
PROGRAMMING ENVIRONMENT FOR TEACHING INTRODUCTORY

PROGRAMMING FOR SECONDARY SCHOOL

NUR MARDHATI NABILA BINTI TUKIMAT

A dissertation submitted in partial fulfilment of the

requirements for the award of the degree of

Master of Computer Science

School of Computing

Faculty of Engineering

Universiti Teknologi Malaysia

MARCH 2019

DEDICATION

This thesis is dedicated to my father, who taught me that the best kind o f knowledge

to have is that which is learned for its own sake. It is also dedicated to my mother,

who taught me that even the largest task can be accomplished i f it is done one step at

a time.

ACKNOWLEDGEMENT

In the Name o f Allah, The Most Gracious and The Most Merciful.

First and foremost, all praise to The Almighty, all praise to Allah for granting me

strength to complete my master study after two years effort and tears. It my pleasure

to acknowledge all my friends and colleagues for their enormous supports and sharing

ideas in accomplish this study. I will always be grateful to have friends that are always

being my sides. In preparing this thesis, I was in contact with many people, researchers,

academicians, teachers and students. They have contributed towards my understanding

and thoughts.

My sincere appreciation to my supervisor, Dr. Dayang Norhayati, for the informative

supervision and countless hours spent in sharing and understanding. Her depth

knowledge on a broad spectrum of computer science has extremely beneficial for my

project and improvised my knowledge in this field. My deeply thanks to Ayah, Mama,

Sayang, Kak Ayu, Kak Anne, Bazli and Dayah for encouragement, guidance, valuable

comments and motivation. And also, for my little princess; Aisyah and Qisya, thanks

for your understanding and love.

iv

ABSTRACT

Programming subject was become one of the syllabus in Malaysia national

school start from 2017. To introduce youth to programming, suitable programming

environment to teach introductory programming should be determined. Many

initiatives are proceeding to bring powerful ideas of computing into classroom around

the world. A popular strategy being employed in this effort is the use of block-based

programming environment. This environment found to be effective among younger

learners. Their suitability in high school context is an open question. The existing tools

was analysed to identify the suitable environment to teach introductory programming

in high school. An experiment involving 30 participants was conducted to get their

perception on three different programming environments; text-based, block-based and

hybrid. Findings from the study reveal that participants in hybrid group scoring highest

in content assessment and reporting higher level in enjoyment and engagement to

traditional programming structure. After the completion of literature and exploratory

research, a bidirectional hybrid programming environment was developed. This

environment combines features of block-based and text-based interface to provides the

platform and engagement of block-based tools with the power and authenticity of text-

based introductory environment. A traditional hybrid programming creates a gap

between block-based and text-based programming. It was be used to run in evaluation

workshop involving of 13 students aged 16 - 17 years old. The evaluation of enhanced

programming environment was determined by using triangulation of data; students’

perception and result from their assessment using an enhanced hybrid programming

environment. Participants have positive perception on confidence and understanding

of programming concept. Besides, they agreed that bidirectional hybrid programming

environment offered a more effective way of introductory programming subject

compared to existing environment they are using in classroom. Suggestions for future

work are outlined and intended that this research will assist the development and use

a bidirectional hybrid environment in teaching introductory programming.

v

ABSTRAK

Pengaturcaraan merupakan salah satu subjek di dalam sukatan pelajaran

sekolah-sekolah di Malaysia bermula tahun 2017. Untuk memperkenalkan belia

kepada pengaturcaraan, persekitaran pengaturcaraan yang sesuai perlu digunakan.

Terdapat tiga jenis persekitaran pengaturcaraan seperti berasaskan teks, berasaskan

blok dan hibrid kombinasi teks dan blok. Para penyelidik mendapati bahawa

penggunaan pendekatan dan persekitaran yang betul dapat menjadikan proses

pembelajaran lebih efektif dan meningkatkan minat pelajar ke atas subjek

pengaturcaraan. Terdapat beberapa masalah dalam penyediaan mengajar subjek ini

termasuk kurikulum, pemilihan Bahasa, pedagogi pembelajaran, dan persekitaran

pengaturcaraan untuk menyokong pembelajaran. Untuk mengenal pasti persekitaran

yang sesuai untuk mengajar pengenalan kepada pengaturcaraan, perisian sedia ada

dikaji dan dianalisis. Eksperimen melibatkan 30 peserta dijalankan untuk

mendapatkan persepsi pelajar terhadap persekitaran pengaturcaraan berasaskan teks,

berasaskan blok dan hybrid. Hasil kajian mendapati peserta bagi kumpulan hibrid

mencatat rekod tertinggi dalam penilaian komutatif dan merasa sangat mudah untuk

beralih ke pengaturcaraan berasaskan teks. Setelah selesai kajian kesusastreraan dan

penyelidikan, persekitaraan pengaturcaraan hibrid dua arah telah dibangunkan. Ia

digunakan dalam bengkel penilaian melibatkan 13 orang pelajar berusia 16 - 17 tahun.

Keberkesanan ditentukan dengan kaedah triangulasi data; persepsi pelajar dan

keputusan pengaturcaraan pelajar setelah menggunakan persekitaran hibrid yang telah

dipertingkatkan. Peserta memberi perseptif positif terhadap keyakinan dan

pemahaman konsep pengaturcaraan. Selain itu, mereka bersetuju bahawa persekitaran

pengaturcaran hibrid dua hala menawarkan cara yang lebih berkesan bagi subjek

pengaturcaraan berbanding persekitaran yang sedia ada yang mereka gunakan di kelas.

Cadanngan untuk kerja akan datang digariskan dan bertujuan agar penyelidikan ini

dapat membantu pembangunan dan penggunaan persekitaran hibrid dua hala dalam

pengajaran pengaturcaraan.

vi

TABLE OF CONTENTS

TITLE PAGE

DECLARATION ii

DEDICATION iii

ACKNOWLEDGMENT iv

ABSTRACT v

ABSTRAK vi

TABLE OF CONTENTS vii

LIST OF TABLES xi

LIST OF FIGURES xiii

LIST OF ABBREVIATIONS xvi

LIST OF APPENDICES xvii

CHAPTER 1 INTRODUCTION 1

1.1 Overview 1

1.2 Research Background 3

1.3 Problem Statement 7

1.4 Research Aim and Objectives 8

1.5 Research Scope 8

1.6 Significant of Study 9

1.7 Structure of Thesis 9

CHAPTER 2 LITERATURE REVIEW 11

2.1 Introduction 11

2.2 Teaching Introductory Programming 11

2.3 Introductory Programming Curriculum Standard in 14

Secondary School

2.4 Programming Environment for Teaching Programming 16

2.5 Text-based Programming Environment 17

2.5.1 Khan Academy 18

2.5.2 Berkeley Logo 20

2.5.3 RobotC 21

vii

23

26

27

28

30

31

32

33

38

38

40

42

44

45

47

51

55

56

56

56

57

57

59

59

60

61

61

64

2.5.4 Text-based Programmig Environment Comparison

Block-based Programming Environment

2.6.1 Scratch

2.6.2 Alice

2.6.3 Lego Mindstorms EV3

2.6.4 ArduBlock

2.6.5 MUzECS

2.6.6 Block-based Programming Environment

Comparison

Hybrid Programming Environment

2.7.1 BrickLayer

2.7.2 Robokar Studio

2.7.3 SPRK Lightning Lab

2.7.4 Pencil Code

2.7.5 Hybrid Programming Environment Comparison

Programming Environment Comparison

Related Research

Summary

RESEARCH METHODOLOGY

Introduction

Research Process Workflow

3.2.1 Phase 1: Study the existing programming

environment

3.2.2 Phase 2: Study students’ perception on text-based,

block-based, and hybrid programming environment

3.2.3 Phase 3: Propose programming environment for

secondary school students

3.2.4 Phase 4: Evaluate the effectiveness of the proposed

programming environment

Research Framework

Case Study

3.4.1 Workshop One

3.4.1.1 Experiment Setup for Data Collection and

Analysis

viii

65

67

69

70

72

73

73

73

74

74

76

77

79

80

80

81

92

84

85

85

85

87

88

89

91

91

92

3.4.1.2 BB-8 App-Enabled Droid

3.4.2 Workshop Two

3.4.2.1 Experiment Setup for Data Collection

and Analysis

3.4.2.2 RoboKar

Summary

STUDENTS’ PERCEPTION ON TEXT-BASED,

BLOCK-BASED AND HYBRID PROGRAMMING

ENVIRONMENT

Introduction

Demographic Information and Domain Background

4.2.1 Participants’ Demographic Information

4.2.2 Participants’ Domain Background

Students’ Perception on Text-based, Block-based, and

Hybrid Programming Environment

4.3.1 Attitudinal Questions

4.3.2 Commutative Assessment

Discussion

4.4.1 Students’ Perception of SPRK Lightning Lab

4.4.2 Students’ Attitude Towards Programming

4.4.3 Result

Summary

THE HIBREED: A BIDIRECTIONAL HYBRID

PROGRAMMING ENVIRONMENT

Introduction

Hibreed Programming Environment

5.2.1 Software Development

5.2.2 System Architecture

5.2.3 Software Architecture

Discussion on Hibreed Programming Environment

5.3.1 Students’ Perception

5.3.2 Syllabus of Computer Science by Malaysia

Ministry of Eductaion

ix

5.3.3 Features from Literature Review 93

5.4 Features of Hibreed Programming Environment 93

5.5 Comparison of Hibreed and Another Hybrid Programming 97

Environment

5.6 Comparison of Hibreed and Pencil Code 98

5.7 Programming Concept to be Taught Using Hibreed 99

5.8 Summary 101

CHAPTER 6 EVALUATION OF THE EFFECTIVENESS OF 102

HIBREED PROGRAMMING ENVIRONMENT

6.1 Introduction 102

6.2 Demographic Information and Participants’ Domain 102

Background

6.3 Perception toward Workshop 104

6.4 Perception towards Hibreed Environment 107

6.5 Attarctive and Non-attractive Features in Hibreed 110

6.6 Helpful Aspect in Hibreed for Transitioning to Java 111

6.7 Discussion 111

6.7.1 Discussion on Confidence and Understand in 112

Programming Concept

6.8 Summary 116

CHAPTER 7 CONCLUSION 118

7.1 Research Summary 118

7.2 Research Contribution 119

7.3 Research Limitation 120

7.4 Future Work 121

REFERENCES 122

x

12

15

16

17

25

37

49

50

54

62

63

65

65

68

70

74

75

76

78

79

83

87

97

99

LIST OF TABLES

TITLE

An empirical classification on programming environment

based on age group

Programming content standard for lower secondary

Programming content standard for upper secondary

Programming environment for specific language

Khan Academy, Berkeley Logo, and RobotC comparison

Scratch, ArduBlock, and MUzECS comparison

BrickLayer, RoboKar Studio, SPRK Lightning Lab, and

Pencil Code comparison

Text-based, block-based and hybrid programming

environment

Comparison of related research

Experiment program

Three types of environment

Component of pre-survey questionnaire

Component of post-survey questionnaire

Workshop tentative

Component of pre-survey questionnaire

Demographic information of participants

Confidence level of programming concept

Commutative assessment of pre-survey

Descriptive static of attitudinal question

Descriptive distribution of commutative assessment

Findings of Workshop 1

Use case details

Comparison of Hibreed and another hybrid programming

environment

Hibreed and Pencil Code comparison

Syllabus comparison of MoE and Hibreed

xi

Table 6.3

Table 6.4

Table 6.5

Table 6.6

Table 6.7

Table 6.8

Table 6.1

Table 6.2

Descriptive statistic for interest in programming 103

Frequency distribution for confidence and understand in 103

basic concept of programming

Descriptive statistic of participants’ perception towards 105

workshop; interest, confidence, understand

Frequency distribution of participants’ perception 106

towards workshop; variable, sequence, repetition, and

selection

Frequency distribution of participants’ perception 109

towards Hibreed environment

Mean score for confidence in programming concept 113

towards workshop; variable, sequence, repetition, and

selection

Code implementation of each group related to variable, 114

sequence, repetition, and selection

Mean score for understand in programming concept 115

towards workshop; variable, sequence, repetition, and

selection

xii

19

19

20

21

22

23

28

29

30

31

33

33

39

40

41

41

43

43

45

45

58

60

63

63

66

LIST OF FIGURES

TITLE

Khan Academy programming environment

Error handling interface

Colour picking feature

Berkeley Logo programming environment

RobotC programming environment

Fragment code of RobotC

Scratch programming environment

Alice programming environment

Lego Mindstorms EV3 programming environment

arduBlock user interface

MUzECS blocks

Visual aids in MUzECS blocks

BrickLayer programming environment

Basic blocks in Scratch, BricLayer, and C

programming

RoboKar Studio programming environment (block-

based)

RoboKar Studio programming environment (text-

based)

SPRK Lightning Lab block-based programming

interface

SPRK Lightning Lab text-based programming

Block editor of Pencil Code

Text editor of Pencil Code

Research process workflow

Research framework

Task 1(a) and task 1(b)

Task 2(a) and task 2(b)

SPRK Lightning Lab block-based

xiii

66

67

71

71

72

76

77

80

82

86

88

89

90

90

91

94

94

95

96

96

96

100

103

106

107

107

SPRK Lightning Lab text-based

BB-8 robot

RoboKar

RoboKar track sample

Line follow process flow

Frequency statistic for confidence level of

programming concept

Students’ perception on interest, understand, and

confidence on programming

Sample of repetition question

Time completion of task given

Initial screen of Hibreed programming environment

Use case diagram

System architecture of Hibreed

Software architecture of Hibreed

Text parser workflow

Visualizer workflow

Choice of conditional blocks

Choice of command blocks

Annotated of screenshot of Hibreed programming

environment

Icon representation of command block

Error handling on missing argument

Error handling on incomplete condition statement

Variable declaration for variable named sensor

Graph of frequency distribution of confidence and

understand in basic concept of programming

Frequency statistic of participants’ perception towards

workshop; interest, confidence, understand

Frequency statistic of participants’ confidence towards

workshop; variable, sequence, repetition, and selection

Frequency statistic of participants understand towards

workshop; variable, sequence, repetition, and selection

xiv

Figure 6.5

Figure 6.6

Figure 6.7

Figure 6.8

Frequency statistic of participants’ perception towards 108

Hibreed environment

Mean score for confidence in programming concept 113

towards workshop; variable, sequence, repetition, and

selection

Mean score for understand in programming concept 115

towards workshop; variable, sequence, repetition, and

selection

Fragement coding using a counter in Hibreed 116

environment (text-editor)

xv

LIST OF ABBREVIATION

MDEC - Malaysian Digital Economy Corporation

HTML - Hypertext Markup Language

IDE - Integrated Development Environment

ASK - Asas Sains Komputer

SK - Sains Komputer

SDLC - Software Development Life Cycle

JRE - Java Runtime Error

JDK - Java Development Kit

UTM - Universiti Teknologi Malaysia

SMK - Sekolah Menengah Kebangsaan

SaaS - Software as a Service

PaaS - Platform as a Service

IaaS - Infrastructure as a Service

xvi

LIST OF APPENDICES

APPENDIX TITLE PAGE

Appendix A Pre-survey Workshop 1 131

Appendix B Post-survey Workshop 1 134

Appendix C Pre-survey Workshop 2 139

Appendix D Post-survey Workshop 2 141

Appendix E Programming Code (Workshop Participants) 142

xvii

CHAPTER 1

INTRODUCTION

1.1 Overview

Since the Stone Age, humans tend to make their lives easier by inventing

variety of tools. In the twenty-first century, devices and gadget that solve our daily

lives problems were created from mechanical, electronics and glued together with

computer program. The first computer program was written by Ada Lovelace in 1842

using Analytical Engine invented by mathematician Charles Babbage for calculating

Bernoulli numbers. In 1951, an American computer scientist Grace Hopper wrote the

first compiler known as A-0 in UNIVAC to convert sequences of subroutines and

arguments into computer. Hopper works lead the computer program to be more human

readable and, in 1957 IBM invented the first major programming language called

FORTRAN that introduce the usage of IF, DO and GOTO statements.

In this century, one of the useful products of technology would be the

computers. It becomes indispensable in our daily lives and increase the demand for

computer scientist, which is expected to increase irrespective of the poor current state

of the economy (Wellman et al, 2009). There is a necessity to produce competent

computer programmer not just to program PCs and PDAs, but also washing machine,

microwaves and a range of another essential item. However, there is a problem to teach

students that do not have ability to code a program and attract their interest of study of

programming (Bergin, 2006).

In Malaysia, programming subject become one of the syllabuses in national

school starting 2017. According to CEO of Malaysian Digital Economy Corporation

(MDEC) Datuk Yasmin Mahmood, this subject incorporated into the teaching method,

especially in science and mathematics classes. This is an effort of government to

encourage youth to take part in technology making instead of just being a user.

1

Besides, this effort encourages cognitive and higher thinking skills among youth

(Malay Mail Newspaper, July 18, 2016). In addition, primary and secondary school

students were also exposed to computational thinking skills that be integrated into

school curriculum (New Straits Times, August 11, 2016). According to Wing (2006),

computational thinking is an approach for problem solving, system designing, and

human behaviour understanding that extracts on the power and limits of computing. In

addition, Wing (2006) claimed that this skill is an essential for everyone and should

add to every child’s analytical ability besides reading, writing, and arithmetic skill.

There are two distinct standards under Ministry of Education Malaysia which

are Primary and Secondary. Primary level (Standard 1-6) is a student’s age 7 to 12

years’ old, while secondary level (Form 1-5) is a student’s age 13 to 17 years’ old.

Primary level will be taught coding where school syllabus will be integrated with

computational thinking. This lead to improve problem solving and critical thinking

skills. At this level, student will be introduced to programming environment such

Scratch so that students can applied their skills to practical situations. On the other

hand, when they get into secondary level, they will be exposed to more advanced

programming using programming language such Java and Hypertext Markup

Language (HTML). Learning coding not only gives students knowledge to program a

computer, but it builds problem solving skills, creative expression, and development

of computational thinking.

There is significant debate about how to teach programming to novice since

the introductory programming courses introduced in school and colleges. A lot of

things need to be considered when constructing the course such curriculum, languages

choices, learning pedagogy, and programming environment and tools for supporting

learning (Pears et al, 2007). The term programming environment is referring to an

environment that contains language specific editors and source level debugging

facilities (Jones, 2004). This term also known as integrated development environment

(IDE) that provides comprehensive facilities to computer programmers for software

development. An environment might contain a text editor (for program preparation),

an assembler (for program translation to machine language), and a simple operating

system.

2

1.2 Research Background

Anyone who wants to learn programming must choose a programming

environment to create and run the program. Programming environment can be divided

into three different types which are text-based, block-based and hybrid blocks/text

programming. Text-based environment is an environment which the primary input and

output based on text rather than visual or sound. In addition, users require to comply

and conform to the formal syntax of the programming language.

Two decades ago, MIT Media Lab introduced a concept of block-based

programming that eliminated the need to learn and memorize the syntax of a formal

programming language (Schor, 2016). A block-based programming environment

consists of variety of visual that leverage a puzzle metaphor and support drag-and-

drop approach. This mean, users only use a mouse to assemble functioning program

by snap together the instructions. Finding from research done by Weintrop & Wilensky

(2015), block-based programming environment ease-of-use especially among high

school students. There are many factors contribute to this statement; block using

natural language, interaction of drag-and-drop composition, and the ease of browsing.

While hybrid blocks/text environment is a combination of textual and block

programming which allows user to bring together the preferred features of textual and

block programming.

Myriad kind of environments have been proposed to fulfil the unique demands

and challenges in teaching introductory programming. From the survey did by Cheung

et al (2009), they realize there is a gap for students in Grade 11-13 (junior secondary

school). They run programming workshops to teach beginners programming aged

from 8 to 18 years old (from elementary school to secondary school) using Scratch

software. Students in secondary school feel too bored because of the environment

simplicity and limitation. They stated that they prefer conventional textual

programming environment. While for elementary, they are enjoying and respond best

to the environment. The authors of this paper realize there is a gap for students in Grade

11-13 (junior high school). Students for that grade find that textual environments are

too difficult while visual environments are too limited.

3

Lewis (2010) had done study on students’ perception and learning outcome of

block-based and text-based environment; Scratch and Logo. He found that small

difference in performance between two groups who use Scratch and Logo. Scratch

group have better ability in interpretation conditional statements. While, Logo group

have better confidence to do programming. However, after the experiment done, both

groups respond that programming course is difficult and hard to learn. Parson and

Haden (2007) stated that block-based programming environment apparent as simple

and far from real programming because fewer syntactic restriction and limitation in

building complex programs. However, Weintrop (2015) found that 92% of students

who joined his experiment have good respond in block-based programming. They

view block-based programming is easier than text-based programming because blocks

are closer to natural language and no syntax to remember and write.

Matsuzawa et al (2015) have developed hybrid programming environment for

Java language to track either text or block that students prefer. Earlier in the

experiment, he found that students prefer block-based modality. But, at the middle of

experiment and towards the end, students moving to text-based. Block-based modality

proven in helping novice to learn programming (Weintrop and Holbert, 2018). It leads

by the development of block programming environment such Scratch, Alice, and

Blockly as an introductory programming tools for novice or younger learners. While,

there is a question of the suitability of such modality in transitioning students to future

computer science learning. Weintrop and Holbert (2018) revealed that at early phase

of their experiment, students choose block to start building their program, but over the

time, they choose to use text modality, and returned to block to add new code that have

not been used yet during their program development.

For some education level, block-based seems too simple but text-based seems

too challenging for them. Thus, hybrid programming environment proof to be suitable

environment for teaching introductory programming for students with minimal or no

programming experience (Cheung, 2009). Plus, this environment increases their

confidence and interest in programming. As stated in research by Bau et al (2017),

hybrid or bidirectional mode switching provides two-ways transformation between

text language and block mechanism. Dual-mode environment benefits users from

4

learnability of block mechanism and get the competency of text mechanism. In

addition, it supports error handling where single mode of block does not support. User

can learn programming by using block and in the same time, they also can experience

error handling like traditional (text-based) programming language. Blanchard (2017)

makes research of the impact of hybrid programming environment to computer science

competency, confidence, and interest among students.

Programming environments used by students in most college or university are

text-based environment such DevC++ and Eclipse (Li et al., 2016). This require

students to manually type the codes to write a program. They need to remember and

write the correct syntax, or the compilation of their program will be not successful.

This become a problem to the beginners of the programming language. According to

Lahtinen et al. (2005), the lack of understanding programming concept among

beginners come from programming environment complexities and language syntax.

Some difficulties that are faced by beginners are (Robins et al., 2003, Truong et al.,

2007, Renumol et al., 2009):

i. Installing and setting class paths for compiler

ii. Learning functionalities of programming editors

iii. Understanding programming questions

iv. Writing code using programming language syntax knowledge

v. Describing the program logic and the difficulty of translating logic to

program

vi. Poor quality of assistance offered by trainers

vii. Lack of useful information about library functions and header files

viii. Understanding compiler error messages

ix. Fix errors, as determined during the debugging process

Because of that, the choice of programming environment for beginners are important

to make a significant difference in learning and to encourage them to do a

programming. Usually, programming environments are developed to meet

professional programmers’ needs. Besides, this environment contains extensive sets of

5

concepts and features where hard for novices to understand especially in understanding

error and warning message (Pears, et al., 2007).

Programming is difficult and requires many works including dedication and

training. Difficult is not only to understand concept or course structure, but lack of

motivation can lead to student frustration (Figueiredo and Garcia-Penalvo, 2018). To

overcome this problem especially among youth, many researchers inspired to find

ways to helping teachers in teaching programming, and students in learning

programming. In addition, some researchers stimulated to doing some research in

effectiveness of programmable robot or simulator robot as an aided-tool in

introductory programming course (Major, 2014; Gonzalez & Valcarcel, 2017; Barr,

2011). Referring to Bau et al (2017), programming environment for novice should

provide example that easy to find apply and installation free. Besides, vocabulary and

grammar should be visible. It also should describe simple concepts by using clear

words and high-level abstraction.

According to Liu, et al. (2013), robotic education used by many schools to

engage students in science, technology, engineering, and mathematics (STEM)

activities. In Malaysia, many schools use robotic technology as a tool in support

teaching of problem solving (Tukimat, 2014). In placing more emphasis, Major (2014)

claimed that assistant tool like robot simulation offered a more effective and enjoyment

means in learning introductory programming. Gonzalez & Valcarcel (2017) stated that

learning programming with robotic interference make learning process become

meaningful and fun, through teamwork and collaboration.

Besides, the use of programmable robot in education is accepted and convinced

by preschool teachers that joined teacher training day. Barr (2011) claimed that robotic

education has positive impact to develop computational thinking and programming

skills. Research done by Major (2014) stated that use of robot simulator supports

effective learning programming to beginners. Based on experiment done by him,

learning programming using robot simulator become a valuable and engaging

approach to learner especially novice.

6

However, programming with robotic can become complex because of the

increasing number of motors, sensors, and features of the robot to fulfil some objective.

The complexity of robot makes the programming environment become complex and

makes the end-user difficult to do programming on robot (Laval, 2018). Besides, Laval

(2018) and Murphy (2014) claimed that 50% of robots’ failure is because of human-

robot interaction with non-adequate programming environment. According to Chown

et al (2006), Tekkotsu environment (Touretzky et al, 2005) have complex environment

which requires several tutorials to write a simple program. Simpler design should be

developed for general use in classroom and have a low learning curve to make robot

move. Low barrier to entry is important to minimize the time requirement to learn

creating program (Cross, 2013).

1.3 Problem Statement

It is crucial to develop an environment specifically designed for the needs of

beginning programmers to learn introductory programming. In the past few decades,

the development of programming environment, tools and languages increased to

support learning introductory programming processes. Various types of interventions

have been used to overcome the problems in learning introductory programming and

help students to develop programming skills. However, novice still find difficult in

grasp the programming concept. Weintrop and Wilensky (2017) stated that modality

affected learner in attitudes, perception and conceptual learning. There are three type

of programming modality; text-based, block-based, and hybrid. The general research

questions this research tries to answer:

“ What programming environment that suitable for secondary school students

to learn introductory programming through robotic?”

To answer this question, a set of research questions are defined as follow:

(i) Is a block-based, text-based or hybrid programming environment

more suitable for secondary school students?

7

(ii) What is the strength and potential drawbacks to block-based, text-

based and hybrid programming environment does secondary school

students will face?

(iii) What is the most suitable programming environment are being used

in introductory programming course?

(iv) How to evaluate the proposed environment for teaching introductory

programming?

1.4 Research Aim and Objectives

The overall aim of this research is to propose programming environment that

suitable for secondary school students to learn introductory programming. The aim of

the research incorporates four objectives:

(i) To study the existing programming environment for teaching

introductory programming

(ii) To study the students’ perception on block-based and text-based

programming environment

(iii) To propose a programming environment for teaching introductory

programming

(iv) To evaluate the effectiveness of the proposed environment for teaching

introductory programming

1.5 Research Scope

In this research, the scope of the study is defined as follows:

(i) This study focuses on the teaching introductory programming for

secondary school students

(ii) Student age range between 13 and 17 years

8

(iii) This study focuses on the programming environment used for teaching

programming

(iv) This study focuses on teaching programming through robotic

1.6 Significant of Study

Finding from this research will contribute to our understanding either block-

based, text based or hybrid programming environment fits into more formal, structured

educational spaces for secondary school. In addition, the intended audience for this

paper not only among teachers and curriculum designer of secondary school. But, it

includes computer science community who are planning, designing, and revising a

new course to teach introductory programming to novices.

The practices, tools, and curriculum resulted from this research will become

the standard for secondary schools especially schools in Malaysia. The lack of interest

of programming subject among university students is because they struggle to

understand the programming concept plus the programming environment itself make

the problem worsen. In addition, they have not been practically taught of programming

in their previous studies, for example, in a secondary school. Exposure to

programming in early stage of education can change the perception of programming

to better view. Furthermore, the use of right programming environment and tool will

help students to learn programming in more effective way. Besides, learning

programming subject will be one of the ways to improve problem solving and critical

thinking skills. We are confident that the proposed environment is effective at teaching

introductory programming for secondary school.

1.7 Structure of Thesis

Chapter 1 describes the overview of the study by explain the research

background, problem statement, research aim, objective, scope and significant of

study. The remainder of this thesis is broken down into six chapters. The first of this

9

REFERENCES

Aktunc, O. (2013). A Teaching Methodology for Introductory Programming Courses

using Alice. International Journal o f Modern Engineering Research, 3(1), 350

353.

Alexander Ruf, Andreas Muhling, Peter Hubwieser. (2014). Scratch vs. Karel - Impact

on Learning Outcomes and Motivation. WiPSCE 2014.

Ardublock. (2016). Ardublock a Graphical Programming Language for Arduino.

Available online: http://blog.ardublock.com/, accessed 11-19-2016.

Armoni, M., Meerbaum-Salant, O. & Ben-Ari, M. (2015). From Scratch to “real”

programming. ACM Transaction Computer Education.

Azad A. and F. Kohun. (2009). Considerations for Selecting a Programming Language

to Teach Perspective Teachers. Alice Symposium, Duke University, Durham,

NC.

B. Kaucic and T. Asic. (2011) Improving introductory programming with Scratch?.

Procedure 34th International Convention MIPRO, 1095-1100.

Barr, D., Harrison, J., y Conery, L. (2011). Computational Thinking: A Digital Age

Skill for Everyone. Learning & Leading with Technology, 38(6), 20-23.

Bau, D., Anthony, D. & Mathew D. (2015). Pencil Code: Block Code for a Text World.

ACMIDC ’15. June 21 - 25, 2015.

Bau, D., Gray, J., Kelleher, C., Sheldon, J. & Turbak, F. (2017) ‘Learnable

programming: blocks and beyond’. Commun. ACM, 60(6) pp. 72-80

122

http://blog.ardublock.com/

Ben, E., Cyr, M., and Rogers, C. (2013) Lego engineer and RoboLab: Teaching

engineering with LabView from kindergarten to graduate school. International

Journal o f Engineering Education, 16(3):181-192. 12.

Bergin, J., Lister, R., Owens, B., & McNally, M. (2006) ‘The first programming

course: ideas to end the enrolment decline’, ACM SIGCSE Bulletin, 38(3),

pp301-302).

Blanchard, J. (2017). Hybrid Environments: A Bridge from Blocks to Text. ICER’17.

August 18-20, 2017. Department of CISE University of Florida Gainesville, FL,

USA, Tacoma, WA, USA

Briana B. Morrison, Betsy DiSalvo. (2014). Khan Academy Gamifies Computer

Science. Proceedings o f the 45th ACM technical symposium on Computer

science education, 39-44.

Bruckman, A. and Edwards, E. (1999). Should we leverage natural-language

knowledge?. Procedure o f the SIGCHI conference, 207-214.

Caballero-Gonzalez, Y. A. & Garcia-Valcarcel, A. G (2017) Development of

computational thinking and collaborative learning in kindergarten using

programmable educational robots: a teacher training experience. TEEM 2017,

October18 - 20 2017. Cadiz, Spain.

Carle, A. & Schertle, R. (2017) mBot for makers: Conceive, Construct, and Code Your

Own Robots at Home or in the Classroom.

Carlisle, M. C., Wilson, T. A., Humphries, J. W., and Hadfield, S. M. (2005).

RAPTOR: a visual programming environment for teaching algorithmic problem

solving. Technical Symposium on Computer Science Education. 176-180.

Chown, E., Foil, G., Work, H., and Zhuang, Y. (2006). AiboConnnect: A simple

programming environment for robotics. Proceedings o f the Nineteenth

123

International Florida Artificial Intelligence Research Society Conference,

Melbourne Beach, Florida, USA, May 11-13, 2006

Cooper, S., Dann, W., and Pausch, R. (2003). Teaching objects-first in introductory

computer science. Proceedings o f the 34th SIGCSE Technical Symposium on

Computer Science Education, 91-195.

Corral, J.M.R, Balcells, A.C., Estevez, A.M., Moreno, G.J., Ramos, M.J.F. A game-

based approach to the teaching of object-oriented programming languages.

Computer and Education, vol. 73, 83-92.

Cross, J., Bartley, C., Hamner, E., Nourbabkhsh, I. (2013). A Visual Robot-

Programming Environment for Multidisciplinary Education. IEEE International

Conference on Robotics and Automation (ICRA), Germany, May 6-10, 2013

D. Goulet and D. Slater. (2009). Alice and the introductory programming course: An

invitation to dialogue. Information Systems Education Journal, Vol. 7.

Denny, P., Luxton-Reilly, A., Tempero, E. and Hendrickx, J. (2011). Understanding

the syntax barrier for novices. Procedure o f the 16th Annual ITiCSE, 208-212.

Duncan, C., Bell, T., and Tanimoto, S. (2014). Should your 8-year-old learn coding?.

Proceedings o f the 9th Workshop in Primary and Secondary Computing

Education, 60-69

Figueiredo, J. & Garcia-Penalvo, F. J. (2018). Building Skills in Introductory

Programming. In Proceedings of the 6th International Conference on

Technological Ecosystems for Enhancing Multiculturality (TEEM 2018),

October 24-26, 2018. Salamanca, Spain, New York, NY, USA.

Grout, V., and Houlden, N. (2014). Taking computer science and programming into

schools: The Glyndwr/BCS Turing Project. Procedia - Social and Behavioral

Sciences, 141(25), 680-685.

124

Hunpatin, O., O’Hare, C., Thomas, R., Brylow, D. (2016). A Browser-based IDE for

the MUzECS Platform. The 22nd International Conference on Distributed

Multimedia Systems.

Jawawi, D., Mamat, R., Ridzuan, F., Khatibsyarbini, M., Zaki, M. (2015). Introducing

Computer Programming to Secondary School Students using Mobile Robots.

10th Asian Control Conference 2015 “Emerging Control Techniques for a

sustainable World”. May 31 - June 3. Kota Kinabalu, Malaysia.

Joey. C. Y. Cheung, Grace Ngai, Stephen C. F. Chan and Winnie W.Y. Lau. (2009).

Filling the Gap in Programming Instruction: A Text-enhanced Graphical

Programming Environment for Junior High Students. Proceedings o f the 40th

ACM technical symposium on Computer science education, 276-280.

Jones, D. W. (2004) Introduction to System Software. The university of IOWA

Department of Computer Science.

Jost, B., Ketterl, M., Budde, R., & Leimbach, T. (2014). Graphical Programming

Environments for Educational Robots: Open Roberta - Yet another One? IEEE

International Symposium on Multimedia.

Kay, J. S. (2003). Teaching robotics from a computer science perspective. Journal o f

Computing in Small Colleges. 19(2), 329-336.

Kelleher, C., and Pausch, R. (2005). Lowering the barriers to programming: a

taxonomy of programming environments and languages for novice

programmers. ACM Computing Surveys, 37(2), 88-137.

Lahtinen, E., Ala-Mutka, K., and Jarvinen, H. M. (2005). A study of the difficulties of

novice programmers. ACMSIGCSEBulletin, 37(3), 14-18.

Laval, J. (2018). End User Live Programming Environment for Robotics. Robotics and

Automation Engineering Journal, 3(2), 14-18.

125

Lewis, C. M. (2010). How Programming Environment Shapes Perception, Learning

and Goals: Logo vs. Scratch. ACMSIGCSE, pp346-350.

Li, H. F., Liang, T. Y., Peng, H. T., (2016). A Block-Oriented C Programming

Environment. International Conference on Applied System Innovation (ICASI).

Liu, L., Zhang, J. X., Ordonez de Pablos, P., and She, J. (2014). The auxiliary role of

information technology in teaching: Enhancing programming course using

Alice. International Journal o f Engineering Education, 30(3), 560-565.

M. Bajzek, H. Bort, O. Hunpatin, L. Mivshek, T. Much, C. O’Hare, D. Brylow. (2016).

MUzECS: Embedded Blocks for Exploring Computer Science. Proceedings o f

the 47th ACM Technical Symposium on Computing Science Education, 127-132.

Major, L. (2014). An Empirical Investigation into The Effectiveness o f A Robot

Simulator As A Tool To Support The Learning O f Introductory Programming.

PhD Thesis. Keele University.

Maloney, J., Resnick, M., Rusk, N., Silverman, B., and Eastmond, E. (2010). The

scratch programming language and environment. ACM Transactions on

Computer Education.

Mannila, L., Peltomaki, M., and Salakoski, T. (2006). What About a Simple

Language? Analyzing the Difficulties in Learning to Program. Computer

Science Education, 16(3), 211-227.

Matsuzawa, Y. et al. (2015). Language Migration in non-CS Introductory

Programming through Mutual Language Translation Environment. Proceedings

o f the 46th ACM Technical Symposium on Computer Science Education, 185

190.

Meerbaum-Salant, O. (2011). Habits of programming in scratch. In ITiCSE ’11, 168

172.

126

http://ieeexplore.ieee.org.ezproxy.psz.utm.my/xpl/mostRecentIssue.jsp?punumber=7527555

Mladenovic, Monika & Krpan, Divna & Mladenovic, Sasa. (2017). Learning

programming from Scratch.

Murphy, R. R. (2014) Disaster Robotics. The MIT Press

Parsons, D. & Haden, P. (2007). Programming Osmosis: Knowledge Transfer from

Imperative to Visual Programming Environments. 20th Annual Conference o f

the National Advisory Committee on Computing Qualifications (NACCQ 2007).

Parsons, D., and Haden, P. (2007). Programming Osmosis: Knowledge Transfer from

Imperative to Visual Programming Environments. In S. Mann & N. Bridgeman

(Eds.), Proceedings o f The Twentieth Annual NACCQ

Conference, 209-215.

Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E., Bennedsen, J., Devlin, M.,

& Paterson, J. (2007). A survey of literature on the teaching of introductory

programming. ACMSIGCSEBulletin, 39(4), December 2007.

Pendergast, M. (2006). Teaching introductory programming to IS students: Java

problems and pitfalls. Journal o f Information Technology Education, vol. 5,

491-515.

Powers, K., Ecott, S. and Hirshfield, L. (2007). Through the looking glass: teaching

CS0 with Alice. Proceedings o f the 38th SIGCSE technical symposium on

Computer Science Education.

Powers, K., Gross, P., Cooper, S., McNally, M., Goldman, K. J., Proulx, V. and

Carlisle, M. (2006). Tools for teaching introductory programming: what works?.

ACM SIGCSE Bulletin, 38(1), 560-561.

Renumol, V. G., Jayaprakash, S. & Janakiram, D. (2009). Classification of cognitive

difficulties of students to learn computer programming. Indian Institute. o f

Technology, Department of Computer Science, Chennai.

127

http://dl.acm.org/citation.cfm?id=1345441&CFID=863398679&CFTOKEN=37274096
http://dl.acm.org/citation.cfm?id=1345441&CFID=863398679&CFTOKEN=37274096
http://dl.acm.org/citation.cfm?id=1345441&CFID=863398679&CFTOKEN=37274096

Ridzuan, F. (2016). Comparative Study on Teaching Programming Tools for

Secondary School Students. Universiti Teknologi Malaysia: Degree Thesis.

Robins, A., Rountree, J., and Rountree, J. (2003). Learning and teaching programming:

A review and discussion. Computer Science Education, 13(2), 132-172.

Robson, C. (2011) Real World Research. 3rd Edition. John Wiley & Sons.

Stefik, A. and Siebert, S. (2013). An Empirical Investigation into Programming

Language Syntax. ACM Transactions on Computing Education. 13(4), 1-40.

Stutterheim, J., Swierstra, W., and Swierstra, D. (2013). Forty hours of declarative

programming: Teaching Prolog at the Junior College Utrecht. Electronic

Proceedings in Theoretical Computer Science EPTCS Electron. Procedure

Theory Computer Science, 50-62.

Taheri, S. M., Sasaki, M., and Ngetha, H. T. (2015). Evaluating the effectiveness of

problem-solving techniques and tools in programming. Science and Information

Conference (SAI), 928-932.

Touretzky, D. S. and Tira-Thompson, E. J. (2005). Tekkotsu: A framework for AIBO

cognitive robotics. Proceedings o f the Twentieth National Conference on

AritificialIntelligence. (AAAI-05).

Truong, N. (2007). A web-based programming environment for Novice Programmers.

Ph.D. dissertation Faculty of Inform. Technology, Queensland University of

Technology, Queensland.

Tukimat, N. M. N. (2014). Perisian Membantu Pembelajaran Pengatucaraan dengan

RoboKar. Universiti Teknologi Malaysia: Degree Thesis.

Vihavainen, A., Miller, C. S., and Settle, A. (2015). Benefits of Self-explanation in

Introductory Programming. Proceedings o f the 46th ACM Technical Symposium

on Computer Science Education, 284- 289.

128

Weintrop, D. & Wilensky, U. (2017). Comparing Block-Based and Text-Based

Programming in High School Computer Science Classrooms. ACM Trans.

Comput. Educ. 18(1) Article 3, October, 2017, 25 pages.

Weintrop, D. (2015). Blocks, Text, and the Space Between the Role of Representations

in Novice Programming Environments. IEEE Symposium on Visual Languages

and Human-Centric Computing (VL/HCC).

Weintrop, D. and Wilensky, U. (2015). To Block or not to Block, that is the Question:

Students’ Perceptions of Blocks-based Programming. Procedure o f the 14th

Annual IDC Conference.

Weintrop, D. and Wilensky, U. (2015). Using Commutative Assessments to Compare

Conceptual Understanding in Blocks-based and Text-based Programs. ICER '15.

Wellman, B. L., Anderson, M., and Vrbsky, S. V. (2009) ‘PREOP as a tool to increase

student retention in CS’. Journal o f Computing Sciences in Colleges, 25(2),

pp167-175.

Wing, J. (2006) Computational Thinking. Communications of the ACM. June 27-30,

2016. Standford, CA, USA, pp33 - 35

Yin, R.K., (1984). Case Study Research: Design and Methods. Beverly Hills, Calif:

Sage Publications.

Website

Berkeley Logo. (2016).

https://people.eecs.berkeley.edu/~bh/logo.html, accessed 30-06-2016.

Google Blockly. (2016).

https://developers.google.com/blockly/, accessed 30-06-2016.

Heroku. (2018).

129

https://people.eecs.berkeley.edu/~bh/logo.html
https://developers.google.com/blockly/

https://www.heroku.com/, accessed 28-12-2018.

Karel Programming Language. (2016).

https://en.wikipedia.org/wiki/Karel_(programming_language), accessed 11-19

2016.

Malay Mail Newspaper. (2016)

RobotC, 2018(www.robotc.net)

Schor, J. (2016). Co-Founder and CEO of CodeMonkey Studios. Available online:

https://www.fractuslearning.com/2016/02/15/teaching-kids-code-text-based-vs-

block-based/, accessed 11-19-2016.

130

https://www.heroku.com/
https://en.wikipedia.org/wiki/Karel_(programming_language)
http://www.robotc.net/
https://www.fractuslearning.com/2016/02/15/teaching-kids-code-text-based-vs-block-based/
https://www.fractuslearning.com/2016/02/15/teaching-kids-code-text-based-vs-block-based/

