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ABSTRACT 
 
 

 

 

Small Waterplane Area Twin Hull (SWATH) and Catamaran vessels are known to 

have more stable platform as compared to mono-hulls.  A further advantage of 

SWATH as compared to Catamaran is its smaller waterplane area that provides 

better seakeeping qualities.  However, the significant drawback of the SWATH 

vessel is when encountering head-sea at high forward speed.  Due to its low stiffness, 

it has a tendency for large pitch motions.  Consequently, this may lead to excessive 

trim or even deck wetness.  This phenomenon will not only degrade the 

comfortability but also results in structural damage with greater safety risks.  In this 

research a modified SWATH design is proposed.  The proposed design concept 

represents a combination of Catamaran and SWATH hull features that will lead to 

reduce in bow diving but still maintains good seakeeping capabilities.  This is then 

called the Semi-SWATH vessel.  In addition, the full-design of this vessel has been 

equipped by fixed fore fins and controllable aft fins attached on each lower hull.  In 

the development of controllable aft fins, the PID controller system was applied to 

obtain an optimal vessel’s ride performance at speeds of 15 (medium) and 20 (high) 

knots. In this research work, the seakeeping performance of Semi-SWATH vessel 

was evaluated using time-domain simulation approach.  The effect of fin stabilizer on 

the bare hull performance is considered.  The validity of numerical evaluation was 

then compared with model experiments carried out in the Towing Tank at Marine 

Technology Laboratory, UTM.  It was shown that the Semi-SWATH vessel with 

controllable fin stabilizer can have significantly reduction by about 42.57% of heave 

motion and 48.80% of pitch motion.   
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ABSTRAK 
 
 

 

 

Kapal dwi-hull satah air kecil (SWATH) dan katamaran mempunyai pelantar yang 

lebih stabil berbanding kapal biasa. Keluasan satah air SWATH yang lebih kecil 

berbanding katamaran menyebabkan SWATH mempunyai kelebihan dalam 

keupayaan tahan laut. Walaupun demikian, SWATH menghadapi masalah apabila 

bertembung dengan ombak dari arah depan pada kelajuan tinggi. Dengan mempunyai 

sifat kekakuan yang rendah, SWATH berkecenderungan untuk mempunyai 

pergerakan anggul yang besar.  Ini akan memberi kesan trim yang melampau dan 

juga boleh menyebabkan air melimpah ke dalam geladak kapal. Fenomena ini bukan 

sahaja akan menyebabkan SWATH menjadi tidak selesa untuk penumpangnya malah 

struktur kapal juga mungkin akan rosak dan seterusnya kapal menjadi tidak selamat. 

Kajian ini mencadangkan SWATH yang diubahsuai berkonsepkan penggabungan 

struktur badan kapal SWATH dan katamaran yang akan mengurangkan kesan 

junaman haluan tetapi masih mengekalkan keupayaan tahan laut yang baik. Ia 

dinamakan sebagai Semi-SWATH. Sebagai tambahan, rekabentuk keseluruhan 

kapal ini dilengkapi dengan sirip tetap di bahagian haluan dan sirip boleh kawal pada 

setiap bahagian belakang lunas kapal. Sistem kawalan PID digunakan untuk 

merekabentuk sirip buritan boleh kawal bagi memastikan pencapaian kapal pada 

kadar optima pada kelajuan 15 (sederhana) dan 20 (tinggi) knots. Di dalam kajian ini, 

pencapaian ketahanan laut bagi Semi-SWATH diperolehi dengan pendekatan 

simulasi masa dengan mengambil kira kesan penstabilan sirip yang diletakkan pada 

badan kapal. Penilaian menggunakan kaedah berangka tersebut kemudiannya 

dibandingkan dengan hasil eksperimen pengujian model yang dijalankan di Makmal 

Teknologi Marin, UTM. Didapati Semi-SWATH dengan sirip boleh kawal 

memberikan pengurangan lambungan sebanyak 42.57% dan 48.8% pengurangan 

anggul.   
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 
1.1 Background 

 

The applications of twin-hull vessels particularly SWATH vessel and 

conventional Catamaran have widely designed regarding for purpose of providing 

better seakeeping quality than mono-hull vessels inherently. 

 

Holloway and Davis (2003) and Kennell (1992) stated that inherent to the 

advantages of SWATH vessels, as compared to the conventional Catamaran is its 

smaller waterplane area that provided smaller wave excitation forces, lower 

amplitude motion associated with its lower accelerations responses and better 

seakeeping performances.  Dubrovskiy and Lyakhoviyskiy (2001), Fang (1988) and 

Kennell (1992) mentioned that due to its smaller waterplane area, the SWATH 

vessels have larger natural period as twice as long the natural periods of roll, pitch, 

and heave of a mono-hull of comparable size. 

 

Based on Dubrovskiy and Lyakhoviyskiy (2001) and Ozawa (1987) have 

presented the advantages of conventional Catamaran features compared to the 

SWATH vessels have shallower draft and lower cost of construction.  Their larger 

waterplane areas as compared to the SWATH vessel has increased the stiffness as 

result as improve vessel’s longitudinal stability.  
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Conversely, the particular drawbacks of SWATH vessel and conventional 

Catamaran geometrically cannot be neglected.  It is shown that the SWATH vessel 

with its small waterplane area is tender in large pitch motion due to low stiffness 

resulted as increase in speed.  Djatmiko (2004), and Dubrovskiy and Lyakhoviyskiy 

(2001), Katayama (2002), and Kennell (1992) stated that the low value of this 

parameter is linked to its insufficient values of longitudinal metacentric height 

(GML).  Consequently, this may lead to pitch instabilities, which caused slamming, 

deck-wetness, excessive trim or even bow diving and degrade the passenger 

comfortability.   

 

Having considered some extensive reviews of several obtainable advantages 

both SWATH and conventional Catamaran hull forms, an alternative hull form 

design is proposed to overcome and minimize their drawbacks.  The proposed design 

concept represents a combination of conventional Catamaran and SWATH hull 

features.  In addition, this new modified hull form configuration conceptually was 

emphasized on the variable draught operations i.e. shallow draught and deep draught.  

Then, this vessel is called “Semi-SWATH vessel.”   

   

Holloway (1998 and 2003) investigated that as the hybrid design hull form; 

the Semi-SWATH configurations generally offered two ways that make the most of 

Semi-SWATH vessel’s benefits.  First, its primary premise is to maintain a good 

seakeeping quality.  Second, it is intended to prevent the bow diving phenomena at 

high-speed.  It means the maturity of Semi-SWATH vessel is going to provide an 

improvement of conventional Catamaran and SWATH vessel drawbacks 

considerably.   

 

Furthermore, the placement both of fixed bow fins and controllable stern fins 

on each lower hull of Semi-SWATH vessel will provide additional pitch restoring 

moment to improve not only the longitudinal stability but also reduce the vertical 

motion responses.  Consequently, the serious inconveniences will degrade the vessel 

performance during sailing especially at high-speed head sea waves can be 

alleviated.  Haywood, Duncan, Klaka, and Bennett (1995) stated that the seakeeping 

of the Semi-SWATH vessel is going to be better evidently. 
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The simulation program of Semi-SWATH vessel incorporated with fixed fore 

and controllable aft fins were developed to evaluate the seakeeping performance 

during operation at both medium speed (15 knots) and high-speed (20 knots).  The 

mathematical model comprising of heave and pitch motions, which incorporated with 

the fins stabilizers on the simulation was presented in a simple block diagram using 

Matlab-SIMULINK.  In this simulation, a conventional PID controller was 

developed and applied on the controllable aft fins.  Segundo, et al (2000) developed 

simulation program using PID controller to alleviate vertical accelerations due to 

waves.  The results of simulation had been validated by experiments in the towing 

tank confirm that by means of flaps and a T-foil, moved under control, vertical 

accelerations can be smoothed, with a significant improvement of passengers 

comfort.  In addition, Caldeira, et al (1984), Ware, et al (1980a), (1980b), 1981, and 

1987, and Chinn, et al (1994) applied conventional optimal PID controller design to 

improve the vertical motion response of marine vehicles. 

 
 

In this PID controller method, some parameter of tuning controller will 

involve some chosen controller gain parameters of PID (Kp, Ki, and Kd are the 

proportional, integral, and derivative gains, respectively).  Those parameters are 

obtained using method of Aström and Hagglund.  Then, they will be considered to 

satisfy certain control specifications by minimizing the error after achieving steady 

state.  This controller mode is applied by controlling the aft fin’s angle of attack 

properly, the sailing style of Semi-SWATH vessel must be adjusted to be in even 

keel condition.  The theoretical prediction results will be validated with the model 

experiments carried out in the Towing Tank of Marine Technology Laboratory, 

Universiti Teknologi Malaysia. 

 

 

1.2 Research Objective 

 

1. To evaluate the seakeeping performance of Semi-SWATH vessel before 

and after installation both of fixed fore and controllable aft fins in regular 

head sea using time domain simulation and validated by model test in 

Towing Tank. 
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2. To apply a ride control system on the controllable aft fins, the 

conventional PID controller will be used to achieve a better quality the 

Semi-SWATH seakeeping performance. 

 

 

1.3  Scopes of Research 

 

1. The mathematical dynamics equations model covers Semi-SWATH 

vessels with fins in two degrees of freedoms i.e. heave and pitch motions 

operating in regular head sea. 

2. The numerical method simulation is based on Time-Domain using 

Matlab-SIMULINK.  

3. In the simulation, the regular waves generated using MATLAB for any 

wavelength of interest as well as experiment done (range of regular wave 

lengths: 0.5 ≤ λ/L ≤ 2.5 and steepness of the incident wave: H/λ = 1/25)  

4. The hydrodynamic coefficients of Semi-SWATH vessel motions will be 

obtained using numerical program, which was developed by Adi Maimun 

and Voon Buang Ain (2001).  

5. The proper fin stabilizers were selected using NACA-0015 section due to 

high lift curve slope and low drag. 

6. Lift Coefficient (CL) will be obtained using CFD software (Shipflow 2.8).   

7. A conventional PID controller will be applied on the Semi-SWATH 

vessel to improve the stability and performance of plant system with 

adequate reliability.  

8. A parameter tuning of PID controller is obtained using method of Aström 

and Hagglund i.e. Kp, Ki, and Kd.  Then, they will be applied to satisfy 

certain control specifications by minimizing the error after achieving 

steady state. 

9. The simulation program result will be validated of by the Semi-SWATH 

model test carried out in Towing Tank of Marine Technology Laboratory, 

Universiti Teknologi Malaysia. 

 
 



 

 

5

1.4 Research Outline 

 

An achievement of the excellent seakeeping qualities for ship design requires 

extensive consideration as guidelines to reflect the safety, effectiveness, and comfort 

of vessel in waves.  The present research follows a systematic procedure to modify 

concept design of twin-hull vessel by minimizing their drawbacks.  This study starts 

from the review of SWATH and conventional Catamaran hull forms.  The final 

design of the new modified hull form will deal to enhance the vessel’s stiffness 

associated with improving seakeeping qualities at high-speed in head seas waves 

condition.  Then this vessel is called Semi-SWATH vessel.  

 

The flexibility of the Semi-SWATH vessel can be operated in two variable 

draughts i.e. shallow draught and deep draught with still maintain seakeeping quality.  

In these variations of operational draughts, the Semi-SWATH vessel will be operated 

in two speed services i.e. medium speed (15 knots) and high-speed (20 knots).  

Furthermore, the effects of vertical motions on the Semi-SWATH vessel (heave and 

pitch motions) when encountering head sea at those service speed will be 

investigated considerably.   

 

For this reason, an advanced prediction analysis both numerically and 

experimentally to achieve a desired goal will be done.  In stage of the Time-Domain 

Simulation approach theoretically will be used to predict and analyze the seakeeping 

performance in head sea waves, which was developed using Matlab-SIMULINK.  

Then, the mathematical model comprising of heave and pitch coupled motions before 

and after attached fixed bow and active stern fin stabilizers are investigated.  Then, 

the conventional PID controller is applied on the active stern fin stabilizer by tuning 

its angle of attack to enhance the improvement of ride quality ideally to be even keel 

riding condition.  Then, the real-time simulation results will be validated by 

experimental model test carried out in Towing Tank at Department of Marine 

Technology, Universiti Teknologi Malaysia.  

 

Finally, the seakeeping evaluation of Semi-SWATH vessel is identified based 

on the motion response, which presented by Response Amplitude Operators (RAOs).   
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The outline of thesis organization is shown in Figure 1.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1   Outline of the thesis organization  




