done in real

time. This means that the time response is very critical. Naïve bayes classifier is an

efficient algorithm in terms of computing reduction. But in most computing systems,

the computing resources where shared among several applications. This means that the

performance of the algorithm in terms of its overall speed will be affected as the CPU is

shared with other applications. In network security, handling the real time processing

of data to ensure safe connection is not the only challenge that presented, as improving

the user experience by securing the connection with a minimum delay, is required as

well. Due to the CPU limitation, even if the target algorithm is considered as a lite

algorithm in terms of its computing time, it still not efficient enough to handle the real

time processing of data. This is because of the sharing business that the CPU is doing

all the time. At this point, it is clear that moving from general computing approach to

domain specific computing approach is an essential step.

1.3 Research Gap

As our literature review is concerned, less information regards accelerating

the mentioned algorithm using a single instruction multiple data (SIMD) nor using a

pipelined design, are presented. Also, our literature review revealed that there were

limited studies have focused on implementing naïve baye classifier (NBC) in hardware

for malware detection; thus, this research is designed to cover this gap.

1.4 Research Objectives

The objectives of this research are:

• To find the System Verilog design that best improve the performance of the

naive algorithm in hardware in terms of throughput and speed for both training

and inference part.

• To validate the correctness functionality of the implemented design.
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• To benchmark the design outcome by comparing its performance with hardware

[17].

1.5 Scope

For the purpose of completing this project, proving whether naïve bayes

algorithm is efficient in identifying malicious software or not is outside the scope. This

is because it is already done by other researchers before [17]. This project is to improve

the performance of the target algorithm in hardware. For simplicity, a simulated

database with features similar to the ones used in [17] was created. In addition, it

should be recorded that the version of Vivado tool involved in this experiment for

design, synthesize, and simulate the project is 2019.1, and the computer device that

carry out the whole experiment including the benchmarking business follows these

specifications: Intel(R) Core (TM) i-5200, 2.20 GHz, 8 GB ram, 2 GB AMD graphic

card, with 64-bit version of Windows 10.

1.6 Thesis Organization

This thesis is organized as follows. Chapter 2 reviews the hardware and

software aspects that related to this project, as well as the recent similar works that

addressed by other researchers before. Chapter 3 explains the methodology used in

this project to implement the design. This includes the algorithm and its hardware

implementation. Chapter 4 elaborates the research finding and its standing compared

to other existing researches. Chapter 5 summarizes the project accomplishment and

provides suggestions for future works.
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