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ABSTRACT

Beam elements present simple damage mechanisms when they reach collapse
configuration. The deformation characteristics of simply supported circular beams
subjected to lateral impact are studied. Such loads tend to lead to large changes in
geometry which are accommodated by plastic bending and shearing within regions
of the beams. The study is concerned with the quasi-static bending of various
diameter beams by cylindrical-nosed impactors for a variety of support spans. The
objective of the present work includes the evaluation of the energy absorbing
capacity of beam structures under impact loads. The range of energy-deformation
curves and modes of deformation are described. Theoretical models are useful when
designing energy-absorbing systems. The influence of material strain-rate sensitivity
and system inertia in changing the quasi-static characteristic are discussed. The

analytical results are discussed and compared with the experimental results.
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ABSTRAK

Anggota bercirikan rasuk memberikan mekanisme kerosakan mudah apabila
mereka menghampiri keadaan runtuh. Ciri-ciri deformasi rasuk silinder bulat yang
disokong mudah adalah menjadi kajian apabila struktur-struktur ini dikenakan
hentaman melintang. Bebanan sedemikian selalunya akan menyebabkan deformasi
kepada geometri rasuk akibat lenturan dan ricihan plastik pada rasuk tersebut. Kajian
ini mengutamakan lenturan kuasi-statik rasuk yang mempunyai berbagai nilai
diameter yang dihentam dengan penghentam muncung berbentuk silinder. Kesan
jarak rentang juga dikaji. Objektif kajian ini melibatkan penilaian keupayaan struktur
berbentuk rasuk dalam penyerapan tenaga hentaman. Julat lengkung tenaga-
deformasi rasuk serta mod deformasi akan dihuraikan. Model-model dari teori sangat
berguna dalam merekabentuk sistem yang berupaya menyerap tenaga. Kesan
sensitiviti perkadaran masa terikan and inersia terhadap ciri-ciri kuasi-statik akan
dibincangkan. Keputusan analitikal akan dibincang dan dibandingkan dengan

keputusan dari eksperimental.
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CHAPTER 1

INTRODUCTION

1.1 Overview of Impact Analysis

In many engineering applications, a component is usually restricted to remain
within the elastic limit of the material. However, at yielding the material is
permanently deformed and energy is absorbed, and it is this phenomenon that forms
the basis of design in structural crashworthiness analysis. Material stress-strain
diagrams are obtained by loading a sample of the material under tension using a very
slow-moving crosshead. However, the properties of some materials are dependent on
the rate of deformation. This sensitivity can affect the material elastic modulus, yield
stress, ultimate and rupture stresses. The relationship between the dynamic and static
yield stress is expressed by Cowper-Symonds equation with empirical constants D
and q, which are specific to each material. The study has large application in the
dynamic response of underground structures, impact of nuclear fuel capsules, missile

impact of nuclear power installations and the collision of transportation vehicles.

Consider a simply supported beam that is manufactured from a ductile
material. Increasing the applied force at mid span will result in yielding to occur at
the point of maximum bending moment, at the point furthest away from the neutral

axis. If the load is increased further, then more of the material will yield in the cross-



section until the bending moment reaches the maximum collapse value. The energy
is absorbed in this plastic hinge and can be evaluated. Impact test is of leading
importance, once the dynamic resistance of the beam is assessed and evaluated. The
impact beams are required to have large static strength and high impact energy
absorption capability. Conventional metals seldom possess these properties
simultaneously because usually metals with high strength have low toughness and

vice versa.

The design of a motor vehicle includes structural elements that deform
elastically in order to absorb the kinetic energy of a collision. Their function is to
reduce the effects of a crash by limiting the impact force and acceleration. Many
energy-absorbing elements are manufactured from ductile materials such as
structural steel or aluminum. Normally, an engineer will design a structure to remain

within the elastic limit of the material where deformations represent storage energy.

1.2 Problem Statement

If the load is applied dynamically then the collapse energy needs to be
reevaluated considering the enhanced flow stress for the particular material. For
dynamic applications, the impact test in structural parts is an essential procedure for
their certification. In studying impact behaviour on structures, the difficulty lies in
predicting energy absorbing capacity and impact behaviour of structural elements

when various geometrical, dimensional, loading and constraint parameters interact



1.3 Objectives

Hence, in order to address the difficulty faced in understanding the impact
behaviour of structures, the study will attempt to evaluate the energy absorbing
capacity of beam structures under impact loads and then predict the dynamic
response of a simply supported circular beam when subjected to a mass impact at

mid span of beam.

14 Scope of Study

The study on impact will involve the mechanics of collapse of beams under
lateral impact. The beams are made of solid circular mild bars which are simply
supported. Various masses of rigid impactor with cylindrical nose will be dropped

from various drop heights.

1.5 Methodology

In this study, the static and dynamic tensile tests of the beam material were
performed. At various straining rates the material properties were obtained. Beam
with various diameters and span length, and impactors with various mass and drop
heights were investigated using experimental method. The beams were impacted by
the three-point impact bending test to evaluate their energy-absorbing performance.
The three major phases in carrying out the project are introduction to the subject,

experimental work and data analysis.



In the first phase, the background to the subject was studied to identify the
problem, the objectives and the scope and to plan the experimental procedures so as
to attain the objectives. Literature reviews are done on the topic through journals and
electronic media to gauge the state of current research in the subject. The second
phase of data collection is done through experimental method. The falling dart
impact tests are done to obtain the impact energy and the energy absorbed by the
beam. With a large amount of data obtained from a large range of beam and impactor
parameters, it is possible to predict the energy-absorbing behaviour of similar

structures when impacted transversely.





