
DESIGN AND IMPLEMENTATION OF LIGHTWEIGHT ENCRYPTION

ALGORITHM USING PRINCE CIPHER

LEE JIAH CHUN

A project report submitted in fulfilment of the

requirements for the award of the degree of

Master of Engineering (Computer and Microelectronic Systems)

School of Electrical Engineering

Faculty of Engineering

Universiti Teknologi Malaysia

FEBRUARY 2021

iii

DECLARATION

I declare that this project report entitled “Design And Implementation Of

Lightweight Encryption Algorithm Using Prince Cipher” is the result of my own

research except as cited in the references. The project report has not been accepted

for any degree and is not concurrently submitted in candidature of any other degree.

Signature : ..

Name

Date

: LEE JIAH CHUN

: 15 FEBRUARY 2021

iv

DEDICATION

This thesis is dedicated to my father, who taught me that the best kind of

knowledge to have is that which is learned for its own sake. It is also dedicated to my

mother, who taught me that even the largest task can be accomplished if it is done

one step at a time.

v

ACKNOWLEDGEMENT

In preparing this thesis, I was in contact with many people, researchers,

academicians, and practitioners. They have contributed towards my understanding and

thoughts. In particular, I wish to express my sincere appreciation to my main thesis

supervisor, Dr. Shahidatul Sadiah binti Abdul Manan, for encouragement, guidance,

critics and friendship. Without her continued support and interest, this thesis would

not have been the same as presented here.

My fellow postgraduate student should also be recognised for their support.

My sincere appreciation also extends to all my colleagues and others who have

provided assistance at various occasions. Their views and tips are useful indeed.

Unfortunately, it is not possible to list all of them in this limited space. I am grateful

to all my family member.

vi

ABSTRACT

Lightweight cryptography is widely deployed on low-resource devices that has

limited computing power, low memory size and power resource. With the rising of

pervasive computing, more devices are connected online, and new requirement on

encryption model that emphasizes on ultra-fast response time is introduced. Most of

the available lightweight cryptographies are round-based designs, they are able to

achieve high throughput via pipelining the round functions, however the response time

is not ideal. The Prince cipher is the first lightweight block cipher developed to speed

up the latency of the algorithm. Compare to other block ciphers, the Prince is able to

yield low latency with very competitive area utilization, hence it is a promising choice

for low-resource devices that emphasize of response time. In this work, the Prince

cipher will be designed and synthesize in different implementation including round-

per-cycle, single-cycle and reduced multicycle implementations. The synthesis results

had suggested that the single-cycle Prince cipher is achievable with almost 40%

reduction in encryption latency. This indicates the possibility of instantaneous

encryption as the full operation can be performed within a single clock cycle and no

warm-up phase is needed. However, the implementation using loop unrolling also

introduced larger gate count and therefore the design will have bigger silicon footprint.

With the improvement of chip technology, it is possible to absorb the increment in of

the gate count in the Prince cipher in exchange for performance. Furthermore, the

modern SOC design often involves many-core designs that have high-bandwidth,

packet-switched network design. These applications need the data to be processed as

fast as possible, hence the conventional high throughput looping approaches are not

desirable as they might limit the bandwidth of these high-speed buses within the SOC.

vii

ABSTRAK

Kriptografi ringan digunakan secara meluas pada peranti sumber rendah yang

mempunyai kuasa pengkomputeran terhad, saiz memori dan sumber kuasa yang

rendah. Dengan peningkatan penggunaan komputer dimana-mana sahaja, lebih banyak

peranti mesti disambungkan dalam talian. Oleh itu, masa tindak balas yang sangat

pantas bagi sesuatu model penyulitan maklumat sangat diperlukan. Sebilangan besar

kriptografi ringan tersedia adalah dengan rekabentuk model berasaskan pusingan,

yang mana dapat mencapai kadar hasilan yang tinggi, tetapi mempunyai masa tindak

balas yang tidak ideal. Prince sifer adalah model blok sifer pertama yang direka untuk

mencapai latensi rendah. Prince sifer dapat menghasilkan latensi rendah dengan

penggunaan kawasan yang sangat kompetitif semasa berbanding dengan model sifer

yang lain. Ia merupakan calon yang baik untuk peranti sumber rendah yang

memerlukan masa tindak balas cepat daripada model blok sifer yang lain. Dalam

kajian ini, sintesis Prince sifer akan dijalankan untuk tiga reka bentuk yang berbeza

iaitu “round-per-cycle”, “reduced-multicycle” dan “single-cycle”. Hasil sintesis

menunjukkan bahawa reka bentuk “single-cycle” boleh dicapai dengan 40%

pengurangan latensi. Oleh itu, proses penyulitan secara seketika boleh dicapai dengan

reka bentuk ini tanpa keperluan fasa pemanasan. Namun begitu, reka bentuk ini juga

memperkenalkan bilangan gate yang banyak dan luas kawasan silikon yang lebih

besar. Dengan peningkatan teknologi cip, peningkatan luas kawasan reka bentuk boleh

diserap sebagai penukaran prestasi yang lebih tinggi. Selain itu, SOC moden selalunya

mengandungi reka bentuk banyak prosesor yang memerlukan rankaian antara prosesor

yang cepat dan keperluan ini boleh dipenuhi dengan reka bentuk “single-cycle”.

Aplikasi ini memerlukan data untuk diproses secepat mungkin, oleh itu pendekatan

perulangan kadar hasilan tinggi konvensional tidak diutamakan kerana ada

kebarangkalian ia menghadkan lebar jalur bas berkelajuan tinggi dalam SOC.

viii

TABLE OF CONTENTS

 TITLE PAGE

DECLARATION iii

DEDICATION iv

ACKNOWLEDGEMENT v

ABSTRACT vi

ABSTRAK vii

TABLE OF CONTENTS viii

LIST OF TABLES x

LIST OF FIGURES xi

CHAPTER 1 INTRODUCTION 1

1.1 Introduction 1

1.2 Problem Background 2

1.3 Problem Statement 4

1.4 Research Goal 4

1.4.1 Research Objectives 4

1.5 Scope of work 5

1.6 Contribution 5

CHAPTER 2 LITERATURE REVIEW 7

2.1 Introduction 7

2.2 Classification of Cipher Implementation 8

2.2.1 High-Performance System 9

2.2.2 General Purpose Processor System 9

2.2.3 Low-Resource Device 9

2.2.3.1 Software Implementation 10

2.2.3.2 Hardware Implementation 10

2.3 Lightweight Cryptography 10

ix

2.3.1 Prince cipher 11

2.3.1.1 Round Functions 12

2.4 Previous Work 15

2.5 Limitation 16

2.6 Research Gap 16

CHAPTER 3 RESEARCH METHODOLOGY 19

3.1 Introduction 19

3.1.1 Design Implementations 19

3.1.2 Design Synthesis 20

3.1.3 Performance Comparison 21

3.1.4 Design Optimization 22

3.2 Tools and Platforms 23

CHAPTER 4 RESULTS AND DISCUSSION 24

4.1 Synthesis outcome 24

4.2 Optimization 30

4.2.1 Constraint 31

4.2.2 RTL 32

CHAPTER 5 CONCLUSION AND FUTURE WORKS 36

5.1 Future Works 36

5.2 Conclusion 37

REFERENCES 38

x

LIST OF TABLES

TABLE NO. TITLE PAGE

Table 2.1 4-bit S-box in hexadecimal notation. 12

Table 2.2 RC-dependent constant in hexadecimal notation 14

Table 2.3 Area, critical path latency and throughput comparison for

single cycle lightweight ciphers on ASIC (Maene, 2019). 15

Table 4.1 Library cell usage for single cycle implementation at 4ns

and 6ns clock period. 27

Table 4.2 Synthesis result comparison for the three implementation of

PRINCE cipher. 30

Table 4.3 Synthesis flow comparison between default flow and

optimized flow. 31

Table 4.4 Synthesis result of single cycle implementation using

different constraint approaches. 32

Table 4.5 Code snippet for 4-bit Substitution box 33

Table 4.6 S-box synthesis result using different coding method. 33

Table 4.7 Result comparison of Round per Cycle implementation

with optimized S-box. 34

Table 4.8 Result comparison of Reduced Multicycle implementation

with optimized S-box. 34

Table 4.9 Result comparison of Single Cycle implementation with

optimized S-box. 35

xi

LIST OF FIGURES

FIGURE NO. TITLE PAGE

Figure 2.1 Overview of Cryptography 7

Figure 2.2 Cipher Implementation Taxonomy 8

Figure 2.3 The Prince encryption core 11

Figure 2.4 Shift row operation of linear diffusion layer 12

Figure 2.5 The basic building blocks for the matrix 𝑀′ 13

Figure 2.6 16x16 involution matrices built from the basic building

blocks 13

Figure 3.1 Synthesis tool inputs and output 20

Figure 4.1 Critical path delay for the three implementation using

different timing constraints. 25

Figure 4.2 Total cell count for the three implementation using different

timing constraints. 26

Figure 4.3 Total power of the three implementations using different

timing constraints. 28

Figure 4.4 Energy consumption per bit using different timing

constraints. 29

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

Security plays a special role in modern life. Following the advancement of

technology, people are migrating all sort of activities to virtual platform, from

shopping, entertainment, socializing, to even business and banking. Technology fills

the people’s everyday lives, and there is no activity today that does not involve

computers and network. In recent years, there is even a growing trend of pervasive

computing, where embedded devices are introduced into everyday objects to aid in

human life. They are deployed into a huge range of domains, including industries,

private and public sectors, important infrastructures, and even portable and wearable

applications. These devices are gathering user information using Internet

communication to provide various services. These services can include healthcare,

smart home systems, smart factory and etc., and they often handle sensitive data such

as privacy, secret, safety. Hence, it becomes vital to have security systems in place to

protect the users against malicious attack [1].

Generally, the devices that deployed massively in pervasive computing

platform come with constraints in terms of computing capability, memory size, as well

as power resources. These limitations are causing difficulties in the deployment of

complex security systems in the devices. There are many available cryptographies that

can provide good security on the sensitive information that handled by the systems

however they do not perform well in resource-limited environment. Oftentimes, the

security systems cause heavy load on the devices and result in reduced performance.

Moreover, there is a persistent need for security systems that entail smaller size and

low production cost in these devices. The lightweight cryptography was introduced to

tackle the issue faced in common complex security system to provide security in these

constrained devices without tampering with the performance of the device.

2

Lightweight cryptography is a type of encryption method that features smaller

silicon footprint and less complex computation. It is suitable for constrained devices

that has limitation in computing, memory as well as power resource. The current

typical cryptography algorithms usually require high amount of resources in their

implementation as they are specifically designed for secure communication in larger

systems. This directly translate to bigger silicon footprint and higher implementation

cost, which cause these conventional cryptographies not cost-effective for small

resource-limited devices. The lightweight cryptography addresses this issue by

excluding complex computation and utilize round-based design that is friendly for

hardware implementation in terms of area and timing, with some drawback in the

security level of the algorithm.

1.2 Problem Background

The lightweight cryptography is targeted towards applications involving

constrained devices, including microcontrollers, smart devices, small computers and

even sensors. The common characteristics for these constrained devices include

limited processing capabilities, low bandwidth and low memory area. Most of the time,

these devices are also driven using batteries and they have high requirement on low

power consumption to ensure continuality. With the emerging of Internet of Things

(IoT) computing environment, a lot of the aforementioned constrained devices are now

having the capability to be connected to the Internet. Massive communications are

done between each device in seconds. Reliable and secure data transfer are needed,

and they need to be carried out as fast as possible.

There are two ways a design is considered fast – a high throughput design,

where high amount of operations can be carried out within a given period; or a low

latency design, where the waiting time for the result is significantly short. In current

context, most of the fast cryptography design are high throughput design where the

design is extensively pipelined to achieve high throughput. However, this approach

tends to cause the design to have high latency, which can be undesirable. As the rising

of pervasive computing, new requirements on the cryptography such as ultra-fast

3

response times are introduced [2]. The currently high throughput cryptography design

is unable to meet this requirement as it might need multiple clock cycles to encrypt a

single simple message block. Therefore, a low latency cryptography that can perform

instant message encryption is required.

The design of low-latency design poses a challenge in current available

cryptosystems. Low latency design is difficult to be realized in software

implementation platform as the ciphers could take up to hundreds or more clock cycles

to perform the encryption. Stream ciphers are cryptography algorithm that perform

encryption on bit-by-bit basis. It is hardly suitable for low-latency design due to high

number of clock cycles are needed during the starting phase of the ciphers, making it

to be a high throughput and high latency design. This makes block ciphers that operate

on a fixed length of block size to be the potential choice for low-latency design.

There are some challenges to be addressed in block ciphers, particularly the

they are round-based design where the plaintext has to be fed into the cipher round for

multiple times in order to obtain the ciphertext. For example, the AES algorithm

requires 10 rounds of encryption operations before the secure ciphertext can be

obtained. This means that at least 10 clock cycles are required before the data can be

encrypted, making it non-ideal for low-latency design. One approach to tackle the issue

is by employing loop-unrolled design to make the whole block ciphers operation to be

completed in single cycle or lesser multicycle. However, this might cause a very long

critical path in the design and result in slow response time and poor maximum

operating frequencies. Moreover, the unrolled design may introduce few times higher

gate count which cause higher power consumption and implementation costs. To

reduce the gate count for unrolled design, less complex logic is needed in the cipher

round. This call for a lightweight block cipher that can provide small area and fast

response time.

4

1.3 Problem Statement

Block cipher is a round based design and the implementations often involve

high pipeline stages due to complex logic which hold back the response time. To

achieve good latency, lightweight design with single-cycle or reduced multicycle

implementation is required.

1.4 Research Goal

Based on the discussed issues, the goal in this research is to design a

lightweight block cipher that can perform instantaneous encryption to suit low-

resource devices that has requirement for ultra-fast response time. The lightweight

block cipher needs to achieve low silicon footprint and low energy consumption as

well in single cycle and reduced multicycle implementation.

1.4.1 Research Objectives

The objectives of the research are:

(a) To design the block cipher in single-cycle and reduced multicycle

implementation.

(b) To analyse the gain in performance matric in terms of area, latency and

throughput for single-cycle and reduced multicycle implementations with

regard to normal implementation.

(c) To evaluate the static power consumption and efficiency of single-cycle and

reduced multicycle block ciphers.

5

1.5 Scope of work

The scope of work includes:

(a) The Prince is used as the primary algorithm in this research as it is the block

cipher that focus on latency reduction.

(b) Only the encryption portion of the Prince algorithm is implemented and

synthesize.

(c) The implemented design is synthesized using Synopsis Design Vision Version

O-2018.06-SP3.

(d) The design synthesis is based on SAED 32nm Library.

1.6 Contribution

In this research, two extended implementations from the conventional PRINCE

cipher - the single cycle and reduced multicycle implementations are designed and

synthesized. The designs are able to provide low delay encryption processes through

the elimination or reduction or the round function looping. For single cycle

implementation, further latency reduction can be achieved. Moreover, since the

encryption only requires one clock cycle to perform, almost instantaneous block

encryption is possible with the design. Nowadays the design of SOCs often comes with

ultra-fast and high bandwidth on-chip network to cope with the multi- and many-cores

designs [3]. Hence, the conventional way of having high throughput block cipher via

extensive pipelining are not desirable. Instead, the response time of the encryption

need to be instantaneous such that all arriving data element can be processed with as

little delay as possible. Furthermore, the implementations are realized using loop

unrolling, hence it is only natural to introduce large combinational data path in the

design. Optimization to further reduce the latency in the design are proposed and

proven in this research as well.

7

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Lightweight cryptography is designed with the purpose of extending the

application of encryption to the ever-growing computing platforms that employ smart

and low-resource devices. A fundamental level of security is a must for these platforms

as their applications tend to involve exchange of private or sensitive data. Due to the

computational and energy constraints, the installed encryption model should introduce

little to none burden in these low-resource devices in order to minimize the impact to

the performance and lifetime.

A low-resource device is one of the device categories that is having low

computing power, battery supplied, small silicon area and small memory size. The

design of cryptography cipher is a balancing act between the achievable security level,

implementation cost, execution speed and power consumption. For a lightweight

cryptography, certain level of compromise in the security level is acceptable to achieve

low cost, fast and energy saving algorithm.

Figure 2.1 Overview of Cryptography

8

The block ciphers are categorized into two types: symmetric and asymmetric

key ciphers. The asymmetric key block ciphers utilize a public key and a hidden private

key for encryption and decryption. It offers more security features and safer in

comparison to the symmetric key block ciphers that use a shared key among all parties.

However, due to extra computational resources required to figure out the hidden

private key, the asymmetric key block ciphers are generally more costly and slower,

making them to be less preferable for resource-constrained devices. Most of the

available security model for hardware implementations are based on symmetric key

cryptography.

2.2 Classification of Cipher Implementation

Figure 2.2 illustrates the taxonomy of cipher implementation platform. In

overall, the ciphers are implemented in three different platforms and different

platforms are having their own requirements that need to be fulfilled. These platforms

include high-performance system, general purpose processor system and low-resource

device. While the main focus in this research is the low-resource implementation

platform, other different platforms are discussed to show the distinctions between each

other.

Figure 2.2 Cipher Implementation Taxonomy

9

2.2.1 High-Performance System

High-performance system must meet three basic requirements: security,

throughput and flexibility [3]. This kind of system is often used from military to

commercial purpose where powerful cryptography is needed to ensure maximum

security. The system often operates in high speed; therefore, the ciphers

implementation must be able to cope with the operations of the system. The system

may also process complex data that may come in different forms and sizes. Hence

flexibility is a special need so that the ciphers are capable to handle the encryption of

data in various size. In order to meet these requirement, specialized engines such as

customized CPU, crypto processor and coprocessor are usually utilized. Meanwhile,

there is lesser concern on area and cost in this platform.

2.2.2 General Purpose Processor System

Unlike high-performance system, no specialized engine is being used for

general purpose processor system. High level machine independent code is used to

realize the implementation of ciphers. Some popular choices include Java and C. Since

the implementation is in fully software, no hardware acceleration technique can be

used to boost the performance of the cryptography. The implementations often involve

various approaches to push the code execution speed to obtain improvement

performance.

2.2.3 Low-Resource Device

There are two types of implementation in low-resource devices, they are

software and hardware implementations. In low-resource device, implementation cost

is a deciding factor. Most of the deployed design need to fulfill low-cost and energy

saving requirement. Typically, the lightweight cryptography is used to implement the

security systems for low-resource devices.

10

2.2.3.1 Software Implementation

Processor and micro-controller are the common platform used for this kind of

implementation. Two common ways to implement the coding is using a machine-

independent language similar to general purpose processor system, or machine-

dependent language like assembly language. Typically, the code will be further

optimized to suit the processor. For example, the instruction set architecture of the

processor is fully utilized to ensure faster implementation by reducing the execution

cycles. Code structure and coding style are another important element that can affect

the efficiency of the code and memory footprint of coding in the device.

2.2.3.2 Hardware Implementation

The hardware platform implementation focuses on area reduction, speed and

low power similar to software implementation. The common design platforms

include ASIC, FPGA and full-custom design. There are many techniques employed

in hardware implementation to fulfill the design requirements. Sharing of optimized

circuit is one of the methods to reduce the area of the design. Different architectures

and logic techniques such as loop unrolling, and pipelining are used to maximize the

operating frequency and throughput of the device. Meanwhile, clock gating and

power gating is used to minimize the overall energy consumption of the device.

2.3 Lightweight Cryptography

A lightweight block cipher is a cryptography algorithm that is tailored to suit

the application of low-resource devices. It needs to fulfill three main requirements,

which are: minimum area overhead, low power consumption as well as acceptable

level of security [4]. The area overhead need to be small to fulfill the low-cost

requirement of low-resource devices. The power consumption needs to be low to

11

ensure the continuity of the devices that usually has limited power resources.

Meanwhile, reasonable level of security is needed to ensure the safety of end-user.

The block ciphers are generally having smaller block size and key size such as

32, 48 or 64 bits and compared to the conventional ciphers that employ 64 or 128 bits.

The lightweight block ciphers are also having simplify key schedule and operates in

simple encryption operations with more iterations of round. Prince algorithm is one of

the block ciphers that meets the specification of lightweight cryptography.

2.3.1 Prince cipher

Prince algorithm is the first cryptography algorithm introduced for the purpose

of low latency encryption [5]. It is a 64-bit lightweight block cipher that operates on

substitution-permutation network. It has 12 rounds at the core and each round of the

Prince cipher consists of sixteen 4-bit parallel s-box, a linear diffusion layer and the

addition of the round-dependent constant and a fix key. The encryption operates on

128-bit key. The key is split into two 64-bit keys, where the first key is used during

the pre- and post-whitening operations, while the second key is used in the round

function. The pre- and post-whitening operation are the addition of key before and

after the round functions as shown in Figure 2.3.

Figure 2.3 The Prince encryption core

12

2.3.1.1 Round Functions

The round function consists of three parts: The s-box, diffusion layer and key

addition. The two main operations in the round function are the substitution and

permutation. Prince cipher use 4-bit s-box for the substitution operation. The 4-bit

input to the s-box is mapped to another 4-bit value to complete the data substitution.

Table 2.1 4-bit S-box in hexadecimal notation.

𝑥 0 1 2 3 4 5 6 7 8 9 A B C D E F

𝑆(𝑥) B F 3 2 A C 9 1 6 7 8 0 E 5 D 4

The linear diffusion layer is mainly used to perform the permutation of data. It

consists of two main operation: shift row operation and matrix multiplication with

64x64 matrix 𝑀′ . The shift row operation in the linear diffusion layer behaves

similarly to AES shift row to permutate the 16 nibbles as shown in Figure 2.4.

Figure 2.4 Shift row operation of linear diffusion layer

The matrix 𝑀′ used for the matrix multiplication is a 64x64 involution matrix.

The following 4x4 matrices are the basic building blocks for the matrix 𝑀′. The

number of ones in these basic matrices are kept in minimum to ensure smallest

implementation costs.

13

Figure 2.5 The basic building blocks for the matrix 𝑀′

 Next, the 4x4 matrices are used to form two 16x16 matrices. These

matrices are arranged in such way that they are the row permutation of each other, and

they are formed as involution matrices.

Figure 2.6 16x16 involution matrices built from the basic building blocks

Finally, the two 16x16 matrices are used to construct the 64x64 block diagonal

matrix 𝑀′ where they are used as the diagonal element in such way:

(𝑀̂(0), 𝑀̂(1), 𝑀̂(1), 𝑀̂(0)). By applying shift row and matric multiplication in such way,

a full diffusion can be ensured after two iteration of round functions. Furthermore, due

to how the matrix is constructed, the number of ones in each row in the 64x64 matrix

is three. Therefore, each output bit of the cipher data in the M layer will only be

influenced by three input bits. This is to ensure minimum complexity in the M layer to

reduce implementation costs.

14

The key addition operation is actually a 3 inputs XOR operation between the

cipher data, the fixed key and the RC-dependent constant. The RC-dependent

constants are defined below:

Table 2.2 RC-dependent constant in hexadecimal notation

𝑅𝐶0 0000000000000000

𝑅𝐶1 13198a2e03707344

𝑅𝐶2 a4093822299f31d0

𝑅𝐶3 082efa98ec4e6c89

𝑅𝐶4 452821e638d01377

𝑅𝐶5 be5466cf34e90c6c

𝑅𝐶6 7ef84f78fd955cb1

𝑅𝐶7 85840851f1ac43aa

𝑅𝐶8 c882d32f25323c54

𝑅𝐶9 64a51195e0e3610d

𝑅𝐶10 d3b5a399ca0c2399

𝑅𝐶11 C0ac29b7c97c50dd

The inverse round functions that executed in the last 5 rounds are similar to the

normal round functions. The differences are the substitution and permutation process

will be carried out backward. The middle involution and the key additions ensured that

the inverse substitution and permutation will not transform the data back into plaintext.

Middle involution is the part that connects the forward and inverse round functions. It

is composed of shift rows and matrix multiplication of 𝑀′ similar to the linear

diffusion layer. The inverse shift rows will be carried out first, followed by the matrix

multiplication and finally another round of shift rows.

15

2.4 Previous Work

Table 2.3 shows the comparison of design metric including area, latency, and

throughput between different lightweight cryptography. The algorithms are fully

unrolled to achieved single-cycle design.

Table 2.3 Area, critical path latency and throughput comparison for single cycle

lightweight ciphers on ASIC [6].

The key performance metric in this research are the area, latency and

throughput of the block ciphers. The area was measured in unit of gate count. It was

calculated by dividing the total area of the design with the area of 2 input NAND gate.

This is a good matric for comparing area as it allows the comparison to be done even

in different process node. Meanwhile, the latency was measured in ns while the

throughput was measured in giga-bit per second. In overall, the Prince cipher was able

to come on top among all the block ciphers in term of latency. Among the ciphers that

operate in 64-bit blocks, the Prince was showing the least area utilization, which is

comparable even among the smaller block ciphers that run on 32-bit blocks. Due to

the low critical path latency, the Prince cipher is able to run at high operating

frequency, hence resulting in decent throughput.

This result shows how the loop unrolling technique affect the latency of the

design. By applying unrolling on the round-based block ciphers, all the operations in

every round are now flatten and placed on the critical path. The effect is terrible

16

especially for block ciphers with more rounds. The KATAN algorithm with high

number of rounds is a good example. Complex round function is another reason that

may cause bad latency in unrolled design. The SPECK is one of the algorithms that

has a lot of arithmetic operations that do not go well with hardware., thus causing high

latency.

2.5 Limitation

The top shortcoming in lightweight cryptography – Prince cipher included, is

the level of security that can be achieved by the cipher. The lightweight cryptography

typically runs on shorter keys such as 64-bit or 128-bit. The strength of the security is

not as good compared to ciphers that utilized 256-bit keys and the lifetime for small

keys are generally shorter, mainly due to lesser time required to decipher the keys [7].

Another reason that cause limited security is the simple round functions used. In

certain block ciphers, they attempt to overcome the security drawback by introducing

more rounds in the algorithm. This could bring negative impact on the performance

due to higher latency.

Research was also being carried out to perform third-party analysis of Prince

cipher [8]. The author attempted different methods to exploit and break the security of

the algorithm. The Prince algorithm utilize the same key throughout the operations, it

also has somewhat linear relationship in each round due to the simplistic in the round

operations, hence it is totally possible to recover the key used for the encryption via

exhaustive manners.

2.6 Research Gap

Despite all the limitations of lightweight cryptography, this research is not

focusing on the security of the lightweight cryptography. Reasonable tradeoff in

security is acceptable for lightweight cryptography in order to achieve the low-cost,

light implementation features, that is suitable for resource-constrained devices. Most

38

REFERENCES

[1] J. Han, "Chaining the Secret: Lightweight Authentication for Security in

Pervasive Computing," Eightieth Annual PhD forum on Pervasive Compuuting

and Comminications, 2016.

[2] M. Knezevic, V. Nikov and P. Rombouts, "Low-Latency Encryption - Is

"Lighweight = Light + Wait"?," International Association for Cryptologic

Research, pp. 426-446, 2012.

[3] L. Bossuet, G. Gogniat and L. Gaspar, "Architectures of Flexible Symmetric

Key Crypto Engines - A Survey: From Hardware Coprocessor to Multi-Crypto-

Processor System on Chip," ACM Computing Surveys, 2013.

[4] F. Xinxin, M. Kalikinkar and G. Guang, "A lightweight stream cipher for

resource-constrained smart devices.," Quality, reliability, security and

robustness in heterogeneous networks., pp. 617-32, 2013.

[5] J. Borghoff, A. Canteaut, T. Guneysu, E. B. Kavun, M. Knezevic, L. R.

Knudsen, G. Leander, V. Nikov, C. Paar, C. Rechberger, P. Rombouts, S. S.

Thomsen and T. Yalcin, "PRINCE - A Low-latency Block Cipher for Pervasive

Computing Applications," Advances in Cryptology -- ASIACRYPT 2012, pp.

208-255, 2012.

[6] P. Maene, "Single-Cycle Implementations of Block CIphers," Lighweight Roots

of Trust for Modern Systems-on-Chip, pp. 47-64, 2019.

[7] J. Strombergson, "Some Notes on the Lighweight Block Cipher PRINCE," 2

July 2020. [Online]. Available: https://www.assured.se/2020/04/24/some-

notes-on-the-lightweight-block-cipher-prince/.

[8] J. Jean, I. Nikolic, T. Peyrin, L. Wang and S. Wu, "Security Analysis of

PRINCE," In: Fast Software Encryption, FSE 2013, pp. 92-111, 2014.

[9] D. Maimut and K. Ouafi, "Lightweight Cryptography for RFID Tags," Crypto

Corner, pp. 76-79, 2012.

[10] V. Taraate, Logic Synthesis and SOC Prototyping, Singapore: Springer, 2020.

39

[11] C. Chen, R. Wei, S. Wang and W. Hu, "Novel Verification Method for Timing

Optimization Based on DPSO," Hindawi, 2018.

[12] D. Mills, "RTL Coding Styles That Yield Simulation and Synthesis

Mismatches," SNUG, 2015.

[13] Q. Xie, X. Lin, Y. Wang, M. J. Dousli, A. Sharaei, M. Ghasemi-Gol and M.

Pedram, "5nm FinFET Standard Cell Library Optimization and Circuit

Synthesis in Near- and Super-Threshold Voltage Regimes," Computer Society

Annual Symposium on VLSI, 2014.

	JiahChunmke181102d21ttt.pdf

