
HARDWARE IMPLEMENTATION OF NAIVE BAYES CLASSIFIER FOR

MALWARE DETECTION

YAHYA KHALED AL HUSSEIN

UNIVERSITI TEKNOLOGI MALAYSIA

DR. ISMAHANt BINTI tSMAJL
i=>ensyarah
Jabatan Kejuruteraan Elektronik & KejuMnan �
Fakulti Kejuruteraan Elektrik
Unlversiti Teknologl Malaysia _ _,,.,.,
81310 UTM Johor Bahru .,,,.,,,....­
Johor Derul fakzlm

HARDWARE IMPLEMENTATION OF NAIVE BAYES CLASSIFIER FOR

MALWARE DETECTION

YAHYA KHALED AL HUSSEIN

A project report submitted in partial fulfilment of the

requirements for the award of the degree of

Master of Engineering (Computer and Microelectronic Systems)

School of Electrical Engineering

Faculty of Engineering

Universiti Teknologi Malaysia

FEBRUARY 2021

DEDICATION

This thesis is dedicated to my father. I would much prefer it if he were still alive and

well. It is also dedicated to my dear mother, and that for her continuous

encouragement, endless care, and unconditional support.

iv

ACKNOWLEDGEMENT

In preparing this thesis, I was in direct contact with many people, academicians,

researchers, and classmates. They all have contributed towards my basic understanding

and toward the progress that I made. In particular, I want to express my sincere

appreciation to my thesis supervisor Dr. Ismahani Binti Ismail, for her comments and

recommendations on this thesis. I also want to express my thankful to the School of

Electric Engineering in UTM and to all its member’s staff for the guidance that they

gave to me, and above all to my dear family and friends for supporting me all the time

during my study.

v

ABSTRACT

Naïve bayes classifier is a probabilistic supervised machine learning algorithm,

that can be launched on most general-purpose devices to solve wide range of

classification problems. However, when it comes to real time applications, the

general-purpose devices are limited in term of their computational throughput,

thus this algorithm couldn’t be used for that purpose. The aim of this project is to

accelerate this algorithm in hardware environment to improve its performance by

exploring its hidden concurrency and map it into parallel hardware as an optimized IP

package, suitable for FPGA-SoC applications. Thus, it could be used as a middle

box system for real time malware detection. In order for the proposed hardware to

meet the requirements of this research, it should be able to handle both training, and

inference part in hardware, and also should be able to receive a flow of 20

features, each of 32-bitsize, organized in 4-gram format. To meet these

requirements, an enhanced version of the algorithm was developed and tested in C-

programming. Then an equivalent design with a 5-stages pipelined architecture,

and single instruction multiple data capabilities, was built in hardware to address

the case. At the end, the proposed hardware found to be 65 times faster in term of its

computational throughput compared to an existing design, and that with keeping the

accuracy level as high as 94%, under the conditions of experiment carried.

vi

ABSTRAK

Pengelas Naïve bayes adalah algoritma pembelajaran mesin berkebarangkalian

yang boleh dilancarkan pada kebanyakan peranti serbaguna untuk menyelesaikan

pelbagai masalah pengelasan. Walau bagaimanapun, untuk aplikasi waktu nyata,

peranti serbaguna ini terhad dari segi hasil pengiraannya, oleh itu algoritma ini tidak

dapat digunakan untuk tujuan tersebut. Tujuan projek ini adalah untukmempercepatkan

algoritma ini dalam keadaan perkakasan untuk meningkatkan prestasinya dengan

meneroka keserentakan yang tersembunyi danmemetakannya kepada perkakasan selari

sebagai IP pakej teroptimum, sesuai untuk aplikasi-aplikasi FPGA-SoC. Oleh itu, ia

dapat digunakan sebagai sistem kotak tengah untuk pengesanan pengisian hasad masa

nyata. Agar perkakasan yang dicadangkan memenuhi keperluan penyelidikan ini,

ia seharusnya dapat menangani bahagian latihan dan inferens dalam perkakasan dan

juga berupaya menerima aliran 20 ciri objek, masing-masing 32-bit, disusun dalam

format 4-gram. Untuk memenuhi keperluan ini, versi algoritma tersebut ditambah

baik dan diuji menggunakan pengaturcaraan C. Kemudian reka bentuk yang setara

dengan seni bina talian paip 5-tahap, dan satu arahan pelbagai keupayaan data, dibina

dalam perkakasan untuk menangani kes tersebut. Pada akhirnya, perkakasan yang

dicadangkan menghasilkan 65 kali lebih cepat dari segi hasil pengiraannya berbanding

dengan reka bentuk sedia ada dengan mengekalkan tahap ketepatan setinggi 94% di

bawah keadaan eksperimen yang telah dĳalankan.

vii

viii

TABLE OF CONTENTS

 TITLE PAGE

DECLARATION iii

DEDICATION iv

ACKNOWLEDGEMENT v

ABSTRACT vi

ABSTRAK vii

TABLE OF CONTENTS viii

LIST OF TABLES xi

LIST OF FIGURES xii

LIST OF ABBREVIATIONS xiv

CHAPTER 1 INTRODUCTION 1

1.1 Background 1

1.2 Problem Statement 3

1.3 Research Gap 3

1.4 Research Objectives 3

1.5 Scope 4

1.6 Thesis Organization 4

CHAPTER 2 LITERATURE REVIEW 5

2.1 Introduction 5

2.2 Naive Bayes Algorithm as Malware Detection, A
Global Overview 6

2.3 Hardware perspective 7

2.3.1 Configurable Domain Specific Computing
Approach 7

2.3.2 Hardware software Codesign 8

2.3.3 System on Chip (SoC) 10

2.3.4 Field Programable Gate Array (FPGA) 11

2.3.5 The Zynq All Programmable SoC from Xilinx 13

2.4 Software Perspective 14

2.4.1 Artificial Intelligent and Machine

Learning 14

2.4.2 Natural Language Processing (NLP) 16

2.4.3 Feature Engineering 17

2.4.4 Naïve Bayes Classifier 19

2.5 Related Works 20

2.6 Chapter Summary 21

CHAPTER 3 RESEARCHMETHODOLOGY 23

3.1 Introduction 23

3.2 Proposed Method 23

3.3 The Overall Research Approach 24

3.4 The Hardware Friendly Algorithm 24

3.5 The Hardware Implementation of The Logarith-

mic Approximation 28

3.6 Simulated Data 29

3.7 C-Model 30

3.8 The Hardware Implementation of The Training

Algorithm 31

3.9 The Hardware Implementation of The Inference

Algorithm 35

3.10 Chapter Summary 38

CHAPTER 4 RESULTS AND DISCUSSION 39

4.1 Software simulation 39

4.2 Hardware Simulation 40

4.3 Benchmark 41

CHAPTER 5 CONCLUSION 43

5.1 Project Accomplishment 43

5.2 Future Work 43

ix

REFERENCES 45

x

LIST OF TABLES

TABLE NO. TITLE PAGE

Table 3.1 Vectorized dataset 24

Table 4.1 Architecture table 41

Table 4.2 Utilization table 41

Table 4.3 Performance table 42

xi

LIST OF FIGURES

FIGURE NO. TITLE PAGE

Figure 1.1 Complaints count and amount of money lost over the years

between 2015 and 2019 recorded by IC3 [1] 2

Figure 2.1 Hardware vs software implementation [2] 7

Figure 2.2 Hardware/software partitioning based on Zynq device [2] 9

Figure 2.3 Traditional design flow of an electronic system [3] 9

Figure 2.4 Design flow based on HW/SW codesign [4] 10

Figure 2.5 A14 bionic chip from apple 11

Figure 2.6 An FPGA configured as an accelerator [5] 12

Figure 2.7 FPGA architecture [6] 12

Figure 2.8 Zynq architecture [2] 13

Figure 2.9 Biological neuron [7] 15

Figure 2.10 NLP working principle 16

Figure 2.11 N-gram 17

Figure 2.12 Feature engineering 18

Figure 2.13 Bayes theorem [8] 19

Figure 3.1 The overall research approach 24

Figure 3.2 The modified algorithm of the training part 27

Figure 3.3 Base 2 logarithmic lookup table 28

Figure 3.4 Database 29

Figure 3.5 Enhanced database 29

Figure 3.6 Training model 32

Figure 3.7 Processing elements 32

Figure 3.8 PE functional block diagram 33

Figure 3.9 Fitting module 33

Figure 3.10 Training module data-path 34

Figure 3.11 The finite state machine of the training module 34

Figure 3.12 The top-level module of the training algorithm 35

Figure 3.13 Inference model 36

Figure 3.14 Single instruction multiple data SIMD 36

Figure 3.15 Adder tree module 37

xii

Figure 3.16 decoder 37

Figure 3.17 Inference mechanism 38

Figure 4.1 C-result 39

Figure 4.2 Simulation waveform of the inference design 40

xiii

LIST OF ABBREVIATIONS

FPGA - Field Programmable Gate Array

SoC - System on Chip

ASIC - Application Specific Integrated Circuit

IC - Integrated Circuit

APSoC - All-Programmable System on Chip

PL - Programmable Logic

PS - Processing System

AXI - Advance eXtensible Interface

HW/SW - Hardware/Software

CLB - Configurable Logic Block

LUT - Lookup Table

FFs - Flip-Flops

ISA - Instruction Set Architecture

HDL - Hardware Description Language

RTL - Register Transfer Level

DU - Data-path Unite

CU - Control Unite

FSM - Finite State Machine

FSMD - Finite State Machine Datapath

ALU - Arithmetic Logic Unit

SIMD - Single Instruction Multiple Data

PE - Processing Element

IP - Intellectual Property

OS - Central Processing Unite

CPU - Central Processing Unite

GPP - General Purpose Processor

GPU - Graphics Processing Unit

xiv

HDR - High Dynamic Range

DSP - Digital Signal Processing

ALA - Adaptable Logarithm Approximation

NBC - Naïve Bayes Classifier

bSOM - Binary Self Organization Map

CNN - Convolutional Neural Network

AI - Artificial Intelligent

ML - Machine Learning

NB - Naïve Bayes

TF - Term Frequency

IDF - Inverse Document Frequency

IOT - Internet of Things

TTM - Time to Market

FBI - Federal Bureau of Investigation

xv

CHAPTER 1

INTRODUCTION

1.1 Background

By the current time, machine learning (ML) is one of the most important

aspects that characterized the modern development in technology. It almost intercepts

with every domain of our modern life [9]. From business to engineering, machine

learning assists computers with well written algorithms to progressively improving its

performance. The powerful of machine learning algorithms lays behind its ability to let

the computers learn from there past experience without being explicitly programmed.

This unique ability of ML to learn is developed by building mathematical model feed

with sample data known as training data [10]. Image processing, speech recognition,

product recommendation, medical diagnosis, traffic predication, spam mail detection,

and malware filtering are some of the most current trending applications of machine

leaning [11]. However, this noticeable leap in machine learning development was

motivated by the expansion of cyberspace that provide these algorithms with the sample

data that they need for training.

During the past years of our recent history, there were at least 12 definitions

attempted to describe what we define as cyberspace [12]. This reflects who dramatically

the cyberspace growth in the past decades. But unfortunately, this cyberspace is felt

with harmful software that can harm the connected users as well. In general, malicious

software, or malwares, has the ability to play very critical role in any intrusion attack

that attempts to hack or harm the connected devices. Generally, we can consider any

software that harms the network users as a malware. This can include all sorts of trojan

horses, worms, viruses, rootkits, spyware and scareware [13]. With tons of malware

roaming all the way around our cyberspace, installing malware detection system is

critical for any network user. Based on internet crime complaint center (IC3), that

created by the FBI recently in 2000 [14], up to 4,883,231 complaints reported have

been received by the center since its creation. From those reported, up to 49,711 reports

1

have been received in its first year of operation. Furthers details about the numbers of

complaints and the amount of money lost by such incidents are presented in Figure 1.1

[1]. These huge numbers that recorded by just one center around the world, are big

enough to make one aware from being connected to a such a global network without

having a robust security system running at the background.

Figure 1.1: Complaints count and amount of money lost over the years between 2015
and 2019 recorded by IC3 [1]

In network security, malware static analysis methods are used to classify the

software as either malware or not by extracting several features from its files without

the actual need to execute its suspected codes [15], [16]. This means that if it is known

what the malware will attempt to do in the system, it is possible to create a specific

signature for it to detect its presence in the network at earlier time to prevent any future

attack. Recently, this method is gaining more popularity because of the noticeable

development in machine learning classification techniques.

Naïve bayes, is a probabilistic algorithm used to categorize elements into classes

based on conditional probability, thus it could be used in malware detection as well.

The aim of this project is to accelerate an existing version of this algorithm in hardware

environment by exploring its hidden concurrency and map it into parallel hardware

using pipeline and SIMD approach. This should allow it to work smoothly in the

2

background to protect the connected devices in real time as a standalone device that

can work independently from the central processing unit (CPU) of the device used.

1.2 Problem Statement

Knowing whether a network packet is malware or not, has to be done in real

time. This means that the time response is very critical. Naïve bayes classifier is an

efficient algorithm in terms of computing reduction. But in most computing systems,

the computing resources where shared among several applications. This means that the

performance of the algorithm in terms of its overall speed will be affected as the CPU is

shared with other applications. In network security, handling the real time processing

of data to ensure safe connection is not the only challenge that presented, as improving

the user experience by securing the connection with a minimum delay, is required as

well. Due to the CPU limitation, even if the target algorithm is considered as a lite

algorithm in terms of its computing time, it still not efficient enough to handle the real

time processing of data. This is because of the sharing business that the CPU is doing

all the time. At this point, it is clear that moving from general computing approach to

domain specific computing approach is an essential step.

1.3 Research Gap

As our literature review is concerned, less information regards accelerating

the mentioned algorithm using a single instruction multiple data (SIMD) nor using a

pipelined design, are presented. Also, our literature review revealed that there were

limited studies have focused on implementing naïve baye classifier (NBC) in hardware

for malware detection; thus, this research is designed to cover this gap.

1.4 Research Objectives

The objectives of this research are:

• To find the System Verilog design that best improve the performance of the

naive algorithm in hardware in terms of throughput and speed for both training

and inference part.

• To validate the correctness functionality of the implemented design.

3

• To benchmark the design outcome by comparing its performance with hardware

[17].

1.5 Scope

For the purpose of completing this project, proving whether naïve bayes

algorithm is efficient in identifying malicious software or not is outside the scope. This

is because it is already done by other researchers before [17]. This project is to improve

the performance of the target algorithm in hardware. For simplicity, a simulated

database with features similar to the ones used in [17] was created. In addition, it

should be recorded that the version of Vivado tool involved in this experiment for

design, synthesize, and simulate the project is 2019.1, and the computer device that

carry out the whole experiment including the benchmarking business follows these

specifications: Intel(R) Core (TM) i-5200, 2.20 GHz, 8 GB ram, 2 GB AMD graphic

card, with 64-bit version of Windows 10.

1.6 Thesis Organization

This thesis is organized as follows. Chapter 2 reviews the hardware and

software aspects that related to this project, as well as the recent similar works that

addressed by other researchers before. Chapter 3 explains the methodology used in

this project to implement the design. This includes the algorithm and its hardware

implementation. Chapter 4 elaborates the research finding and its standing compared

to other existing researches. Chapter 5 summarizes the project accomplishment and

provides suggestions for future works.

4

REFERENCES

1. FBI’s Internet and (IC3), C. C. C. 2019 Internet Crime Report. 2019

Internet Crime Report, 2019: 1–28. URL https://pdf.ic3.gov/

2019{_}IC3Report.pdf.

2. Crockett, L., Elliot, R., Enderwitz, M. and Stewart, B. The Zynq Book. 2014:

484. URL http://www.zynqbook.com/.

3. Ha, S. and Teich, J. Handbook of hardware/software codesign. Springer

Publishing Company, Incorporated. 2017.

4. Liu, D. Application specific instruction set DSP processors. In: Handbook of

Signal Processing Systems. Springer. 415–447. 2010.

5. Wilab - Wireless communication laboratory Bologna. URL http://wilab.

org/teaching-activities/.

6. Introduction to FPGA with Verilog | by Roshanmaharana |

Medium. URL https://medium.com/@roshanmaharana1510/

introduction-to-fpga-with-verilog-ab6f02cbda34.

7. Nervous System - Definition, Function and Parts | Biology Dictionary. URL

https://biologydictionary.net/nervous-system/.

8. Stone, J. V. Bayes’ rule: A tutorial introduction to Bayesian analysis. Sebtel

Press. 2013.

9. Chowdhary, K. Fundamentals of Artificial Intelligence. Springer. 2020.

10. James, G.,Witten, D., Hastie, T. andTibshirani, R. An introduction to statistical

learning. vol. 112. Springer. 2013.

11. Applications of Machine Learning - Javatpoint. URL https://www.

javatpoint.com/applications-of-machine-learning.

12. Singer, P. W. and Friedman, A. Cybersecurity: What everyone needs to know.

oup usa. 2014.

13. Sikorski, M. and Honig, A. Practical malware analysis: the hands-on guide

to dissecting malicious software. no starch press. 2012.

45

https://pdf.ic3.gov/2019{_}IC3Report.pdf
https://pdf.ic3.gov/2019{_}IC3Report.pdf
http://www.zynqbook.com/
http://wilab.org/teaching-activities/
http://wilab.org/teaching-activities/
https://medium.com/@roshanmaharana1510/introduction-to-fpga-with-verilog-ab6f02cbda34
https://medium.com/@roshanmaharana1510/introduction-to-fpga-with-verilog-ab6f02cbda34
https://biologydictionary.net/nervous-system/
https://www.javatpoint.com/applications-of-machine-learning
https://www.javatpoint.com/applications-of-machine-learning

14. The FBI’s Internet Crime Complaint Center (IC3) Marks Its 20th Year —

FBI. URL https://www.fbi.gov/news/pressrel/press-releases/

the-fbis-internet-crime-complaint-center-ic3-marks-its-20th-year.

15. Nath, H. V. and Mehtre, B. M. Static malware analysis using machine learning

methods. International Conference on Security in Computer Networks and

Distributed Systems. Springer. 2014. 440–450.

16. YusirwanS, S., Prayudi, Y. and Riadi, I. Implementation of malware analysis

using static and dynamic analysis method. ĲCA. 2015, vol. 117. 11–15.

17. Zuki, A. Z. B. M. FPGA implementation of naive bayes classifier for network

security. 2018.

18. Theis, T. N. and Wong, H.-S. P. The end of moore’s law: A new beginning for

information technology. Computing in Science & Engineering, 2017. 19(2):

41–50.

19. Cong, J., Sarkar, V., Reinman, G. and Bui, A. Customizable domain-specific

computing. FPL. 2009. 1.

20. Pang, X., Yu, D., Li, J. and Guo, Y. Design and application of Ip core in soc

technology. 2010 Third International Symposium on Information Science and

Engineering. IEEE. 2010. 71–74.

21. Sloss, A., Symes, D. andWright, C. ARM system developer’s guide: designing

and optimizing system software. Elsevier. 2004.

22. What is HardwareAcceleration? Definition and FAQs | OmniSci. URL https:

//www.omnisci.com/technical-glossary/hardware-acceleration.

23. Teich, J. Hardware/software codesign: The past, the present, and predicting

the future. Proceedings of the IEEE, 2012. 100(Special Centennial Issue):

1411–1430.

24. Hemsoth, N. and Morgan, T. P. FPGA frontiers: new applications in

reconfigurable computing. Next Platform Press. 2017.

25. Santarin, M. Xilinx Redefines State of the Art With New 7 Series FPGAs.

Xcell Journal, Third Quarter, 2010.

46

https://www.fbi.gov/news/pressrel/press-releases/the-fbis-internet-crime-complaint-center-ic3-marks-its-20th-year
https://www.fbi.gov/news/pressrel/press-releases/the-fbis-internet-crime-complaint-center-ic3-marks-its-20th-year
https://www.omnisci.com/technical-glossary/hardware-acceleration
https://www.omnisci.com/technical-glossary/hardware-acceleration

26. Xilinx, A. Reference Guide, UG761 (v13. 1). URL http://www. xilinx.

com/support/documentation/ip documentation/ug761 axi reference guide. pdf,

2011.

27. The History of Artificial Intelligence | Data Science For

The Earth. URL https://www.datasciencearth.com/en/

the-history-of-artificial-intelligence/.

28. Artificial intelligence | Definition, Examples, and Applications |

Britannica. URL https://www.britannica.com/technology/

artificial-intelligence.

29. Rumelhart, D. E., Hinton, G. E. and Williams, R. J. Learning representations

by back-propagating errors. nature, 1986. 323(6088): 533–536.

30. Sidorov, G., Velasquez, F., Stamatatos, E., Gelbukh, A. and Chanona-

Hernández, L. Syntactic n-grams as machine learning features for natural

language processing. Expert Systems with Applications, 2014. 41(3): 853–

860.

31. Granik, M. and Mesyura, V. Fake news detection using naive Bayes classifier.

2017 IEEE First Ukraine Conference on Electrical and Computer Engineering

(UKRCON). IEEE. 2017. 900–903.

32. Müller, A. C., Guido, S. et al. Introduction to machine learning with Python:

a guide for data scientists. " O’Reilly Media, Inc.". 2016.

33. Elkan, C. Boosting and naive Bayesian learning. Proceedings of the

international conference on knowledge discovery and data mining. 1997.

34. Meng, H., Appiah, K., Hunter, A. and Dickinson, P. Fpga implementation of

naive bayes classifier for visual object recognition. CVPR 2011WORKSHOPS.

IEEE. 2011. 123–128.

35. Appiah, K., Hunter, A., Dickinson, P. and Meng, H. Binary object recognition

system on FPGAwith bSOM. 23rd IEEE international SOC conference. IEEE.

2010. 254–259.

36. Xue, Z., Wei, J. and Guo, W. A Real-Time Naive Bayes Classifier Accelerator

on FPGA. IEEE Access, 2020. 8: 40755–40766.

47

https://www.datasciencearth.com/en/the-history-of-artificial-intelligence/
https://www.datasciencearth.com/en/the-history-of-artificial-intelligence/
https://www.britannica.com/technology/artificial-intelligence
https://www.britannica.com/technology/artificial-intelligence

37. Paul, S., Jayakumar, N. and Khatri, S. P. A fast hardware approach

for approximate, efficient logarithm and antilogarithm computations. IEEE

transactions on very large scale integration (vlsi) systems, 2008. 17(2): 269–

277.

38. Bariamis, D., Maroulis, D. and Iakovidis, D. K. Adaptable, fast, area-efficient

architecture for logarithm approximation with arbitrary accuracy on FPGA.

Journal of Signal Processing Systems, 2010. 58(3): 301–310.

39. Klinefelter, A., Ryan, J., Tschanz, J. and Calhoun, B. H. Error-energy analysis

of hardware logarithmic approximation methods for low power applications.

2015 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE.

2015. 2361–2364.

40. Shrestha, R. and Paily, R. P. VLSI design and hardware implementation of

high-speed energy-efficient logarithmic-MAP decoder. Journal of Low Power

Electronics, 2015. 11(3): 406–412.

41. Ha, M. and Lee, S. Accurate hardware-efficient logarithm circuit. IEEE

Transactions on Circuits and Systems II: Express Briefs, 2016. 64(8): 967–

971.

42. Chen, J. and Liu, X. A fast and accurate logarithm accelerator for scientific

applications. 2017 IEEE 28th International Conference on Application-specific

Systems, Architectures and Processors (ASAP). IEEE. 2017. 208–208.

43. Ansari, M. S., Cockburn, B. F. and Han, J. A hardware-efficient logarithmic

multiplier with improved accuracy. 2019 Design, Automation & Test in Europe

Conference & Exhibition (DATE). IEEE. 2019. 928–931.

44. Patterson, D. A. and Hennessy, J. L. Computer Organization and Design,

Enhanced: The Hardware/Software Interface. Morgan Kaufmann. 2014.

48

	COVER PAGE
	PSZ FORM
	SUPERVISOR(S) DECLARATION
	TITLE PAGE
	 DECLARATION
	 DEDICATION
	 ACKNOWLEDGEMENT
	 ABSTRACT
	 ABSTRAK
	 TABLE OF CONTENTS
	 LIST OF TABLES
	 LIST OF FIGURES
	 LIST OF ABBREVIATIONS
	Introduction
	Background
	Problem Statement
	Research Gap
	Research Objectives
	Scope
	Thesis Organization

	LITERATURE REVIEW
	Introduction
	Naive Bayes Algorithm as Malware Detection, A Global Overview
	Hardware Perspective
	Configurable Domain Specific Computing
	Hardware Software Codesign
	System on Chip (SoC)
	Field Programable Gate Array (FPGA)
	The Zynq All Programmable SoC from Xilinx

	Software Perspective
	Artificial Intelligent and Machine Learning
	Natural Language Processing (NLP)
	Feature Engineering
	Naïve Bayes Classifier

	Related Works
	Chapter Summary

	RESEARCH METHODOLOGY
	Introduction
	Proposed Method
	The Overall Research Approach
	The Hardware Friendly Algorithm
	The Hardware Implementation of The Logarithmic Approximation
	Simulated Data
	C-Model
	The Hardware Implementation of The Training Algorithm
	The Hardware Implementation of The Inference Algorithm
	Chapter Summary

	Results and Discussion
	Software simulation
	Hardware Simulation
	Benchmark

	CONCLUSION
	Project Accomplishment
	Future Work

	REFERENCES

