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ABSTRACT 
 
 
 
 

Numerical analysis approach for natural convection in semi-cylindrical 

cavity is investigated by heat flux effect ( q ) to the outer wall as the boundary 

condition. Buoyancy consideration of Boussinesq approximation noted valid for this 

incompressible problem of ideal gas with low (Pr) Prandtl number and laminar 

steady state condition. Taking a physical geometry of top half of a circle 

&

),( φr   the 

base behaves as an insulated boundary )0( =Δq and z-direction to be infinite (2 - 

dimensional). 

Method of solution acquired will deal with discretizing the governing 

equation of non-dimensional, using staggered grid procedure of primitive variables 

(u,v,p) and applying ghost nodes. and handle velocity (u,v) & pressure (p) using 

SIMPLE algorithm. Correlation between Rayleigh and Nusselt number, Nu=f (Ra) 

and parametric study on the behavior of the isotherms and streamlines in the cavity 

would then be elaborated upon the final results. 
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ABSTRAK 
 
 
 
 

Analisis kaedah berangka untuk perolakan bebas di dalam ruangan separuh 

bulatan dikaji dengan haba (flux) terikan ( ) pada diding luaran atas sebagai 

syarat sempadan. Anggapan pengapungan dengan penghampiran ‘Boussinesq’ 

dinyatakan benar untuk gas unggul dan tak boleh mampat dengan nombor (Pr) 

Prandtl rendah serta keadaan stabil laminar. Dengan mengambil bentuk fizikal 

sebagai separuh bulatan pada bahagian atas

q&

),( φr  diding dasarnya bertindak 

sebagai sempadan tebatan )0( =Δq  dan arah-z menjadi berterusan (2 - dimensi). 

Kaedah penyelesaian yang digunakan akan dihalusi (discretised) daripada 

persamaan utama (Governing Equation) dalam bentuk tanpa dimensi menggunakan 

prosedur anjakan grid pada pemalar primitif (u,v,p) dan nodal maya serta 

mengurus kelajuan (u,v) & tekanan (p) menggunakan algoritma SIMPLE. Kaitan di 

antara nombor Rayleigh dan Nusselt,, Nu=f (Ra) dan Kajian parameter terhadap 

perilaku aliran haba malar dan aliran kelajuan malar di dalam ruangan akan 

diolah pada keputusan akhir nanti. 
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CHAPTER 1 
 
 
 
 

INTRODUCTION 
 
 
 
 

There are two modes of heat transfer which are diffusion and radiation. A 

diffusion process occurs due to the presence of a gradient (say, of temperature, 

density, pressure, concentration, electric potential, etc.) and requires a material 

medium. Both conduction and convection are diffusion processes. A radiative 

process, on the other hand, does not require a material medium [1]. 

 

Heat convection itself is a term applied to the process involved when energy 

is transferred from a surface to a fluid flowing over it as a result of a difference 

between the temperatures of the surface and the fluid [2]. Heat transfer occurs due to 

actual material transport, unlike in the case of conduction where one part of a solid 

body is at a higher temperature than the rest of it. In many engineering applications 

the heat transfer due to convection may be calculated by using Newton's law of 

cooling (the relation that determines the heat flux due to convection between a 

surface and moving fluid)[1]. It states that if the heat transfer coefficient is h, the 

heat flux q due to convection from a surface at temperature  into a fluid at 

temperature  is given by, 

wT

fT

 

)( fw TThq −=        (1.1) 

 

There are three kinds of convection: forced, natural, and mixed. Forced 

convection takes place when the motion of the fluid that causes convection is 

sustained by an externally imposed pressure gradient. Forced convection typically 

occurs in systems such as blowers and air conditioners. Sometimes, even in the 
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absence of external forces, pressure gradients are created due to differences in 

density that are caused by local heating in the fluid. This heat transfer is known as 

free or natural convection. Mixed convection, as the name implies, is the situation in 

which both forced and free convection are present [1]. 

 

Free Convection or the natural convection arises when heat transfer 

between a surface and a fluid moving over it with the fluid motion caused entirely 

by the buoyancy forces that arise due to the density changes that result from the 

temperature variations in the flow[2]. Behavior of Nusselt number in terms of 

function Rayleigh number (GrPr) is commonly described for such natural 

convection problems. Table 1.1 specified the interpretation of related dimensionless 

numbers in the studies. This work will eventually determine the correlation towards 

the better understanding of such radiation effect. 

 

Table 1.1: Dimensionless Numbers table of definition 

Dimensionless number 

Name Symbol Definition Interpretation 

Eckert Number Ec )(2
fw TTkV −μ  Dissipation / heat transfer rate 

Grashof Number Gr 23)( vLTTg fw −β  Bouyancy force / viscous force 

Nusselt Number Nu khL  
Convective heat transfer rate / conduction 

heat transfer rate 

Prandtl Number Pr αv  
Rate of diffusion of viscous effects / rate 

of diffusion of heat 

Rayleigh Number Ra αβ vLTTg fw
3)( −  GrPr 

 
 
 
 

1.1 Literature Review 
 
 

Natural convection phenomenon in cavity has been an interesting yet 

unlimited discovery to be made by researchers. Several attempt on various 

geometry, boundary conditions, field property and flow regime considered for very 

wide application in the actual field of problems. Application such as aircraft-brake 
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housing system, pipes connecting reservoirs of fluids with different temperatures, 

refrigerators, fire research, electronic cooling, energy saving household refrigerators, 

waste heat disposal, building, insulation and micro-electronic equipment [4]. 

 

Reviews of papers have enlighten the research studies as various 

geometrical, boundary conditions & methods solving the natural convection in 

cavities and it is all being arranged as the base reference and guidance. Methods 

involving experimental or measurements have been kept as direct pre-examined for 

results gain later in this numerical approach. 

 

Walid et al [4] presents the effect of roughness on heat transfer for semi-

cylindrical cavity which is performed on smooth and rough surfaces for different tilt 

angles. Roughness shows a large effect on heat transfer for the semi-cylindrical 

cavities. Heat transfer for the cylindrical cavity is noted higher than the rectangular 

cavity for all tilt angles (both cavities have the same surface area and the same heat 

flux). This increase in heat transfer for the cylindrical cavity is due to the absence of 

sharp corners that can slow the buoyancy driven convection mechanism. Two 

competing effects are present with the existence of roughness where, roughness may 

increase the blockage effect on the flow that can cause the buoyancy force to 

decrease, but on the other hand it increases the turbulence intensity resulting in a 

higher heat transfer. Both effects are function of tilt angles. The data was collected 

for 13 different inclination angles ranging from 90◦ (when the cavity is facing down) 

to −90◦ (when the cavity is facing up). 

 

The semi-cylindrical cavity also shows higher values of Nusselt numbers 

than that of rectangular cavity at the same inclination angle. This increase ranges 

from 50 to 200% depending on the inclination angle. Minimum Nusselt number 

occurs when the cavities are facing down. The buoyancy driven flow gets stronger 

when the inclined angle decreases resulting in higher Nusselt number. The initial 

inclination of the cavity from 90◦ to 0◦ causes a significant increase in average heat 

transfer rate, but a further increase in inclination angle appears to cause a small 

increase in average heat transfer rate. It is observed that the presence of roughness 

delays the onset of convection motion at small deviation from the 90◦ angle. 

Therefore the heat transfer is more for the smooth cavity in this range. Beyond this 
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range, the roughness element increases the heat transfer rate. At low tilt angle 

molecular conduction is the dominant mechanism of heat transfer; roughness seems 

to slow down the heat transfer mechanism by adding more form drag to the 

momentum of the flow. When the cavity is placed in an upward position, high 

convection current occurs. Roughness helps to trip the boundary layer and adds 

more turbulence to the flow resulting in increase in heat transfer. 

 

Asfia et al [5] In this paper, experiments were conducted to examine natural 

convection heat transfer in internally and volumetrically heated hemispherical pools 

with external cooling. Heat transfer coefficient is lowest at the stagnation point and 

increases along the spherical segment except at the location near the pool surface. 

Maximum heat transfer coefficient occurs slightly below the pool surface. Different 

boundary conditions in the pool surface (free surface, insulated rigid surface or 

cooled rigid surface) make only a slight difference in the average heat transfer 

coefficients. Average heat transfer coefficients on the y cold rigid wall bounding the 

pool surface, appears to compare favorably with the correlation of Kulacki et al [38]. 

 

A study carried out at UCLA showed that the flooding of cavity could indeed 

be a viable option. The vessel inner wall temperature was not held constant and 

varied from the stagnation point to the equator. Experiments were performed for 

pools with nearly insulated and cold rigid walls at the top. The depth of the pool was 

varied parametrically. Nusselt numbers data obtained in this work compare 

favorably with the prediction from the correlation of Asfia et al. [39]. 

 

Liaqat et al. [6] presented a numerical investigation of a detailed comparison 

of the conjugate and non-conjugate natural convection within a semi-cylindrical 

cavity. The cavity is assumed to be filled with a fluid containing uniformly 

distributed internal heating sources. The bottom circular wall of the cavity is taken 

to be thick with finite conductive properties, while the top wall is considered to be 

isothermal. The Navier-Stokes and energy equations are solved numerically by using 

the SIMPLER algorithm. A Rayleigh number range from  has 

been investigated and the effects of solid-to-fluid conductivity ratios of 1.0, 5.0 and 

23.0 have been analyzed by this paper.  

116 102.3102.3 ×× to
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The average Nusselt number for the solid-fluid interface shows a decrease 

while the top wall average Nusselt number has increased. These effects increase for 

a system with a low solid-to-fluid conductivity ratio. It is evident from the present 

conjugate results that the assumption of isothermal enclosing walls gives somewhat 

different result when the walls are thick and the solid-to-fluid conductivity ratio 

small. It’s thick finite conducting wall enclosing the cavity from the bottom, the heat 

flow is redirected toward the top wall, which is prominent for low solid to fluid 

conductivity ratios. Numerical approach in this paper has also provided a base 

reference equation related to natural convection in semi-cylindrical which is later 

being used for formulation.  

 

Marcelo et al [7] deals with the use of the Conjugate Gradient Method of 

function estimation with Adjoin Problem for the simultaneous identification of two 

boundary conditions in natural convection inverse problems in two-dimensional 

irregular cavities. The paper proposed that formulation can be applied to the solution 

of inverse problems in different geometries. The methodology is applied to cases 

involving an annular cavity, where the position- and time-dependent heat fluxes are 

unknown at the inner and outer surfaces. 

 

Direct and inverse problems were formulated in terms of generalized 

coordinates. Therefore, the present solution procedure can readily be applied to 

cavities with different geometries. The results obtained with simulated temperature 

measurements reveal that quite accurate estimates can be obtained for the unknown 

functions with the present inverse problem approach.  

 

In summary of all 4 most relevant papers from above review, and taking 

focus on the problem issue, Table 1.2 is presented for it’s similar geometric shapes 

which is semi-cylindrical. Supporting and referring to Table 1.3, is the explanation 

of boundary conditions and the Figure 1.1 is the possible boundary for the problem 

stated as semi cylindrical shapes. 
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Table 1.2: Summary of Semi cylindrical problems 
Review of previous work on semi-cylindrical cavities 

 

Reference Geometry B.C. α Pr Gr or Ra 
Numerical 

Method 
Measurement 

Walid et 

al [4] 

Semi-

cylindrical 

cavity 

D 00 9090 ≤≤− α  0.7 8105.5 ×=LGr   √ 

Asfia et al 

[5] 

Semi 

spherical 

cavity 

A 090−  

2.75 

- 

6.85 

74 10108.2 −×=Ra   √ 

Liaqat et 

al. [6] 

Semi-

cylindrical 

cavity 

C 090−  7.0 116 10102.3 −×=Ra  √  

Marcelo 

et al [7] 

Irregular 

cylindrical 

cavity 

B 00 3600 to  0.7 4100.5 ×=Ra  √  

 

Table 1.3: Boundary conditions on the wall 
Explanation for the types of boundary conditions given in 

Table 1.2 
 

B. C. type  Boundary conditions on walls  

 1  2  3  4  

A  N/A hT  ∞T  N/A 

B cT  0"=Δq  hT   0"=Δq  

C  hT  hT  hT  hT  

D  q” q” q” q” 

1) ,  - constant wall temperature (hot , cold) hT cT

2)   hc TTT << ∞

3)q” - constant heat flux on the wall, 

4) (insulated) 0"=Δq
5) N/A - not applicable. 
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Figure 1.1 Semi cylindrical geometry and boundary numbering 

 
 
 
 

Zhu et al. [8] In this paper, natural convective heat transfer between two 

horizontal, elliptic cylinders is numerically studied using the differential quadrature 

(DQ) method. The DQ method is employed to discretize the derivatives in the 

governing equations and boundary conditions. The governing equations are taken to 

be in the vorticity-stream function formulation. To apply the DQ method, the 

coordinate transformation is performed. An elliptic function is used, which makes 

the coordinate transformation from the physical domain to the computational 

domain be set up by an analytical expression. A systematic study is conducted for 

the analysis of flow and thermal fields at different eccentricities and angular 

positions. It was found that the position of the major axis of the inner ellipse takes 

effect on the streamlines, and very little effect on the average Nusselt number. 

 

Chiu et al [9] the transient analysis has been investigated numerically to 

determine heat transfer by natural convection between concentric and vertically 

eccentric spheres with constant heat flux on the inner wall and a specified isothermal 

temperature on the outer wall. The governing equations, in terms of vorticity, stream 

function and temperature are expressed in a spherical polar coordinate system. The 

alternating direction implicit method and the successive over-relaxation techniques 

are applied to solve the finite difference form of governing equations. A physical 

model is introduced which accounts for the effects of fluid buoyancy as well as 

eccentricity of the outer sphere. Transient solutions of the entire flow field are 

obtained for a range of modified Rayleigh number (103<Ra*<5x105), for a Prandtl 
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number of 0.7 and a radius ratio of 2.0, with the outer sphere near the top and 

bottom of the inner sphere (ε  + 0.625). 

 

Ruixian et al [10] suggest that analytical solutions are meaningful in both 

theoretical investigation and practical applications as there are many natural 

convection processes in various fields, and it is still a hot topic to investigate the 

fluid dynamics and heat transfer of natural convection. These phenomena are very 

useful to computational fluid dynamics and heat transfer as the benchmark solutions 

to check the numerical solutions and to develop numerical differencing schemes, 

grid generation methods and so forth. 

 

Grundmann et al [11] deals analytical study of free convection in a cubic 

cavity of fluid-saturated porous material. The analytical algorithm integrates the 

Darcy-Boussinesq equations formulated in terms of pressure and temperature. The 

dependent variables (P,T) are expressed using an asymptotic development in the 

parameter πε 2
1

)( cRaRa −=  where ( for the 2D flow and 

for 3D flow). Terms up to order 48 for the 2D flow and up to order 16 

for the 3D flow are computed. The analytical value of the Nusselt number is in good 

agreement with a numerical one obtained using a Legendre spectral collocation 

method. 

2
1 4π=cRa

2
2 5.4 π=cRa

 

Minerva, Abderrahmane and Chen [12],[13],[14] deal with natural 

convection in vertical cylinder environment where, from Minerva et al [12] present a 

numerical and experimental study of steady natural convection in a small aspect 

ratio cylindrical cavity with circular cross section. The main objective of the present 

communication is to highlight some difficulties encountered when a comparison of 

theoretical and experimental velocity results is attempted. He kept the aspect ratio 

(radius/height), the Prandtl number and the Rayleigh numbers fixed to 0.28, 6 and 

2.25 x 10’ respectively and make observations in a vertical plane that contains the 

axis of symmetry of the cylinder with a particle image velocimetry (PIV) technique. 

From Abderrahmane et al [13], studies based on a numerical calculation involving 

the finite volume methods. The transient 2D natural convection in vertical 

cylindrical cavities is addressed. The aim of this study is to determine the heat 
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transfer in a long autonomy isothermal cavity designed for the conservation of 

insulin cartridges or any other product. In this case of the vertical cylinder filled with 

air and cooled by the high face following an exponential law that the ascending flow 

concerns the essential of the heart of the cavity. This ascent is accompanied by an 

acceleration in the 90% of the cavity followed by a slowing, a stop on the higher 

face, then, finally, a descent along the lateral face of the cylinder.  

 

Further papers from Hasnoui, Angirasa, Chen [15], [16], [17] have 

investigated natural convection in rectangular open cavity problems where else 

Armfield, Langerman, Federico, Matsuda, Young, Fusegi, Ranganathan, Kanchan, 

Ramaswamy [18], [19], [20], [21], [22], [23], [24], [25], [26] solving various 

problems in rectangular enclosure.  

 

Numerical experiments from Lee T.S. [40] were performed on an 

incompressible fluid contained in a tilted non rectangular enclosure. Rayleigh 

numbers of 102 – 105and Prandtl numbers of 0.001-100 are considered. The walls 

angles are 22.5 o, 45 o and 77.5 o with aspect ratios of 3 and 6. results indicate that 

heat transfer and fluid motion within the enclosure are strong functions of Rayleigh 

number, Prandtl numbers, and orientation angle of the enclosure. For Rayleigh 

number greater than 104 and Prandtl numbers greater than 0.1, a minimum and a 

maximum mean Nusselt Number occurred as the angle of orientation was increased 

from 0o to 360o. A transition in the mode of circulation occurred as the angles 

corresponding to the minimum or maximum rate of heat transfer. 

 

The results presented here show that heat transfer, in a trapezoidal enclosure 

with two symmetrical, inclined sidewalls of moderate aspects ratios, is a strong 

function of the orientation angle of the cavity for Ra > 104 and Pr > 0.1. A maximum 

Nu occurs around θ = 180o and minimum Nu around θ = 270o. a transition in the 

mode of circulation within the enclosure occurred at the tilted angle corresponding 

to the maximum or minimum Nu. 
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1.2 Current Problem 
 
 

According to the various papers referred during literature review, problem as 

such the semi-cylindrical cavity was noted very limited and yet several unsolved 

boundary conditions, geometrical or solving method still open for exploration. This 

numerical approach will attempt the natural convection in semi-cylindrical cavity 

according the following figure and boundary condition. 
 

Φ

 

Heat Flux = q 

Figure 1.2 Nature problem of Semi cylindrical cavity 
 
 
 
 

1.3 Scope & Objective 
 
 

Scope of this work will consider the laminar regime with steady state 

solution and selecting low Prandtl number which the air assumed as an ideal gas. 

Only numerical approach will be explored throughout the total work objective. The 

main objective is to:- 

 

a. Determine the temperature distribution in such cavity 

b. Determine the heat transfer performance in terms of better correlation 

between Nusselt & Rayleigh No.  

• Nu = f (Ra) 

c. Perform a parametric study on the behavior of the isotherms and streamlines 

in the cavity. 




