SEAKEEPING EVALUATION OF SEMI-SWATH VESSEL IN HEAD-SEAS USING TIME DOMAIN SIMULATION

AHMAD FITRIADHY

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Mechanical)

Faculty of Mechanical Engineering

Universiti Teknologi Malaysia

JANUARY 2007

ACKNOWLEDGEMENTS

Firstly, I would like to express my thankfulness to Allah SWT, who has given me his rahmah and hidayah to finish this thesis. My gratitude to my supervisor Assoc. Prof. Dr. Adi Maimun for all of his guidance and encouragement that and aid during the course of this thesis and without which the completion of this work would not be possible. I give great thanks to Assoc. Professor. Assoc. Prof. Dr. Omar Yaakob for all of his invaluable assistance both material and immaterial that was given to me during my study at Department of Marine Technology, Universiti Teknologi Malaysia. I also acknowledge to Tuan Haji Yahaya Samian for his help and his fruitful discussion during thesis writing.

Secondly, my thanks is due to the following individuals:

Mr. Zakaria and the technicians especially, Mr. Ismali, Mr. Azlan and Mr. Rahman for the assistance given during the experimental part of the work.

All my colleagues in the department especially Mr. Arrizam for his many fruitful discussion during experiment.

My wife Nelis Zakiyah Rohmah, my daughters Naqibah Diniyah Ahmad and Naqiyah Diniyah Ahmad, and also my family for especially their encouragement during study.

ABSTRACT

Small Waterplane Area Twin Hull (SWATH) and Catamaran vessels are known to have more stable platform as compared to mono-hulls. A further advantage of SWATH as compared to Catamaran is its smaller waterplane area that provides better seakeeping qualities. However, the significant drawback of the SWATH vessel is when encountering head-sea at high forward speed. Due to its low stiffness, it has a tendency for large pitch motions. Consequently, this may lead to excessive trim or even deck wetness. This phenomenon will not only degrade the comfortability but also results in structural damage with greater safety risks. In this research a modified SWATH design is proposed. The proposed design concept represents a combination of Catamaran and SWATH hull features that will lead to reduce in bow diving but still maintains good seakeeping capabilities. This is then called the **Semi-SWATH vessel.** In addition, the full-design of this vessel has been equipped by fixed fore fins and controllable aft fins attached on each lower hull. In the development of controllable aft fins, the PID controller system was applied to obtain an optimal vessel's ride performance at speeds of 15 (medium) and 20 (high) knots. In this research work, the seakeeping performance of Semi-SWATH vessel was evaluated using time-domain simulation approach. The effect of fin stabilizer on the bare hull performance is considered. The validity of numerical evaluation was then compared with model experiments carried out in the Towing Tank at Marine Technology Laboratory, UTM. It was shown that the Semi-SWATH vessel with controllable fin stabilizer can have significantly reduction by about 42.57% of heave motion and 48.80% of pitch motion.

ABSTRAK

Kapal dwi-hull satah air kecil (SWATH) dan katamaran mempunyai pelantar yang lebih stabil berbanding kapal biasa. Keluasan satah air SWATH yang lebih kecil berbanding katamaran menyebabkan SWATH mempunyai kelebihan dalam keupayaan tahan laut. Walaupun demikian, SWATH menghadapi masalah apabila bertembung dengan ombak dari arah depan pada kelajuan tinggi. Dengan mempunyai sifat kekakuan yang rendah, SWATH berkecenderungan untuk mempunyai pergerakan anggul yang besar. Ini akan memberi kesan trim yang melampau dan juga boleh menyebabkan air melimpah ke dalam geladak kapal. Fenomena ini bukan sahaja akan menyebabkan SWATH menjadi tidak selesa untuk penumpangnya malah struktur kapal juga mungkin akan rosak dan seterusnya kapal menjadi tidak selamat. Kajian ini mencadangkan SWATH yang diubahsuai berkonsepkan penggabungan struktur badan kapal SWATH dan katamaran yang akan mengurangkan kesan junaman haluan tetapi masih mengekalkan keupayaan tahan laut yang baik. Ia dinamakan sebagai Semi-SWATH. Sebagai tambahan, rekabentuk keseluruhan kapal ini dilengkapi dengan sirip tetap di bahagian haluan dan sirip boleh kawal pada setiap bahagian belakang lunas kapal. Sistem kawalan PID digunakan untuk merekabentuk sirip buritan boleh kawal bagi memastikan pencapaian kapal pada kadar optima pada kelajuan 15 (sederhana) dan 20 (tinggi) knots. Di dalam kajian ini, pencapaian ketahanan laut bagi Semi-SWATH diperolehi dengan pendekatan simulasi masa dengan mengambil kira kesan penstabilan sirip yang diletakkan pada badan kapal. Penilaian menggunakan kaedah berangka tersebut kemudiannya dibandingkan dengan hasil eksperimen pengujian model yang dijalankan di Makmal Teknologi Marin, UTM. Didapati Semi-SWATH dengan sirip boleh kawal memberikan pengurangan lambungan sebanyak 42.57% dan 48.8% pengurangan anggul.

CONTENTS

CHAPTER CONTENTS PAGE CERTIFICATE OF ORIGINALITY ii

	11
ACKNOWLEDGEMENTS	iii
ABSTRACT	iv
ABSTRAK	V
CONTENTS	vi
LIST OF TABLES	xi
LIST OF FIGURES	xiv
NOMENCLATURE	xxvi
LIST OF APPENDICES	xxxi

Ι	INTR	ODUCTION	1
	1.1	Background	1
	1.2	Research Objective	3
	1.3	Scope of Research	4
	1.4	Research Outline	5

II	LITH	ERATUR	E REVIEW	7
	2.1	General		7
	2.2	Historic	al Design of Semi-SWATH vessel	8
		2.2.1	Catamaran	8
		2.2.1.1	The advantages of Catamaran	9
		2.2.1.2	The drawbacks of Catamaran	10

	2.2.3 SWATH vessel		11
	2.2.3.1 The advantages of SWAT	[H vessel	11
	2.2.3.2 The drawbacks of SWAT	'H vessel	12
2.3	The Concept of a Semi-SWATH v	essel	14
	2.3.1 Advantages of Semi-SWA	ГH vessel	15
	2.3.2 Motion Response of Semi-	SWATH vessel	16
2.4	Predictions of Ship Motion		18
2.5	Motion Characteristics of High-Sp	eed Twin-Hull Vessels	21
2.6	The Effect of Heave and Pitch Mot	tion Responses	22
2.7	Pitch Motion Stabilizations		23
	2.7.1 Fixed Bow Fin		26
	2.7.2 Controllable Aft Fin		28
	2.7.3 Design of Fin		29
2.8	Ride-Control System		31
	2.8.1 Application of PID Control	ler on	
	The Ship Motion Improven	nent	33
2.9	Time-Domain Simulation		34
2.10	Seakeeping Assessment		36

III APPROACH

3.1	General		
3.2	Framework of Study		
3.3	Choosing a Systematic Procedure	42	
	3.3.1 Selection of Parameters	43	
	3.3.2 Parametric Study	44	
	3.3.3 Evaluation of Motion Responses	46	
3.4	Concluding Remarks		

IV	MAT	MATHEMATICAL MODEL		
	4.1	General	47	
	4.2	Formulation of Hydrodynamic Forces and Moments		
		Based on Strip Theory	48	

	4.2.1	Co-ordinate System	48
	4.2.2	Boundary Conditions and Linearization	49
	4.2.3	Application of Strip Theory	53
	4.2.4	Hydrodynamic Forces and Moments	56
4.3	Mode	lling of Fin Effect	57
4.4	Equat	ions of Motion in Time-Domain Simulation	67
	4.4.1	Solution of The Motion Equations	68
4.5	Concl	uding Remarks	69

V	IMPI	ROVED VESSEL RIDE PERFORMANCE	
	USIN	G TIME-DOMAIN SIMULATION	70
	5.1	General	70
	5.2	Simple Block of Control System using PID Controller	71
	5.3	The Three-Term PID Controller	71
	5.4	The Proportional-Integral-Derivative (PID) algorithm	72
		5.4.1 A Proportional Algorithm	72
		5.4.2 A Proportional Integral Algorithm	73
		5.4.3 A Proportional Integral Derivative Algorithm	73
	5.5	Controller Tuning	74
		5.5.1 Parameter Tuning Rules for PID Controller	74
	5.6	Actuator Modeling	76
		5.6.1 Modeling of DC Servomotor	76
	5.7	Application of PID Controller to Multi-Hull Motion Control	80
	5.8	Closed-Loop of Anti-Pitching Fin Control System	81
	5.9	Time-Domain Simulation Program Structure	81
	5.10	Computer Simulation	83
	5.11	Simulation Condition	84
	5.12	Simulation Results	85
		5.12.1 First Simulation Results	86
		5.12.2 Second Simulation Results	92
	5.13	Concluding Remarks	98

VI	PRO	PROCEDURE OF SEAKEEPING TEST		
	6.1	General	99	
	6.2	Objective of The Experiments	99	
	6.3	Model Test Preparation	100	
		6.3.1 Model Test Particulars	101	
	6.4	Experiments Apparatus and Facility	103	
		6.4.1 Towing Tank	103	
		6.4.2 Towing Carriage	104	
		6.4.3 Wave Generator	104	
	6.5	Experiments Setup	104	
	6.6	Experiment Condition	107	
	6.7	Description of Data Test Analysis	107	
	6.8	Concluding Remarks	108	

VII VALIDATION

7	7.1	Genera	al	110
7	7.2	Compa	arison of Experimental and Simulation Results	110
7	7.3	Case 1		113
		7.3.1	Maximum and Minimum Values of Heave	
			and Pitch Motion at T=2.0m and Vs=15 Knots	113
		7.3.2	Response Amplitude Operators (RAOs)	
			of Heave and Pitch Motion T=2.0m and Vs=15 Knots	115
		7.3.3	Time-Histories of Heave and Pitch Motion	
			T=2.0m and Vs=15 Knots	121
7	7.4	Case 2		148
		7.4.1	Maximum and Minimum Values of Heave and Pitch M	otion
			at T=1.4 m and Vs=20 Knots	148
		7.4.2	Response Amplitude Operators (RAOs)	
			of Heave and Pitch Motion T=1.4 m and Vs=20 Knots	150
		7.4.3	Time-Histories of Heave and Pitch Motion	
			T=1.4 m and Vs=20 Knots	156

7.5	Concluding Remarks
-----	--------------------

VIII	DISC	DISCUSSION		
	8.1	General	182	
	8.2	Mathematical model	184	
	8.3	Investigation of Controller Scheme of The Fin Stabilizers	184	
	8.4	Development of PID Controller	186	
	8.5	Experimental Result	186	
	8.6	Concluding Remarks	187	

IX CONCLUSSION 188

X	FUTURE RESEARCH	190
	REFERENCES	191
	APPENDICES	
	APPENDIX A	203
	APPENDIX B	208
	APPENDIX C	210
	APPENDIX D	213
	APPENDIX E	215
	APPENDIX F	217

LIST OF TABLES

TITLE

TABLE

2.1	Seakeeping Criteria in Transit	37
3.1	The two section of parameter works	45
3.2	The parameter of PID tuning on the second section of parameter works	45
4.1	Ratio of Lift on Aft Fin to Lift on Forward Fin for Variations	
	Fin Separation and Oscillation Frequency, McCreight et al (1983)	63
5.1	Ziegler-Nichols Parameter Tuning	75
5.2	DC servomotor parameters	77
5.3	First Simulation Condition	84
5.4	Parametric of tuning PID controller	85
5.5	Semi-SWATH vessel results achieved by the application of	
	tuning parameter of PID Controller at T=2.0 m and Vs =15 Knots	86
5.6	Semi-SWATH vessel results achieved by the application of	
	tuning parameter of PID Controller at T=1.4 m and Vs =20 Knots	92
6.1	The principle dimension of Semi-SWATH model test	102
6.2	The principle dimension of stabilizer fins	102
7.1	Comparison of simulation and experiment condition for	
	Semi-SWATH vessel	111
7.2	Summary of heave motion values (experimentally) at	
	various angles of fins	113
7.3	Summary of heave motion values (theoretically) at various angles of fins	113
7.4	Summary of pitch motion values (experimentally) at various angles of fine	s 114
7.5	Summary of pitch motion values (theoretically) at various angles of fins	114

PAGE

7.6	Summary of Response Amplitude Operators (RAOs) for heave motion	
	(experimentally) at various angles of fins at T=2.0m and Vs=15 Knots	115
7.7	Summary of Response Amplitude Operators (RAOs) for heave motion	
	(theoretically) at various angles of fins at T=2.0m and Vs=15 Knots	115
7.8	Summary of Response Amplitude Operators (RAOs) for pitch motion	
	(experimentally) at various angles of fins at T=2.0m and Vs=15 Knots	115
7.9	Summary of Response Amplitude Operators (RAOs) for pitch motion	
	(theoretically) at various angles of fins at T=2.0m and Vs=15 Knots	116
7.10	Summary of heave and pitch improvement (%) for various angles of	
	aft fin and fixed fore fin (experimentally)	121
7.11	Semi-SWATH vessel results obtained with and without using	
	fixed fore and aft fins	126
7.12	Semi-SWATH vessel results obtained with and without using	
	fixed fore and aft fins	132
7.13	Semi-SWATH vessel results obtained with and without using	
	fixed fore and aft fins	137
7.14	Semi-SWATH vessel results obtained with and without using	
	fixed fore and aft fins	143
7.15	Summary of heave motion values (experimentally) at various angles of	
	fins at T=1.4 m and Vs=20 Knots	148
7.16	Summary of heave motion values (theoretically) at various angles of fins	
	at T=1.4 m and Vs=20 Knots	149
7.17	Summary of heave motion values (experimentally) at various angles of	
	fins at T=1.4 m and Vs=20 Knots	149
7.18	Summary of heave motion values (theoretically) at various angles of	
	fins at T=1.4 m and Vs=20 Knots	149
7.19	Summary of Response Amplitude Operators (RAOs) for heave motion	
	(experimentally) at various angles of fins	150
7.20	Summary of Response Amplitude Operators (RAOs) for heave motion	
	(theoretically) at various angles of fins	150
7.21	Summary of Response Amplitude Operators (RAOs) for pitch motion	

	(experimentally) at various angles of fins	150
7.22	Summary of Response Amplitude Operators (RAOs) for pitch motion	
	(theoretically) at various angles of fins	151

LIST OF FIGURES

FIGURE

TITLE

PAGE

1.1	Outline of the thesis organization	6
2.1	Catamaran vessel profile and section	9
2.2	Conventional SWATH vessel profile and section	11
2.3	Illustration of strip theory for ships, Faltinsen (1990)	19
4.1	Definition of vessel's coefficient-ordinate system	49
4.2	Description of defined boundaries fluid for twin-hull vessels	53
4.3	Comparison of Wing-Body interaction Factors for Fixed Fin (Caldeira-	
	Saraiva and Clarke, 1988)	59
4.4	Comparison of Wing-Body interaction Factors for Movable Fins	
	(Caldeira-Saraiva and Clarke, 1988)	60
4.5	Effect of Boundary Layer on Fin Lift, Lloyd (1989)	61
4.6	Trailing Vortex Generated by a Lifting Surface, Lloyd, (1989)	62
4.7	Fin-Fin Interference for Oscillating Fins, Lloyd, (1989)	62
4.8	Fin-Fin Interference Factors, Lloyd, (1989)	63
4.9	Variation of Lift with Submergence, Atlar, Kenevissi et al (1997)	64
4.10	Representation of The Geometric Parameters for Hull-Fin Interference	
	Atlar (1991)	65
4.11	The Drag Coefficient of Flat Plate (+), Diamond (\Diamond) and Circular (o)	
	Cylinders at Low KC, Bearman, et al (1979)	66
5.1	Simple Block of Control System	71

5.2	The relay feedback controller	76
5.3	Relay output	78
5.4	Waveform of oscillation	78
5.5	Zoomed waveform of oscillation	78
5.6	Output responses when step input is applied	79
5.7	Closed-loop anti-pitching control system	81
5.8	Servo motor of the anti-pitching fin	81
5.9	Programming structure for a single degree of freedom	82
5.10	Programming structure for two degrees of freedoms	83
5.11	Layout of graphic programming using Matlab-SIMULINK	84
5.12	Heave motion of Semi-SWATH vessel using controllable aft fin	
	at wave height = 0.857 m, $\lambda/L_s = 1.8$	87
5.13	Pitch motion of Semi-SWATH vessel using controllable aft fin	
	at wave height = 0.857 m, $\lambda/L_s = 1.8$	87
5.14	Aft fins deflection due to the application of the designed controller	
	at vessel speed=15 Knots	87
5.15	Heave motion of Semi-SWATH vessel using controllable aft fin	
	at wave height = 0.952 m, λ/L_s = 2.0	88
5.16	Pitch motion of Semi-SWATH vessel using controllable aft fin	
	at wave height = 0.952 m, λ/L_s = 2.0	88
5.17	Aft fins deflection due to the application of the designed controller	
	at vessel speed=15 Knots	88
5.18	Heave motion of Semi-SWATH vessel using controllable aft fin	
	at wave height = 1.05 m , $\lambda/L_s = 2.2$	89
5.19	Pitch motion of Semi-SWATH vessel using controllable aft fin	
	at wave height = 1.05 m, $\lambda/L_s = 2.2$	89
5.20	Aft fins deflection due to the application of the designed controller	
	at vessel speed=15 Knots	89
5.21	Heave motion of Semi-SWATH vessel using controllable aft fin	
	at wave height = 1.14 m , $\lambda/L_s = 2.4$	90
5.22	Pitch motion of Semi-SWATH vessel using controllable aft fin	

at wave height = 1.14 m, $\lambda/L_s = 2.4$	
--	--

5.23	Aft fins deflection due to the application of the designed controller	
	at vessel speed=15 Knots	90
5.24	Heave motion of Semi-SWATH vessel using controllable aft fin	
	at wave height = 1.19 m, $\lambda/L_s = 2.5$	91
5.25	Pitch motion of Semi-SWATH vessel using controllable aft fin	
	at wave height = 1.19 m, $\lambda/L_s = 2.5$	91
5.26	Aft fins deflection due to the application of the designed controller	
	at vessel speed=15 Knots	91
5.27	Heave motion on the Semi-SWATH vessel at	
	wave height = 0.476 m, $\lambda/L_s = 1$	93
5.28	Pitch motion on the Semi-SWATH vessel at	
	wave height = 0.476 m, $\lambda/L_s = 1$	93
5.29	Aft fins deflection due to the application of the designed controller	
	at vessel speed=15 Knots	93
5.30	Heave motion on the Semi-SWATH vessel at	
	wave height = 0.571 m, $\lambda/L_s = 1.2$	94
5.31	Pitch motion on the Semi-SWATH vessel at	
	wave height = 0.571 m, $\lambda/L_s = 1.2$	94
5.32	Aft fins deflection due to the application of the designed controller	
	at vessel speed=15 Knots	94
5.33	Heave motion on the Semi-SWATH vessel at	
	wave height = 0.666 m, $\lambda/L_s = 1.4$	95
5.34	Pitch motion on the Semi-SWATH vessel at	
	wave height = 0.666 m, $\lambda/L_s = 1.4$	95
5.35	Aft fins deflection due to the application of the designed controller	
	at vessel speed=15 Knots	95
5.36	Heave motion on the Semi-SWATH vessel at	
	wave height = 0.762 m, $\lambda/L_s = 1.6$	96
5.37	Pitch motion on the Semi-SWATH vessel at	

	wave height = 0.762 m, $\lambda/L_s = 1.6$	96
5.38	Aft fins deflection due to the application of the designed controller	
	at vessel speed=15 Knots	96
5.39	Heave motion on the Semi-SWATH vessel at	
	wave height = 0.857 m, $\lambda/L_s = 1.8$	97
5.40	Pitch motion on the Semi-SWATH vessel at	
	wave height = 0.857 m, $\lambda/L_s = 1.8$	97
5.41	Aft fins deflection due to the application of the designed controller	
	at vessel speed=15 Knots	97
6.1	Plane View of Semi-SWATH Model	102
6.2	Side View of Semi-SWATH Model	103
6.3	Side view of Towing Tank	103
6.4	Plane view of Towing Tank	103
6.5	The arrangement of airstrut and towing guide with ship model	
	(MARIN, 1997b)	105
6.6	The block diagram of Data Acquisition Analysis System (DAAS)	106
7.1	RAOs of heave for bare hull vessel and with various angles	
	of fins (experimentally)	116
7.2	RAOs of heave for bare hull vessel and with various angles	
	of fins (theoretically)	117
7.3	RAOs of pitch for bare hull vessel and with various angles	
	of fins (experimentally)	117
7.4	RAOs of pitch for bare hull vessel and with various angles	
	of fins (theoretically)	118
7.5	RAOs comparison of heave at fin angle; aft = 5^0 and fore = 15^0	118
7.6	RAOs comparison of heave at fin angle; aft = 10^0 and fore = 15^0	118
7.7	RAOs comparison of heave at fin angle; aft = 15° and fore = 15°	119
7.8	RAOs comparison of heave at fin angle; aft = 20° and fore = 15°	119
7.9	RAOs comparison of heave at fin angle; aft = 25° and fore = 15°	119
7.10	RAOs comparison of pitch at fin angle; aft = 5^0 and fore = 15^0	119

7.11	RAOs comparison of pitch at fin angle; aft = 10^0 and fore = 15^0	120
7.12	RAOs comparison of pitch at fin angle; aft = 15^0 and fore = 15^0	120
7.13	RAOs comparison of pitch at fin angle; aft = 25^0 and fore = 15^0	120
7.14	RAOs comparison of pitch at fin angle; aft = 20° and fore = 15°	120
7.15	Heave motion on the Semi-SWATH vessel	
	at wave height = 0.857 m, $\lambda/L_s = 1.8$	121
7.16	Pitch motion on the Semi-SWATH vessel	
	at wave height = 0.857 m, $\lambda/L_s = 1.8$	122
7.17	Heave motion on the Semi-SWATH vessel	
	at wave height = 0.952 m, $\lambda/L_s = 2.0$	122
7.18	Pitch motion on the Semi-SWATH vessel	
	at wave height = 0.952 m, λ/L_s = 2.0	123
7.19	Heave motion on the Semi-SWATH vessel	
	at wave height = 1.05 m, $\lambda/L_s = 2.2$	123
7.20	Pitch motion on the Semi-SWATH vessel	
	at wave height = 1.05 m, $\lambda/L_s = 2.2$	124
7.21	Heave motion on the Semi-SWATH vessel	
	at wave height = 1.14 m, $\lambda/L_s = 2.4$	124
7.22	Pitch motion on the Semi-SWATH vessel	
	at wave height = 1.14 m, $\lambda/L_s = 2.4$	125
7.23	Heave motion on the Semi-SWATH vessel at	
	wave height = 1.19 m, $\lambda/L_s = 2.6$	125
7.24	Pitch motion on the Semi-SWATH vessel	
	at wave height = 1.19 m, $\lambda/L_s = 2.6$	126
7.25	Heave motion on the Semi-SWATH vessel	
	at wave height = 0.857 m, $\lambda/L_s = 1.8$	127
7.26	Pitch motion on the Semi-SWATH vessel	
	at wave height = 0.857 m, $\lambda/L_s = 1.8$	127

7.27 Heave motion on the Semi-SWATH vessel

	at wave height = 0.952 m , $\lambda/L_s = 2.0$	128
7.28	Pitch motion on the Semi-SWATH vessel	
	at wave height = 0.952 m, $\lambda/L_s = 2.0$	128
7.29	Heave motion on the Semi-SWATH vessel	
	at wave height = 1.05 m, $\lambda/L_s = 2.2$	129
7.30	Pitch motion on the Semi-SWATH vessel	
	at wave height = 1.05 m, $\lambda/L_s = 2.2$	129
7.31	Heave motion on the Semi-SWATH vessel	
	at wave height = 1.14 m, $\lambda/L_s = 2.4$	130
7.32	Pitch motion on the Semi-SWATH vessel	
	at wave height = 1.14 m, $\lambda/L_s = 2.4$	130
7.33	Heave motion on the Semi-SWATH vessel	
	at wave height = 1.19 m, $\lambda/L_s = 2.6$	131
7.34	Pitch motion on the Semi-SWATH vessel	
	at wave height = 1.19 m, $\lambda/L_s = 2.6$	131
7.35	Heave motion on the Semi-SWATH vessel	
	at wave height = 0.857 m, $\lambda/L_s = 1.8$	132
7.36	Pitch motion on the Semi-SWATH vessel	
	at wave height = 0.857 m, $\lambda/L_s = 1.8$	133
7.37	Heave motion on the Semi-SWATH vessel	
	at wave height = 0.952 m, λ/L_s = 2.0	133
7.38	Pitch motion on the Semi-SWATH vessel	
	at wave height = 0.952 m, λ/L_s = 2.0	134
7.39	Heave motion on the Semi-SWATH vessel	
	at wave height = 1.05 m, $\lambda/L_s = 2.2$	134
7.40	Pitch motion on the Semi-SWATH vessel	
	at wave height = 1.05 m, $\lambda/L_s = 2.2$	135
7.41	Heave motion on the Semi-SWATH vessel	
	at wave height = 1.14 m, $\lambda/L_s = 2.4$	135
7.42	Pitch motion on the Semi-SWATH vessel	

	at wave height = 1.14 m, $\lambda/L_s = 2.4$	136
7.43	Heave motion on the Semi-SWATH vessel	
	at wave height = 1.19 m, $\lambda/L_s = 2.6$	136
7.44	Pitch motion on the Semi-SWATH vessel	
	at wave height = 1.19 m, $\lambda/L_s = 2.6$	137
7.45	Heave motion on the Semi-SWATH vessel	
	at wave height = 0.857 m, λ/L_s = 1.8	138
7.46	Pitch motion on the Semi-SWATH vessel	
	at wave height = 0.857 m, λ/L_s = 1.8	138
7.47	Heave motion on the Semi-SWATH vessel	
	at wave height = 0.952 m, λ/L_s = 2.0	139
7.48	Pitch motion on the Semi-SWATH vessel with and without	
	using fixed fore fins = 15° and fixed aft fins 20°	139
7.49	Heave motion on the Semi-SWATH vessel	
	at wave height = 1.05 m, λ/L_s = 2.2	140
7.50	Pitch motion on the Semi-SWATH vessel	
	at wave height = 1.05 m, λ/L_s = 2.2	140
7.51	Heave motion on the Semi-SWATH vessel	
	at wave height = 1.14 m, λ/L_s = 2.4	141
7.52	Pitch motion on the Semi-SWATH vessel	
	at wave height = 1.14 m, $\lambda/L_s = 2.4$	141
7.53	Heave motion on the Semi-SWATH vessel	
	at wave height =1.19 m, $\lambda/L_s = 2.6$	142
7.54	Pitch motion on the Semi-SWATH vessel	
	at wave height =1.19 m, λ/L_s = 2.6	142
7.55	Heave motion on the Semi-SWATH vessel	
	at wave height = 0.857 m, $\lambda/L_s = 1.8$	143
7.56	Pitch motion on the Semi-SWATH vessel	
	at wave height = 0.857 m, $\lambda/L_s = 1.8$	144
7.57	Heave motion on the Semi-SWATH vessel	

	at wave height = 0.952 m, $\lambda/L_s = 2.0$	144
7.58	Pitch motion on the Semi-SWATH vessel	
	at wave height = 0.952 m, $\lambda/L_s = 2.0$	145
7.59	Heave motion on the Semi-SWATH vessel	
	at wave height = 1.05 m, $\lambda/L_s = 2.2$	145
7.60	Pitch motion on the Semi-SWATH vessel	
	at Wave Height = 1.05 m , $\lambda/L_s = 2.2$	146
7.61	Heave motion on the Semi-SWATH vessel	
	at wave height = 1.14 m, $\lambda/L_s = 2.4$	146
7.62	Pitch motion on the Semi-SWATH vessel	
	at wave height = 1.14 m, $\lambda/L_s = 2.4$	147
7.63	Heave motion on the Semi-SWATH vessel	
	at wave height = 1.19 m, $\lambda/L_s = 2.6$	147
7.64	Pitch motion on the Semi-SWATH vessel	
	at wave height = 1.19 m, $\lambda/L_s = 2.6$	148
7.65	RAOs of heave for Semi-SWATH vessel	
	with various angles of fins (experimentally)	151
7.66	RAOs of pitch for Semi-SWATH vessel with various angles of fins	
	(experimentally)	152
7.67	RAOs of heave for Semi-SWATH vessel with various angles of fins	
	(theoretically)	152
7.68	RAOs of pitch for Semi-SWATH vessel with various angles of fins	
	(theoretically)	153
7.69	RAOs comparison of heave at fin angle; aft = 5° and fore = 15°	153
7.70	RAOs comparison of heave at fin angle; aft = 10^{0} and fore = 15^{0}	153
7.71	RAOs comparison of heave at fin angle; aft = 15° and fore = 15°	154
7.72	RAOs comparison of heave at fin angle; aft = 20° and fore = 15°	154
7.73	RAOs comparison of heave at fin angle; aft = 25° and fore = 15°	154
7.74	RAOs comparison of heave at fin angle; aft = 5° and fore = 15°	154
7.75	RAOs comparison of heave at fin angle; aft = 10° and fore = 15°	155
7.76	RAOs comparison of heave at fin angle; aft = 15° and fore = 15°	155

7.77	RAOs comparison of heave at fin angle; aft = 5^0 and fore = 15^0	155
7.78	RAOs comparison of heave at fin angle; aft = 25° and fore = 15°	155
7.79	Heave motion on the Semi-SWATH vessel	
	at wave height = 0.476 m, $\lambda/L_s = 1$	156
7.80	Pitch motion on the Semi-SWATH vessel	
	at wave height = 0.476 m, $\lambda/L_s = 1$	156
7.81	Heave motion on the Semi-SWATH vessel	
	at wave height = 0.571 m, $\lambda/L_s = 1.2$	157
7.82	Pitch motion on the Semi-SWATH vessel	
	at wave height = 0.571 m, $\lambda/L_s = 1.2$	157
7.83	Heave motion on the Semi-SWATH vessel	
	at wave height = 0.666 m, $\lambda/L_s = 1.4$	158
7.84	Pitch motion on the Semi-SWATH vessel	
	at wave height = 0.666 m, $\lambda/L_s = 1.4$	158
7.85	Heave motion on the Semi-SWATH vessel	
	at wave height = 0.762 m , $\lambda/L_s = 1.6$	159
7.86	Pitch motion on the Semi-SWATH vessel	
	at wave height = 0.762 m , $\lambda/L_s = 1.6$	159
7.87	Heave motion on the Semi-SWATH vessel	
	at wave height = 0.857 m, $\lambda/L_s = 1.8$	160
7.88	Pitch motion on the Semi-SWATH vessel	
	at wave height = 0.857 m, $\lambda/L_s = 1.8$	160
7.89	Heave motion on the Semi-SWATH vessel	
	at wave height = 0.476 m, $\lambda/L_s = 1.0$	161
7.90	Pitch motion on the Semi-SWATH vessel	
	at wave height = 0.476 m, $\lambda/L_s = 1.0$	161
7.91	Heave motion on the Semi-SWATH vessel	
	at wave height = 0.571 m, $\lambda/L_s = 1.2$	162
7.92	Pitch motion on the Semi-SWATH vessel	
	at wave height = 0.571 m, $\lambda/L_s = 1.2$	162

7.93	Heave motion on the Semi-SWATH vessel	
	at wave height = 0.666 m, $\lambda/L_s = 1.4$	163
7.94	Pitch motion on the Semi-SWATH vessel	
	at wave height = 0.666 m, $\lambda/L_s = 1.4$	163
7.95	Heave motion on the Semi-SWATH vessel	
	at wave height = 0.762 m, $\lambda/L_s = 1.6$	164
7.96	Pitch motion on the Semi-SWATH vessel	
	at wave height = 0.762 m, $\lambda/L_s = 1.6$	164
7.97	Heave motion on the Semi-SWATH vessel	
	at wave height = 0.857 m, $\lambda/L_s = 1.8$	165
7.98	Pitch motion on the Semi-SWATH vessel	
	at wave height = 0.857 m, $\lambda/L_s = 1.8$	165
7.99	Heave motion on the Semi-SWATH vessel	
	at wave height = 0.476 m, $\lambda/L_s = 1.0$	166
7.100	Pitch motion on the Semi-SWATH vessel	
	at wave height = 0.476 m, $\lambda/L_s = 1.0$	166
7.101	Heave motion on the Semi-SWATH vessel	
	at wave height = 0.571 m, $\lambda/L_s = 1.2$	167
7.102	Pitch motion on the Semi-SWATH vessel	
	at wave height = 0.571 m, $\lambda/L_s = 1.2$	167
7.103	Heave motion on the Semi-SWATH vessel	
	at wave height = 0.666 m, $\lambda/L_s = 1.4$	168
7.104	Pitch motion on the Semi-SWATH vessel	
	at wave height = 0.666 m, $\lambda/L_s = 1.4$	168
7.105	Heave motion on the Semi-SWATH vessel	
	at wave height = 0.762 m, $\lambda/L_s = 1.6$	169
7.106	Pitch motion on the Semi-SWATH vessel	
	at wave height = 0.762 m, $\lambda/L_s = 1.6$	169
7.107	Heave motion on the Semi-SWATH vessel	
	at wave height = 0.857 m, $\lambda/L_s = 1.8$	170

7.108	Pitch motion on the Semi-SWATH vessel	
	at wave height = 0.857 m, $\lambda/L_s = 1.8$	170
7.109	Heave motion on the Semi-SWATH vessel	
	at wave height = 0.476 m, $\lambda/L_s = 1.0$	171
7.110	Pitch motion on the Semi-SWATH vessel	
	at wave height = 0.476 m, $\lambda/L_s = 1$	171
7.111	Heave motion on the Semi-SWATH vessel	
	at wave height = 0.571 m, $\lambda/L_s = 1.2$	172
7.112	Pitch motion on the Semi-SWATH vessel	
	at wave height = 0.571 m, $\lambda/L_s = 1.2$	172
7.113	Heave motion on the Semi-SWATH vessel	
	at wave height = 0.666 m, $\lambda/L_s = 1.4$	173
7.114	Pitch motion on the Semi-SWATH vessel	
	at wave height = 0.666 m, $\lambda/L_s = 1.4$	173
7.115	Heave motion on the Semi-SWATH vessel	
	at wave height = 0.762 m, $\lambda/L_s = 1.6$	174
7.116	Pitch motion on the Semi-SWATH vessel	
	at wave height = 0.762 m , $\lambda/L_s = 1.6$	174
7.117	Heave motion on the Semi-SWATH vessel	
	at wave height = 0.857 m, $\lambda/L_s = 1.8$	175
7.118	Pitch motion on the Semi-SWATH vessel	
	at wave height = 0.857 m, $\lambda/L_s = 1.8$	175
7.119	Heave motion on the Semi-SWATH vessel	
	at wave height = 0.476 m, $\lambda/L_s = 1$	176
7.120	Pitch motion on the Semi-SWATH vessel	
	at wave height = 0.476 m, $\lambda/L_s = 1$	176
7.121	Heave motion on the Semi-SWATH vessel	
	at wave height = 0.571 m, $\lambda/L_s = 1.2$	177
7.122	Pitch motion on the Semi-SWATH vessel	
	at wave height = 0.571 m, $\lambda/L_s = 1.2$	177

7.123	Heave motion on the Semi-SWATH vessel	
	at wave height = 0.666 m, $\lambda/L_s = 1.4$	178
7.124	Pitch motion on the Semi-SWATH vessel	
	at wave height = 0.666 m, $\lambda/L_s = 1.4$	178
7.125	Heave motion on the Semi-SWATH vessel	
	at wave height = 0.762 m, $\lambda/L_s = 1.6$	179
7.126	Pitch motion on the Semi-SWATH vessel	
	at wave height = 0.762 m, $\lambda/L_s = 1.6$	179
7.127	Heave motion on the Semi-SWATH vessel	
	at wave height = 0.857 m, $\lambda/L_s = 1.8$	180
7.128	Pitch motion on the Semi-SWATH vessel	
	at wave height = 0.857 m, $\lambda/L_s = 1.8$	180

NOMENCLATURE

Vessel/ Environment Parameters

Δ_d	:	Displacement at deep draught
$\Delta_{\rm s}$:	Displacement at shallow draught
Cb	:	Block coefficient
C _m	:	Midship area coefficient
$GM_{\rm L}$:	Longitudinal metacentric height
GM_{T}	:	Transverse metacentric height
KG	:	Vertical height of centre of gravity from the Keel
LCG	:	Longitudinal center of gravity
LOA	:	Length overall of ship
SWATH	:	Small Waterplane Area of Twin Hull
T _d	:	Deep draught
Ts	:	Shallow draught

PID Controller

δ_c	:	Control variable
a	:	The amplitude of the waveform oscillation
Controller	:	Provides the excitation for the plant; Designed to control the overall
		system behaviour
d	:	Amplitude of the relay output
e	:	The error deviations
K _c	:	Critical gain
K _d	:	Derivative gain

K _i ,	:	Integral gain
K _p ,	:	Proportional gain
MIMO	:	multiple-input multiple-output
PID	:	Proportional-Integral-Derivative
Plant	:	A system to be controlled
POS	:	Percent overshoot
SISO	:	Single-input single-output
T _c	:	Critical period of waveform oscillation
T _d	:	Derivative time constant
T_i	:	Integral time constant
Y_{ref}	:	A desired response

DC Motor

θ	:	Angular displacement [rad]
ω	:	Motor shaft angular velocity [rad/sec]
i _a	:	Motor Current [A]
Jm	:	Motor Inertia [Nm.sec ²]
Ka	:	Back emf constant [mV/(rad/sec)]
K_m	:	Torque Constant [Nm/A]
La	:	Motor Inductance [H]
R _a	:	Motor Resistance $[\Omega]$
$T_{\rm L}$:	Load Torque [Nm]
T_m	:	Motor Torque [Nm]
Va	:	Motor Voltage [V]

Co-ordinate Systems

O ^e x ^e y ^e z ^e	:	The earth fixed co-ordinate system
O*x*y*z*	:	The fixed ship system being located at the centre of gravity of the ship

Fin Stabilizer

ρ	:	Fluid density
A^f_{ij}	:	Added mass of fin
В	:	Body
X _{FP}	:	Distance from the ship forward perpendicular to the fin axis
C _D	:	Drag coefficient
E _{FS}	:	Effect of free surface
$C_{L\alpha}$:	Lift coefficient of the fin
$C_{Z\alpha}$:	Lift coefficient of the fin attached to the hull
M_{ij}^{f}	:	Mass of fin
D	:	Maximum diameter of the hull
ω	:	Oscillation frequency
А	:	Projected fin area
R _n	:	Reynolds number
t	:	The maximum thickness of the fin
a	:	Hull radius
K and k	:	Fin-hull interaction factors for a fixed fin and for an activating fin
AR	:	Aspect ratio
c	:	Chord
D	:	Distance between leading edge of fins
KC	:	Keulegan Carpenter
S	:	Span
Т	:	Encounter period
W	:	Wing

Equations of Motion

F_x, F_y, F_z	:	Force acting in x, y and z direction respectively
I_x, I_y, I_z	:	Principal mass moments of inertia about the x, y and z axes respectively

m	:	Mass of body
p, q, r	:	Angular velocities along the respective x, y and z axes
u, v, w	:	Linear velocities along the respective x, y and z axes

Forces and Moments

\overrightarrow{U}	:	Forward speed
\overline{q}	:	Complex conjugate of q
u _a	:	Motion amplitude
$\frac{\partial}{\partial n_q}$:	Normal derivative with respect to the source point q
ň	:	Outward unit normal vector
q	:	Source point
G	:	Two dimensional Green's function
∇	:	Vector differential operator
ξ_{a}	:	Wave amplitude
ρ	:	Density of water
ω	:	Frequency of excitation
ν	:	Real variable
φ	:	Time dependent velocity potential
∇	:	Under water volume of vessel
$\phi_{\rm D}$:	Diffracted wave potential
ω _e	:	Frequency of encounter
$\varphi_{\rm I}$:	Incident wave potential
ϕ_{Rj}	:	Generated wave potential due to motions of the body in the j^{th} direction
$\phi^{\rm R}$ and $\phi^{\rm I}$:	Velocity potentials
g	:	Gravitational acceleration
n _j	:	Outward unit normal vector in the j th mode of motion
р	:	Field point

р	:	Pressure acting on the wetted surface
PV	:	Denotes Principal Value of an integral
S _b	:	Wetted body surface
$\mathbf{S}_{\mathbf{f}}$:	Free surface

Hydrodynamic Coefficients

a _{jj}	:	Hydrodynamic reaction in phase with acceleration (added mass) in the \boldsymbol{j}^{th}
		direction $(j = 1, 2,, 6)$
b _{jj}	:	Hydrodynamic reaction in phase with velocity (damping) in the \boldsymbol{j}^{th}
		direction $(j = 1, 2,, 6)$
c _{jj}	:	Hydrostatic stiffness of body in the j^{th} direction (j = 1,2,,6)
mj	:	Mass or mass moment of inertia of body in the j th direction (j = 1,2,,6)

Experiment

$\omega_{\rm n}$:	Natural frequency of ship		
λ	:	Wavelength		
DAAS	:	Data Acquisition and Analyzing System		
Ls	:	Length of ship		
RAO	:	Response Amplitude Operators		
SCS	:	Signal Conditioning System		

LIST OF APPENDICES

APP	ENDIXES TI	TLE	PAGE
A	Theoretical Analysis of Added M	ass and Damping	203
B	Matlab Ode		208
С	Semi-SWATH Vessel Particulars		210
D	Fin Stabilizers Data		213
Е	Prototype of Semi-SWATH Vesse	el	215
F	Experimental Photographs		217

CHAPTER 1

INTRODUCTION

1.1 Background

The applications of twin-hull vessels particularly SWATH vessel and conventional Catamaran have widely designed regarding for purpose of providing better seakeeping quality than mono-hull vessels inherently.

Holloway and Davis (2003) and Kennell (1992) stated that inherent to the advantages of SWATH vessels, as compared to the conventional Catamaran is its smaller waterplane area that provided smaller wave excitation forces, lower amplitude motion associated with its lower accelerations responses and better seakeeping performances. Dubrovskiy and Lyakhoviyskiy (2001), Fang (1988) and Kennell (1992) mentioned that due to its smaller waterplane area, the SWATH vessels have larger natural period as twice as long the natural periods of roll, pitch, and heave of a mono-hull of comparable size.

Based on Dubrovskiy and Lyakhoviyskiy (2001) and Ozawa (1987) have presented the advantages of conventional Catamaran features compared to the SWATH vessels have shallower draft and lower cost of construction. Their larger waterplane areas as compared to the SWATH vessel has increased the stiffness as result as improve vessel's longitudinal stability. Conversely, the particular drawbacks of SWATH vessel and conventional Catamaran geometrically cannot be neglected. It is shown that the SWATH vessel with its small waterplane area is tender in large pitch motion due to low stiffness resulted as increase in speed. Djatmiko (2004), and Dubrovskiy and Lyakhoviyskiy (2001), Katayama (2002), and Kennell (1992) stated that the low value of this parameter is linked to its insufficient values of longitudinal metacentric height (GM_L). Consequently, this may lead to pitch instabilities, which caused slamming, deck-wetness, excessive trim or even bow diving and degrade the passenger comfortability.

Having considered some extensive reviews of several obtainable advantages both SWATH and conventional Catamaran hull forms, an alternative hull form design is proposed to overcome and minimize their drawbacks. The proposed design concept represents a combination of conventional Catamaran and SWATH hull features. In addition, this new modified hull form configuration conceptually was emphasized on the variable draught operations i.e. shallow draught and deep draught. Then, this vessel is called "**Semi-SWATH vessel**."

Holloway (1998 and 2003) investigated that as the hybrid design hull form; the Semi-SWATH configurations generally offered two ways that make the most of Semi-SWATH vessel's benefits. First, its primary premise is to maintain a good seakeeping quality. Second, it is intended to prevent the bow diving phenomena at high-speed. It means the maturity of Semi-SWATH vessel is going to provide an improvement of conventional Catamaran and SWATH vessel drawbacks considerably.

Furthermore, the placement both of fixed bow fins and controllable stern fins on each lower hull of Semi-SWATH vessel will provide additional pitch restoring moment to improve not only the longitudinal stability but also reduce the vertical motion responses. Consequently, the serious inconveniences will degrade the vessel performance during sailing especially at high-speed head sea waves can be alleviated. Haywood, Duncan, Klaka, and Bennett (1995) stated that the seakeeping of the Semi-SWATH vessel is going to be better evidently. The simulation program of Semi-SWATH vessel incorporated with fixed fore and controllable aft fins were developed to evaluate the seakeeping performance during operation at both medium speed (15 knots) and high-speed (20 knots). The mathematical model comprising of heave and pitch motions, which incorporated with the fins stabilizers on the simulation was presented in a simple block diagram using Matlab-SIMULINK. In this simulation, a conventional PID controller was developed and applied on the controllable aft fins. Segundo, et al (2000) developed simulation program using PID controller to alleviate vertical accelerations due to waves. The results of simulation had been validated by experiments in the towing tank confirm that by means of flaps and a T-foil, moved under control, vertical accelerations can be smoothed, with a significant improvement of passengers comfort. In addition, Caldeira, et al (1984), Ware, et al (1980a), (1980b), 1981, and 1987, and Chinn, et al (1994) applied conventional optimal PID controller design to improve the vertical motion response of marine vehicles.

In this PID controller method, some parameter of tuning controller will involve some chosen controller gain parameters of PID (K_p , K_i , and K_d are the proportional, integral, and derivative gains, respectively). Those parameters are obtained using method of Aström and Hagglund. Then, they will be considered to satisfy certain control specifications by minimizing the error after achieving steady state. This controller mode is applied by controlling the aft fin's angle of attack properly, the sailing style of Semi-SWATH vessel must be adjusted to be in even keel condition. The theoretical prediction results will be validated with the model experiments carried out in the Towing Tank of Marine Technology Laboratory, Universiti Teknologi Malaysia.

1.2 Research Objective

1. To evaluate the seakeeping performance of Semi-SWATH vessel before and after installation both of fixed fore and controllable aft fins in regular head sea using time domain simulation and validated by model test in Towing Tank. 2. To apply a ride control system on the controllable aft fins, the conventional PID controller will be used to achieve a better quality the Semi-SWATH seakeeping performance.

1.3 Scopes of Research

- The mathematical dynamics equations model covers Semi-SWATH vessels with fins in two degrees of freedoms i.e. heave and pitch motions operating in regular head sea.
- 2. The numerical method simulation is based on Time-Domain using Matlab-SIMULINK.
- 3. In the simulation, the regular waves generated using MATLAB for any wavelength of interest as well as experiment done (range of regular wave lengths: $0.5 \le \lambda/L \le 2.5$ and steepness of the incident wave: $H/\lambda = 1/25$)
- The hydrodynamic coefficients of Semi-SWATH vessel motions will be obtained using numerical program, which was developed by Adi Maimun and Voon Buang Ain (2001).
- The proper fin stabilizers were selected using NACA-0015 section due to high lift curve slope and low drag.
- 6. Lift Coefficient (C_L) will be obtained using CFD software (Shipflow 2.8).
- 7. A conventional PID controller will be applied on the Semi-SWATH vessel to improve the stability and performance of plant system with adequate reliability.
- 8. A parameter tuning of PID controller is obtained using method of Aström and Hagglund i.e. K_p , K_i , and K_d . Then, they will be applied to satisfy certain control specifications by minimizing the error after achieving steady state.
- The simulation program result will be validated of by the Semi-SWATH model test carried out in Towing Tank of Marine Technology Laboratory, Universiti Teknologi Malaysia.

1.4 Research Outline

An achievement of the excellent seakeeping qualities for ship design requires extensive consideration as guidelines to reflect the safety, effectiveness, and comfort of vessel in waves. The present research follows a systematic procedure to modify concept design of twin-hull vessel by minimizing their drawbacks. This study starts from the review of SWATH and conventional Catamaran hull forms. The final design of the new modified hull form will deal to enhance the vessel's stiffness associated with improving seakeeping qualities at high-speed in head seas waves condition. Then this vessel is called Semi-SWATH vessel.

The flexibility of the Semi-SWATH vessel can be operated in two variable draughts i.e. shallow draught and deep draught with still maintain seakeeping quality. In these variations of operational draughts, the Semi-SWATH vessel will be operated in two speed services i.e. medium speed (15 knots) and high-speed (20 knots). Furthermore, the effects of vertical motions on the Semi-SWATH vessel (heave and pitch motions) when encountering head sea at those service speed will be investigated considerably.

For this reason, an advanced prediction analysis both numerically and experimentally to achieve a desired goal will be done. In stage of the Time-Domain Simulation approach theoretically will be used to predict and analyze the seakeeping performance in head sea waves, which was developed using Matlab-SIMULINK. Then, the mathematical model comprising of heave and pitch coupled motions before and after attached fixed bow and active stern fin stabilizers are investigated. Then, the conventional PID controller is applied on the active stern fin stabilizer by tuning its angle of attack to enhance the improvement of ride quality ideally to be even keel riding condition. Then, the real-time simulation results will be validated by experimental model test carried out in Towing Tank at Department of Marine Technology, Universiti Teknologi Malaysia.

Finally, the seakeeping evaluation of Semi-SWATH vessel is identified based on the motion response, which presented by Response Amplitude Operators (RAOs). The outline of thesis organization is shown in Figure 1.1.

Figure 1.1 Outline of the thesis organization