SMART CONTRACT IN MALAYSIA CONSTRUCTION INDUSTRY

SYARAFINA ADIZAH BINTI MOHAMAD HIDHIR

A master's project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Science in Construction Contract Management

> Faculty of Built Environment and Surveying Universiti Teknologi Malaysia

> > MARCH 2021

ACKNOWLEDGEMENT

Alhamdulillah. The highest gratitude to Allah S.W.T for the strength, patients, and ideas for me in preparing this thesis. Completing this thesis during Covid-19 MCO requires everything.

My heartfelt gratitude to my supervisor Sr. Dr. Norazam bin Othman is his support, advice, comments, and motivations for the entire journey to complete this thesis. I also want to use this opportunity to thank all the lecturers of Construction Contract Management, especially Dr. Hamizah Liyana bt Tajul Arifin, for the supports and guidance during my studies.

To my mother, siblings, and my friend for their prayers and encouragement. To those who indirectly contribute to this thesis.

Let us pray for the Covid-19 pandemic to end.

Thank you.

ABSTRACT

The construction industry plays a vital role in supporting Malaysian economic and social growth. However, because of its unique characteristic, the construction industry is more prone to payment disputes than other industries. CIPAA was introduced to facilitate payment disputes among parties. However, without the root solution, payment disputes will continue to arise. Today, there are new technology available in the construction industry to improve work efficiency, such as building information modeling (BIM), drone technology, Industrial Building systems (IBS), and etc. for the construction contract, the new technology available is smart contracts. Smart contracts are a contract that has been coded into computer language as software using the blockchain platform, thus reducing time and cost when performing transactions. Smart contracts have all the blockchain advantages such as data storage and record tracking, trust, and no intermediaries. All information is stored in batches and linked together chronologically in a continuous line, decentralized, and distributed across network computers (the contractual parties). Hence, contractual parties can track information quickly, and the data tampering can be reduced since all parties have the same real-time information. This paper aims to determine smart contracts' transactions in reducing payment disputes and determine the challenges in implementing smart contracts adoption in the Malaysia construction industry. Different types of research methodology are used to achieve both objectives. For the first objective, the study papers were collected, and key points are filtered out to understand the smart contracts' transaction, leading to the creation of theories from various resources on blockchain technology and smart contracts transactions. For the second objective, data was collected through a questionnaire distributed to the selected respondents. The first objective shows that smart contracts' transaction can reduce the factors contribute to payment disputes; hence reducing payment disputes. The second objective shows the expected challenges in implementing smart contracts in the Malaysia construction industry, such as lack of ICT infrastructures, smart contracts drafting, lack of knowledge, etc. In conclusion, there are possible solutions for payment disputes despite the challenges in implementing smart contracts in the Malaysia construction industry.

ABSTRAK

Industri pembinaan memainkan peranan penting dalam menyokong pertumbuhan ekonomi dan sosial di Malaysia. Namun, kerana sifatnya yang unik, industri pembinaan lebih rentan terhadap pertikaian pembayaran daripada industri lain. CIPAA diperkenalkan untuk memudahkan pertikaian pembayaran antara pihak. Namun, tanpa jalan penyelesaian, kes pertikaian pembayaran akan terus meningkat. Teknologi baru telah dibangunkan dalam industri pembinaan untuk meningkatkan kecekapan kerja, seperti pemodelan maklumat bangunan (BIM), teknologi drone, sistem Bangunan Industri (IBS), dan lain-lain. Untuk kontrak pembinaan, teknologi baru yang tersedia adalah smart kontrak. Smart kontrak adalah kontrak yang telah dikodkan ke dalam bahasa komputer sebagai perisian menggunakan platform blockchain, sehingga dapat mengurangkan masa dan kos ketika melakukan transaksi. Smart kontrak mempunyai semua kelebihan blockchain seperti penyimpanan data dan penjejakan rekod, kepercayaan, dan tidak ada perantara. Semua maklumat disimpan secara berkumpulan dan dihubungkan secara kronologi secara berterusan, terdesentralisasi, dan diedarkan kepada semua pihak di dalam rangkaian komputer (pihak kontrak). Oleh itu, pihak berkontrak dapat mengesan maklumat dengan cepat, dan gangguan data dapat dikurangkan kerana semua pihak mempunyai maklumat masa nyata yang sama. Kajian ini bertujuan untuk menentukan transaksi smart kontrak dalam mengurangkan pertikaian pembayaran dan menentukan cabaran dalam melaksanakan penggunaan smart kontrak di dalam industri pembinaan Malaysia. Berbagai jenis metodologi penyelidikan digunakan untuk mencapai kedua-dua objektif tersebut. Untuk tujuan pertama, hasil kajian dan laporan dikumpulkan dari pelbagai sumber mengenai blockchain dan smart kontrak., Subjek utama perbincangan disaring untuk memahami transaksi smart kontrak dalam menghasilkan teori. Untuk objektif kedua, data dikumpulkan melalui borang soal selidik yang diedarkan kepada responden yang dipilih. Objektif pertama menunjukkan bahawa transaksi smart kontrak dapat mengurangkan faktor yang menyumbang kepada pertikaian pembayaran. Objektif kedua menunjukkan cabaran dalam melaksanakan smart kontrak dalam industri pembinaan Malaysia, seperti kekurangan infrastruktur ICT, penggubalan kontrak pintar, kurangnya pengetahuan, dll. Sebagai kesimpulan, ada kemungkinan penyelesaian untuk pertikaian pembayaran walaupun terdapat cabaran dalam pelaksanaan pintar kontrak dalam industri pembinaan Malaysia.

TABLE OF CONTENTS

TITLE

DEC	LARATION	ii
DED	ICATION	iii
ACK	NOWLEDGEMENT	iv
ABS	ГКАСТ	V
ABS	ГRАК	vi
TAB	LE OF CONTENTS	vii
LIST	OF TABLES	xi
LIST	OF FIGURES	xii
LIST	OF FORMULA	xiii
LIST	OF ABBREVIATIONS	xiii
LIST	OF APPENDICES	xiv
CHAPTER 1	INTRODUCTION	1
1.1	Problem Background	1
1.2	Problem Statement	2
1.3	Research Question	3
1.4	Research Objectives	4
1.5	Research Scope	4
1.6	Significance of Research	4
1.7	Research Methodology	5
1.8	Chapter Summary	5
CHAPTER 2	LITERATURE REVIEW	7
2.1	Introduction	7
2.2	Contract disputes	8
	2.2.1 Timeline of interim Payment	9
	2.2.1.1 PAM 2016	10
	2.2.1.2 JKR 203A	10

		2.2.1.3	CIDB 2000	10
2.3	Block	chain		11
	2.3.1	Term on	blockchain	11
		2.3.1.1	Node	11
		2.3.1.2	Hash function:	12
		2.3.1.3	Consensus protocol:	12
		2.3.1.4	Cryptography:	12
		2.3.1.5	Digital signature	12
		2.3.1.6	Ledger	12
2.4	Smart	Contracts	3	13
	2.4.1	Storage	and data tracking	15
	2.4.2	Trust		15
	2.4.3	No inter	mediaries	15
2.5	Life C	Cycle if Sn	nart Contracts	15
	2.5.1	Phase 2:	Deployment of Smart Contracts	17
	2.5.2	Phase 3:	Execution of Smart Contracts	17
	2.5.3	Phase 4:	Completion of Smart Contracts	17
2.6	Interi	m Paymen	t Using Smart Contracts	18
	2.6.1	Semi-au	tomatic based framework transaction	19
	2.6.2	Automat	tic based framework transaction	21
2.7	Advaı Indust	-	Smart Contract in the Construction	21
	2.7.1	Proper d	ocumentation	22
	2.7.2	Real-tim	e updates	22
	2.7.3	Automat	ted transactions	22
2.8		enges to In ruction In	nplement Smart Contracts in Malaysia dustry	23
	2.8.1	Smart co	ontract drafting	23
	2.8.2	Dynami	c Control Flow	23
	2.8.3	Privacy	and Security	23
	2.8.4	Decisior	n making	24
	2.8.5	Quantun	n of Payment	24

		2.8.6 Quality of Products	24
		2.8.7 Bandwidth and Connectivity	25
2	2.9	Smart Contracts and Blockchain in Malaysia	25
2	2.10	Chapter Summary	26
CHAPTER	3	RESEARCH METHODOLOGY	27
3	5.1	Introduction	27
3	5.2	Research Design (Exploratory design)	27
3	3.3	First stage – Preliminary study	29
3	8.4	Second stage – Literature review	29
3	5.5	Third stage – Data collection	29
		3.5.1 Research instruments	29
		3.5.2 Mixed Method	30
		3.5.3 Questionnaire	34
		3.5.4 Research sampling method	34
		3.5.4.1 Questionnaire design	35
3	5.6	Fourth stage – Data analysis	36
		3.6.1 Mean method	37
		3.6.2 Organizing Test Score	37
3	5.7	Fifth Stage – Writing Up	38
3	5.8	Chapter Summary	38
CHAPTER	4	DATA ANALYSIS	39
4	l.1	Introduction	39
4	1.2	Smart Contracts' Transaction in Reducing Payment Disputes	39
		4.2.1 Paymasters' Poor Financial Management	42
		4.2.2 Paymasters' Unlawful Withholding of Payment	43
		4.2.3 Conflict Among Parties Involved	43
		4.2.4 Local Culture Attitude	43
		4.2.5 Short Of Current Year's Project	44
		4.2.6 Delay in Certification	44
		4.2.7 Disagree on the valuation of work done	44

	4.2.8 Contractual Provision	45
	4.2.9 Technical Problems	45
4.3	Implementing Smart Contract Adoption	46
	4.3.1 Payment Transaction Issues	47
	4.3.2 Documentation practice	48
	4.3.3 Opinion on Smart Contracts transactions	49
4.4	Challenges in implementing Smart Contracts in Malaysia Construction Industry	52
4.5	Chapter summary	55
CHAPTER 5	CONCLUSION AND RECOMMENDATIONS	57
5.1	Introduction	57
5.2	Objective 1	58
5.3	Objective 2	58
5.4	Limitation of research	59
5.5	Future Research	59
5.6	Conclusion	60

REFERENCES

LIST OF TABLES

TABLE NO.	TITLE	PAGE
	Statistic Registered and unregistered matters by fiscal (16th April to 15th April)	2
Table 3-1: Summar	y of Papers	33
Table 4-1: Summa disp	ary Smart Contracts transaction in reducing payment utes	40
Table 4-2: Mean va	alue benefits of smart contracts	51

LIST OF FIGURES

FIGURE N	O. TITLE	PAGE
Figure 2-1: H	Example of Blockchain	11
Figure 2-2: 7	The Life Cycle of Smart Contracts	16
Figure 2-3: F	Process of interim payment	18
Figure 2-4:	Semi-automatic based framework transa 2019)	action (Luo et al., 20
Figure 3-1: N	Method for selecting study papers	31
Figure 4-1: I	Descriptive chart for the demographic prof	ile, 46
Figure 4-2: I	ssues to improve	47
Figure 4-3: %	% Preferable data & information storage	48
Figure 4-4: I	Documentation Practice	48
Figure 4-5: S	Smart contracts transaction minimize paym	ent dispute 49
Figure 4-6: I	Bugs and errors in the system of smart co disputes	ntracts cause more 49
Figure 4-7: A	Affect smart contracts in the decision-maki	ng process 50
Figure 4-8: C	Cultural Challenges in implementing Smar	t Contracts 52
Figure 4-9: (Contractual challenges in implementing sm Malaysia construction industry	art contracts in the 53

LIST OF FORMULA

FORMULA

NO.

TITLE

PAGE

37

Formula 3-1: Mean Value

LIST OF ABBREVIATIONS

Information and Communication Technology		
Building Information Modeling		
Construction Industry Payment Adjudication Act		
Asian International Arbitration Centre		
Pertubuhan Arkitek Malaysia		
Public Work Department		
Construction Industry Development Board		
Quantity Surveyor		
Bill of Quantities		
University Teknologi Malaysia		
Movement Control Order		
Statistical Package for the Social Sciences		
Superintending Officer		
Industrialized building systems		

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Table for determining sample size from a given	65
	population	
В	Form of questionnaire	66

CHAPTER 1

INTRODUCTION

1.1 Problem Background

Asian International Arbitration Centre (AIAC) has interpreted the construction works as various activities that involved construction, extension, installation, repair, maintenance, renewal, removal, renovation, alteration, dismantling, or demolition of any building or structure, infrastructure, mechanical and electrical works, or civil engineering works. Because of the variety of works involved, the construction industry plays a vital role in supporting Malaysian economic and social growth.

The construction industry has a unique characteristic, such as the complexity of the construction process, and involves multiple parties with various disciplines and skills. A typical construction project requires a different process, tools, plants and machinery, materials, and contracting parties. Therefore, with the complexity, the construction industry is more prone to dispute compare to other industries.

Hussin, Ismail, & Ehsan (2013) have summarized the categories of disputes available in the construction industry: owner/client-related, contractor-related, consultant/design-related, contractual matters, project related, human behaviorrelated, and external factors. The most common dispute in the construction industry is related to payment which usually involves the combination of the said categories.

Many construction projects in Malaysia are facing payment disputes. Every year, AIAC recorded an increasing number of payment disputes under the CIPAA. It is either Client refused to pay or late in payment. Payment issues can have a domino effect on the entire project; if the contractors do not have enough finances to run the project, they might stop the work or minimize the work activities on site, which sometimes resulted in the contract's termination. Many factors contribute to the payment disputes. Until the factors are reduced or eliminated, the payment dispute will keep on arising. The industry should take the initiative to find solutions to this matter for the benefit of the stakeholders. Without the proper solutions, the case will continue to arise as per Table 1-1 below:

Table 1-1: CIPAA Statistic Registered and unregistered matters by fiscal year (16th April to 15th April)

Fiscal Year	Registered Case	Unregistered Case	Total Claim (RM)
2015 - 2016	207	19	184,653,815.93
2016 - 2017	547	15	224,186,788.29
2017 - 2018 (as of 15/4/2018)	765	14	99,692,535.49

Source: AIAC

1.2 Problem Statement

There are many factors that contribute to payment disputes. Most of the factors are caused by the traditional method of interim claim transactions. Indirectly, the manual transaction of interim claim procedure and payment transaction can cause payment disputes because the employers have controls to the transaction. Such powers are easy to abuse and manipulate. The traditional interim claim method has been practiced in the Malaysia construction industry for centuries with minimal changes. Every month, the Contractor has to face the long process of claim preparation from claim submission to valuation, issuance of certificates, and received of payment. In some projects, the Contractors have to chase the consultants and the Client for the interim certificate and payment. The Malaysia construction industry has benefited a lot from the technology adopted with the new Construction Industry 4.0 Technology Policy. There are new technology in the construction industry that provides efficiency in project management, such as building information modeling (BIM), drone technology, industrialized building systems (IBS), and green building construction (Chee Fui, 2020). The new application available is smart contracts that can provide possible solutions in reducing payment disputes for the construction contract.

Smart contracts are a contract that has been coded into computer language as software using the blockchain platform. Smart contracts will be enforced automatically when the condition of the contract is satisfied according to the embedded contractual clauses. Smart contracts provide significant advantages, such as improving the efficiency of work by reducing the dependency on the intermediary. The financial transactions for the monthly interim claim will automatically take place once the predefined conditions are met. Therefore, it will cut down the administrative time and cost. Due to the blockchain's immutability, smart contracts cannot be modified or altered once it has been issued. In addition, the decentralized data stored using the blockchain platform provides transparency, and the transactions are traceable.

In light of the discussion above, this research will explore how smart contracts transaction possibilities in reducing payment disputes.

1.3 Research Question

To achieve the research objectives, few research questions need to answer:

- (a) How can smart contract minimizes or resolves contract disputes in the construction industry?
- (b) Are there any challenges in adopting smart contracts in the Malaysia construction industry?

1.4 Research Objectives

The research aim is to study the possibility of implementing smart contracts in the Malaysia construction industry. Hence, there are two objectives:

- (a) To determine smart contracts' transactions in reducing payment disputes.
- (b) To determine the challenges in implementing smart contracts adoption in the Malaysia construction industry.

1.5 Research Scope

This study will be focused on exploring the general perspective of blockchain technology and smart contracts based on the Malaysia construction industry situation.

1.6 Significance of Research

The advancement of information and communication technology (ICT) has reshaped many industries worldwide, including the construction industry. However, the construction industry shows reluctance to adopt technological advancement between other industries, especially for the small and medium-sized Contractor (Arslan, Tuncan, Birgonul, & Dikmen, 2006). They need to reshape their existing strategies and business method, and high investment costs give them the thought that it is not beneficial to their business. Let alone the fact that they have no idea what the smart contract is all about and how it is working.

This research will explore and provide the awareness of the potential of smart contracts' automated transactions payment in reducing payment disputes and the challenges to adopting in the Malaysia construction industry on the Master's level.

REFERENCES

- Ahmadisheykhsarmast, S., & Sonmez, R. (2018). Smart Contracts in Construction Industry. 5th International Project and Construction Management Conference (IPCMC2018), (December), 767–774.
- Amaludin, A. E., & Bin Taharin, M. R. (2018). Prospect of blockchain technology for construction project management in Malaysia. ASM Science Journal, 11(Special Issue 3), 199–205.
- Azman, M. N. A., Dzulkalnine, N., Abd Hamid, Z., Mohd Kamar, K. A., & Mohd Nawi, M. N. (2014). Payment Scenario in the Malaysian Construction Industry Prior to CIPAA. 11(11), 1421–1422. https://doi.org/10.1089/aid.1995.11.1421
- Azman, M. N. A., Dzulkalnine, N., Hamid, Z. A., & Bing, K. W. (2014). Payment issue in Malaysian construction industry: Contractors' perspective. *Jurnal Teknologi (Sciences and Engineering)*, 70(1), 57–63. https://doi.org/10.11113/jt.v70.2804
- Brydon Wang, A., Wang, B., & Brydon Wang, A. (2018). Addressing financial fragility in the construction industry through the blockchain and smart construction contracts. *Australian Construction Law Bulletin*, 30(1&2), 116– 123. Retrieved from https://eprints.qut.edu.au/131442/
- Cardiera, H. (2016). Smart contracts and possible applications to the construction industry. Retrieved from https://heldercardeira.com/downloads/1503_Smart_Contracts_and_possible_app lications_to_the_construction_industry.pdf
- Chee Fui, W. (2020). Roadmap needed for construction technology 4.0. *The Star*. Retrieved from https://www.thestar.com.my/opinion/letters/2020/02/06/roadmap-needed-for-

- Gates, M. (2017). Blockchain: Ultimate guide to understanding blockchain, bitcoin, cryptocurrencies, smart contracts and the future of money (pp. 3–5). pp. 3–5.
- Giancaspro, M. (2019). Is a 'Smart Contract' Really a Smart Idea? Insights from a Legal Perspective. (June 2017). https://doi.org/10.1016/j.clsr.2017.05.007
- Harbans Singh, K. S. (2016). Construction Industry Payment And Adjudication Act 2012 : Is It Moving In The Right Direction ? *Malayan Law Journal Articles*, 5(1), 1–11.
- Hargaden, V., Papakostas, N., Newell, A., Khavia, A., & Scanlon, A. (2019). The Role of Blockchain Technologies in Construction Engineering Project Management. *Proceedings - 2019 IEEE International Conference on Engineering, Technology and Innovation, ICE/ITMC 2019.* https://doi.org/10.1109/ICE.2019.8792582
- Hunhevicz, J. J., & Hall, D. M. (2020). Do you need a blockchain in construction? Use case categories and decision framework for DLT design options. Retrieved from https://arxiv.org/ftp/arxiv/papers/2004/2004.04626.pdf
- Hussin, S. N., Ismail, Z., & Ehsan, S. D. (2013). Factors To Further Enhance the Use of Mediation in.
- King, H. G., & Mallesons, W. (2017). *The evolution of smart contracts (2017)* 16(6) FSN 103. 16(1), 0–4.
- Krejcie, R. V, & Morgan, D. W. (1970). DETERMINING SAMPLE SIZE FOR RESEARCH ACTIVITIES. In EDUCATIONAL AND PSYCHOLOGICAL MEASUREMENT (Vol. 30).
- Laura M. (2020). What is a Smart Contract and How do Smart Contracts Work. Retrieved October 28, 2020, from

https://www.bitdegree.org/crypto/tutorials/what-is-a-smart-contract

- Luo, H., Das, M., Wang, J., & Cheng, J. C. P. (2019). Construction payment automation through smart contract-based blockchain framework. *Proceedings of the 36th International Symposium on Automation and Robotics in Construction, ISARC 2019*, 1254–1260. https://doi.org/10.22260/isarc2019/0168
- Macdonald, S., & Headlam, N. (2008). *Research methods handbook : introductory guide to research methods for social research.*
- Maciel, A. (2020). Use of Blockchain for Enabling Construction 4.0. In S. Anil, M.
 Riley, & J. Irizarry (Eds.), *Construction 4.0: An Innovation Platform for the Built Environment* (1st ed., pp. 395–418). New York: Routledge Taylor & Francis Group.
- Marsden, P. (2019). Blockchains. In *Digital Quality Management in Construction* (1st ed., pp. 172–179). Routledge Taylor & Francis Group.
- Mason, J., & Escott, H. (2018). Smart contracts in construction: Views and perceptions of stakeholders. *Proceedings of FIG Conference*, (May), 2006– 2009.
- Matthews, M. (2018). BIM and Blockchain. Retrieved October 12, 2020, from https://constructible.trimble.com/construction-industry/from-bim-to-blockchainin-construction-what-you-need-to-know
- Mohd Zain, N. R. B., Engku Ali, E. R. A., Abideen, A., & Rahman, H. A. (2019).
 Smart contract in blockchain: An exploration of legal framework in Malaysia. *Intellectual Discourse*, 27(2), 595–617.
- Mougayar, W. (2016). The Business Blockchain: Promise, Practice, and Application of the Next Internet Technology. Hoboken, New Jersey: John Wiley & Sons, Inc.

- Penzes, B. (2018). BLOCKCHAIN TECHNOLOGY IN THE CONSTRUCTION INDUSTRY Digital Transformation for High Productivity. Retrieved from https://www.ice.org.uk/ICEDevelopmentWebPortal/media/Documents/News/Bl og/Blockchain-technology-in-Construction-2018-12-17.pdf
- Sandeep, M., & Mohana, J. (2018). Storage identity based encryption in cloud for secure data sharing. In *International Journal of Advance Research*. Retrieved from www.IJARIIT.com
- Shojaei, A. (2019). Exploring applications of blockchain technology in the construction industry. ISEC 2019 - 10th International Structural Engineering and Construction Conference, 1–6. https://doi.org/10.14455/isec.res.2019.78
- Szabo, N. (1994). Smart Contracts. Retrieved October 13, 2020, from https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literat ure/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html

UK Government Chief Scientific Adviser. (2016). Distributed Ledger Technology: beyond block chain. Retrieved from https://assets.publishing.service.gov.uk/government/uploads/system/uploads/att achment_data/file/492972/gs-16-1-distributed-ledger-technology.pdf

Zheng, Z., Xie, S., Dai, H. N., Chen, W., Chen, X., Weng, J., & Imran, M. (2020). An overview on smart contracts: Challenges, advances and platforms. *Future Generation Computer Systems*, 105, 475–491. https://doi.org/10.1016/j.future.2019.12.019