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ABSTRACT 

 

 

 

Time series forecasting which uses models to predict future values based on 

some historical data is an important area of forecasting, and has gained the attention 

of researchers from various related fields of study. In line with its popularity, various 

models have been introduced for producing accurate time series forecasts. However, 

to produce an accurate forecast is not an easy feat especially when dealing with 

nonlinear data due to the abstract nature of the data. In this study, a model for accurate 

time series forecasting based on Artificial Bee Colony (ABC) algorithm and Group 

Method of Data Handling (GMDH) models with variant transfer functions, namely 

polynomial, sigmoid, radial basis function and tangent was developed. Initially, in this 

research, the GMDH models were used to forecast the time series data followed by 

each forecast that was combined using ABC. Then, the ABC produced the weight for 

each forecast before aggregating the forecasts. To evaluate the performance of the 

developed GMDH-ABC model, input data on tourism arrivals (Singapore and 

Indonesia) and airline passengers’ data were processed using the model to produce 

reliable forecast on the time series data. To validate the evaluation, the performance of 

the model was compared against benchmark models such as the individual GMDH 

models, Artificial Neural Network (ANN) model and combined GMDH using simple 

averaging (GMDH-SA) model. Experimental results showed that the GMDH-ABC 

model had the highest accuracy compared to the other models, where it managed to 

reduce the Root Mean Square Error (RMSE) of the conventional GMDH model by 

15.78% for Singapore data, 28.2% for Indonesia data and 30.89% for airline data. As 

a conclusion, these results demonstrated the reliability of the GMDH-ABC model in 

time series forecasting, and its superiority when compared to the other existing models. 
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ABSTRAK 

 

 

 

Peramalan siri masa yang menggunakan model untuk meramalkan sesuatu nilai 

masa depan berdasarkan beberapa data masa lampau merupakan bidang ramalan yang 

penting, dan telah menarik perhatian penyelidik daripada pelbagai bidang pengajian 

yang berkaitan. Selaras dengan popularitinya, pelbagai model telah diperkenalkan bagi 

tujuan menghasilkan ramalan siri masa yang tepat. Namun begitu, bagi menghasilkan 

ramalan yang tepat bukanlah satu perkara mudah terutamanya apabila berurusan 

dengan data yang tidak linear disebabkan oleh sifat data yang abstrak. Dalam kajian 

ini, model untuk ramalan siri masa yang tepat berdasarkan model algoritma Koloni 

Lebah Buatan (ABC) dan Model Kaedah Kumpulan Pengendalian Data (GMDH) 

dengan fungsi pemindahan varian, iaitu fungsi polinomial, sigmoid, radial dan tangen 

telah dibangunkan. Pada awal kajian, beberapa model GMDH telah digunakan untuk 

meramalkan data siri masa dan setiap ramalan tersebut kemudiannya digabungkan 

menggunakan ABC. ABC akan menghasilkan pemberat bagi setiap ramalan tersebut 

sebelum mengagregatkan ramalan. Untuk menilai prestasi model GMDH-ABC yang 

dibangunkan, data siri masa, iaitu ketibaan pelancong (Singapura dan Indonesia) dan 

data penumpang penerbangan akan diinput dan diproses dengan menggunakan model 

GMDH-ABC untuk menghasilkan ramalan yang tepat. Bagi mengesahkan penilaian, 

prestasi model tersebut dibandingkan dengan model penanda aras seperti model 

GMDH individu, model Rangkaian Neural Buatan (ANN) dan gabungan GMDH 

menggunakan model purata sederhana (GMDH-SA). Hasil eksperimen menunjukkan 

bahawa model GMDH-ABC mempunyai ketepatan yang tinggi berbanding dengan 

model lain, yakni dapat mengurangkan Ralat Punca Min Kuasa Dua (RMSE) model 

GMDH konvensional sebanyak 15.78% bagi data Singapura, 28.2% bagi data 

Indonesia dan 30.89% bagi data penumpang penerbangan. Kesimpulannya, hasil 

kajian ini menunjukkan kebolehpercayaan model GMDH-ABC dalam ramalan siri 

masa, dan keunggulannya jika dibandingkan dengan model sedia ada yang lain.  
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Overview 

 

Forecasting of data is an important aspect that can assist in any modern 

organisational decision-making process and planning. A forecast can be defined as a 

prediction of future events based on some past or present data. Simply put, forecasting 

is an act of deriving or estimating what will happen in the future. Among the important 

area of forecasting is time series forecasting. 

 

 In time series forecasting, past data (historical data) of the same variables are 

collected over a duration of fixed time to be used as inputs to make a forecast. These 

data are called time series data. In general, the activity of time series forecasting 

involves developing and applying a forecasting model on data where an ordered 

relationship between observations exists. 

 

 Forecasting a time series is a challenging problem that has gained popularity 

over the years, making it an active area of research. Its popularity has led to the 

emergence of various forecasting models which are applied to arrays of time series 

problems such as in tourism forecasting (Palmer et al., 2006; Claveria and Torra, 

2014), wind speed forecasting (Hu et al., 2013), hydrology (Jain and Kumar, 2007) 

and others. Due to its wide range of applications, research on this area is constantly 

carried out in order to discover more accurate methods for time series forecasting. 
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1.2 Background of Study 

 

When forecasting a time series, the problem a forecaster would face is in 

dealing with the pattern in the data. In real-world problems, the time series data are 

rarely pure linear or nonlinear and are usually a mixture of both linear and nonlinear 

patterns (Zhang, 2003). While linear models such as Auto-Regressive Integrated 

Moving Average are able to capture the linearity in the data (Box and Jenkins, 1970), 

understanding the complex underlying nonlinear relationships in the data is not an easy 

feat. Various models have been used by past researchers in conducting a time series 

forecast, but recently a lot of attention has been given to the development of Artificial 

Intelligence (AI) models. One of the most popular AI models which has frequently 

been used in time series forecasting is the Artificial Neural Network (ANN) model due 

to it having a flexible nonlinear modelling capability (Zhang, 2003). 

 

 Inspired by the human brain, ANN has the ability to learn from the past data to 

make assumptions about the future. There are several features in ANN that makes it 

attractive for forecasting practitioners such as its powerful pattern recognition and 

classification capabilities (Zhang et al., 1998). However, the most prominent attribute 

of ANN lies in its ability at handling nonlinear data. Despite ANN’s reliability, in 

practice, the implementation of ANN is quite tricky as ANN has a lot of parameters 

such as the number of layers and neurons which needs to be set prior to forecasting 

(Zhang et al., 1998). 

 

 Group Method of Data Handling (GMDH) is an AI model which has a 

relatively similar structures to ANN. In previous literatures, comparisons between 

ANN and GMDH have frequently been made where their performances vary. For 

example, in the research done by Ugrasen et al. (2014) in comparing the performance 

of GMDH and ANN, ANN was said to be superior than GMDH. On the other hand, 

according to Ghazanfari et al. (2017), GMDH was far more successful than ANN in 

terms of prediction. Nevertheless, Varahrami (2012) stated that GMDH is more 

reliable than ANN when the system at hand is very complex, and the underline input-

output relationship are not completely comprehensible or if the system exhibits a 

chaotic pattern. As for Dorn et al (2012), their empirical results found that GMDH 

networks are simpler and can be trained faster than ANN. However, the performance 
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of ANN and GMDH in prediction task were relatively the same. Based on the 

empirical findings of the past researchers, it can be seen that the predictive ability of 

GMDH model is comparable or at least as good as ANNs.  Furthermore, GMDH has 

its own strength which makes it an attractive model in forecasting area. 

 

 GMDH is a nonlinear regression model introduced by Prof. Alexey G. 

Ivakhnenko in the late 1960s as a mean for identifying the nonlinear relationships 

between the input and output variables, modelling of complex systems, prediction, 

pattern recognition and data clustering (Ivakhnenko, 1971; Ivakhnenko and 

Ivakhnenko, 2000). The main idea behind GMDH is to implement a “survival-of-the-

fittest” concept where models of gradually increasing complexity are sorted and 

estimated according to some external criterion. Similar to ANN, GMDH consists of an 

input layer, hidden layers and an output layer. In each hidden layer, simple neurons (or 

nodes) generated through a combination of two variables will perform its own 

quadratic polynomial transfer function and its outputs will be passed on to the neurons 

in the next layer. Nevertheless, prior to this process, pruning of useless neurons will 

take place based on some threshold value. The neurons which performs best will be 

kept, and the least performing neurons will be discarded. In the last layer, there is only 

one neuron and the output of this layer is the output of the whole net. 

 

 A basic GMDH process is based on the forward propagation of signals through 

neurons which is similar to the principle of classical neural network. However, the 

strength of GMDH lies in its ability to self-organize its own structures heuristically 

(AlBinHassan and Wang, 2011). Not only are the number of neurons in a layer and the 

number of layers generated automatically without human’s intervention, the self-

organizing feature of GMDH also allows it to find the optimal solution for a given 

problem while avoiding bias and misjudgements (AlBinHassan and Wang, 2011). 

Consequently, this feature of GMDH also contributed to it having a small number of 

parameters to be tuned i.e. maximum number of neurons, maximum number of layers 

and selection pressure, making it a simple and reliable AI model (Ghazanfari et al., 

2017). 

 

 Furthermore, while ANN is prone to overfitting, GMDH is reported to be 

resistant to the issue of overfitting (Tauser and Buryan, 2011). Perhaps this is due to 
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GMDH’s salient feature of dividing the data into two subsets (Training and Validation 

sets) before initiating the learning process. Once the structure of the model has been 

established using both training and validation sets, the model is tested on an entirely 

new separate data called the testing set. 

 

 Despite GMDH’s interesting potential, it does have its own drawbacks. One of 

its prominent limitation is its tendency to produce quite complex polynomials even for 

a relatively simple system, and more so if it is dealing with a highly nonlinear system 

due to its limited transfer function, i.e. quadratic two-variable polynomial (Hu et al., 

2013). The complexity of GMDH effects the accuracy of the model in forecasting. 

According to Jirina (1994), as the complexity of the model increases, the degeneration 

of GMDH’s accuracy could be due to the polynomial transfer function which causes 

multilayerness error to occur in GMDH’s network. Meanwhile, Ivakhnenko and 

Ivakhnenko (1995) also mentioned that the low accuracy in GMDH might be owing 

to the insufficient functional variety of the model. 

 

 In order to alleviate the problems with the basic GMDH model, various 

modifications on GMDH has been proposed. Additionally, due to its similarities with 

ANN in terms of structures, numerous researches have incorporated some of ANN’s 

features in GMDH so that the model has both characteristic of ANN and GMDH such 

as in the notable work by Kondo (1998). In his early works, he proposed applying 

many types of neurons in the GMDH model such as logistic sigmoid and polynomial 

transfer functions (or objective functions). Transfer function can generally be defined 

as the input-output explanation of the system and it expresses how the input variables 

are transferred through the system. In ANN model especially, it is common to apply 

different transfer functions from one layer to another. In GMDH however, nearly all 

known GMDH algorithms applied linear polynomial functions (Ivakhnenko and 

Ivakhnenko, 1995). Nevertheless, Ivakhnenko and Ivakhnenko (1995) mentioned that 

other functions can also be used such as harmonic or logistic function. 

 

 Over the years, Kondo has applied several transfer functions in GMDH such 

as polynomial, logistic sigmoid and Radial Basis Function (RBF) as seen in his works 

(Kondo et al., 1999; Kondo, 2002; Kondo and Ueno, 2009; Kondo et al., 2017). 

According to Kondo and Pandya (2003), employing heterogenous transfer functions 
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within a model gives better results than using homogenous transfer function and it can 

fit the complexity of the nonlinear system. Other than Kondo, there are also other 

researchers which implemented heterogenous functions in GMDH so as to improve 

the problems in GMDH. For example, a research which was based on Kondo’s work 

also implemented multiple transfer functions in GMDH’s network such as polynomial, 

logistic sigmoid, RBF and tangent function (Dag and Yozgatligil, 2016). Additionally, 

Oh and Pedrycz (2002) proposed a new class of Polynomial Neural Network whereby 

the proposed model exploited different order of polynomials such as linear, quadratic, 

cubic, etc. This approach is useful in handling various nonlinear characteristics of the 

systems. A research carried out by Tauser and Buryan (2011) also applied seven types 

of transfer functions such as polynomial, harmonic (cosine), square root, inverse 

polynomial, logarithmic, exponential, arc tangent and rounded polynomial. The 

introduction of non-polynomial transfer functions is done to increase the flexibility of 

GMDH in modelling nonlinear system (Tauser and Buryan, 2011). 

 

 Even though many variations of GMDH has been proposed, it is a well-known 

fact that there is no model that can perform best in every situation. This is mainly due 

complex nature of real-world problem which makes it difficult for any single model to 

capture the different patterns in it equally well (Zhang, 2003). Nevertheless, the 

research done by Bates and Granger (1969) found that combining several models could 

significantly produce a better forecast. Hence, the combination of forecasts has since 

been an active area of research and has been applied by private sectors forecasters 

(Aiolfi et al., 2010). There are several ways to combine two or more models, but the 

simplest and the most flexible approach is called the weight based combining method. 

This approach essentially requires the practitioners to decide on two important things; 

a) which forecasts to include, b) how to weight them. 

 

 In previous researches, assignment of weights to the included models are often 

done using traditional mathematical calculations such as Simple Averaging (SA), 

Weight Average, or applying the inverse of Mean Square Error. The most widely used 

combining method is the SA method. However, this method does not exploit the past 

information regarding the precision of the forecasts or the dependence among the 

forecasts (De Gooijer and Hyndman, 2006). 
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 A more sophisticated method of finding weights is the implementation of 

heuristic optimization algorithms. In this method, optimization algorithms are used to 

find the optimal weights for each forecast through successive iterations. Past 

researches that applied this method includes Xiao et. al (2015) who proposed using the 

Chaos Particle Swarm Optimization algorithm and the Genetic Algorithm (GA) to 

determine weights for combining several models. Based on that study, the 

implementation of optimization algorithm in weights assignment for combining 

forecast seems to yield a promising result and has the potential to be further explored. 

 

 

 

1.3 Problem Statement 

 

A nonlinear time series is different from a linear time series, whereby the 

changes in the output data is not proportional to the changes in the input data. Various 

real-world systems exhibit nonlinear characteristics, or a mixture of linear and 

nonlinearity. Unlike the simple linear data, the input-output mappings of a nonlinear 

data are difficult and hence cannot be treated satisfactorily using linear means. 

Therefore, GMDH model which belonged to the family of universal approximators 

provides an ideal means for the modelling of the complex nonlinear systems. 

Furthermore, the execution of GMDH is simpler than the notable ANN model, 

promoting it as a powerful tool for time series forecasting. 

 

The main issue in every forecasting process is to obtain as much accurate 

forecast result as possible. Since the reliability of a model is measured on its accurate 

forecast, the choice of a correct model is of paramount importance. In terms of 

modelling nonlinear data, according to Granger (1993), a good nonlinear model is a 

model that would be able to approximate any systems and should be highly flexible 

such that it is inclined to pick up any subtle nuance in the data. However, such model 

is unrealistic as there is no model that can perform best for all types of data. As such, 

a combination of models with variations and modifications (if the need arises), should 

be explored and tested in order to achieve the best end result. 

 

 



 

7 

 

1.4 Research Questions 

 

The research questions which can be derived from the previous statements are; 

1. In the case where the polynomial transfer function in the GMDH model fails 

to fully describe the input-output relationship of a system, could a better 

function replace the conventional transfer function to improve the forecasting 

accuracy of GMDH model? 

2. In the event where no functions could perform well in every situation provided, 

could combining several GMDH models assist GMDH in achieving a better 

accuracy than the individual models? 

3. Owing to its heuristic nature, can optimization algorithm assign appropriate 

weights for each model to ensure an improvement in the accuracy of GMDH 

model? 

 

 

 

1.5 Research Aim 

 

The aim of this research is to propose a methodology which combines several 

GMDH with different transfer functions using an optimization algorithm to contribute 

to the improvement and enhancement of the existing GMDH model in time series 

forecasting. 

 

 

 

1.6 Objectives 

 

The objectives of this research are as follows; 

1. To improve the performance of the conventional GMDH model in time series 

forecasting by substituting the quadratic polynomial transfer function with 

other transfer functions. 

2. To propose a combination of several individual GMDH models with different 

transfer functions using a heuristic weight based combination method. 
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3. To compare the performance of the proposed model with benchmark models 

and to evaluate the models using real and benchmark data. 

 

 

 

1.7 Scope of Research 

 

The scope of this research are as follows; 

1. For the purpose of evaluating the accuracy of the forecasting models, two types 

of data will be used in this research, namely real data and benchmarked data. 

The real data used is tourism data, that is, data of tourist arrivals to Malaysia, 

while the benchmark data is the well-known monthly airline passengers’ 

arrival data. 

2. The benchmark models are used in this study to evaluate the performance of 

the proposed model. The models are the individual GMDH models itself, the 

individual GMDH models combined using SA technique and an ANN model. 

3. The performance of the models will be evaluated using two criteria; predictive 

ability and statistical significance of the models. The predictive abilities which 

focuses on the forecasting accuracies of the models will be estimated using 

three well-known performance measurement; Root Mean Square Error 

(RMSE), Mean Absolute Percentage Error (MAPE) and Mean Absolute Error 

(MAE). Meanwhile, the statistical significance of the models will be evaluated 

using the notable paired sample t-test. 

 

 

 

1.8 Significance of Research 

 

The main focus of this research is in contributing to the advancement of the 

existing GMDH models, especially in the area of time series forecasting. Even though 

nonlinear time series is common in real life systems, forecasting it successfully is not 

such an easy feat due to the complexity of its input-output relationships. Albeit being 

able to approximate complex nonlinear systems, GMDH model still has many rooms 

for improvements particularly in the enhancement of its transfer functions. 
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