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ABSTRACT 
 
 
 
 

 Osteoarthritis is the major reason that causes hip problem. According to 

Cristofolini (1997), there are more than 800,000 hip replacements being implanted 

worldwide annually. It is important to know the performance of hip prostheses 

especially the stability and the longevity. In this project, numerical simulation based 

on finite element method is used to analyze the mechanical behavior of femur-

implant system. Finite element analysis is carried out on three-dimensional model of 

a human femur on both full and half models. This is to investigate the behavior of an 

intact femur under loading. Then, the analysis is repeated for an Anatomic Medullary 

Locking (AML) hip prosthesis, which is of one type of cementless hip prosthesis, 

implanted inside the femur. This is only done on half femur model. Both the stem 

and the head are made by Cobalt Chromium Molybdenum (CoCrMo). After that, the 

analysis is carried out on a cemented hip prosthesis. The cement is made by 

polymethylmethacrylate (PMMA), which is of flexible polymeric cement. The hip 

prosthesis model used for analysis is of Charnley type. The study on the stem length 

effect is then done. Lastly, the analysis is repeated for cancellous with different 

density. The cortical, cancellous, metal and cement are assumed to be linear, elastic, 

isotropic and homogeneous. Linear elastic analysis is adapted and maximum 

principal stress/strain and von Mises stress are the criterions that are of concern. 

Results show that both full and half femur modeling give similar stress distribution. 

Besides, the treated femur is always understressed at the upper most region of the 

femur. Cemented type of total hip replacement (THR) gives a better stress 

distribution on the femur compared to cementless type. In addition, hip prosthesis 

with shorter stem induces the stresses more evenly on the femur. Also, different 

cancellous density does not significantly affect the stresses. 
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ABSTRAK 
 
 
 
 

 Osteoartitis merupakan sebab utama yang mengakibatkan masalah pinggul. 

Menurut Cristofolini (1997), setiap tahun sekurang-kurangnya 800,000 kes 

penggantian pinggul dilaporkan. Mengetahui prestasi pinggul palsu terutamanya 

kestabilan dan panjang hayatnya adalah penting. Dalam projek ini, kaedah unsur 

terhingga digunakan untuk membuat analisis. Pertama, analisis ke atas model femur 

penuh dan separuh dalam 3 dimensi dijalankan. Ini bertujuan mengkaji kelakuan 

femur atas bebanan. Selepas itu, analisis dijalankan ke atas pinggul palsu tanpa 

simen, iaitu “Anatomic Medullary Locking” (AML), yang ditanam ke dalam pinggul. 

Analisis ini turut dibuat ke atas model separuh sahaja. Bahan yang digunakan untuk 

membuat pinggul palsu ialah Kobalt Kromium Molibdenum (CoCrMo). Seterusnya, 

analisis dijalankan ke atas pinggul palsu jenis bersimen. Simen yang digunakan 

adalah diperbuat daripada sejenis polimer lentur, iaitu “polymethylmethacrylate” 

(PMMA). Model pinggul palsu yang digunakan ialah jenis Charnley. Analisis 

diteruskan untuk mengkaji kesan panjang batang pinggul palsu ke atas pengagihan 

tegasan pada femur. Akhirnya, kesan ketumpatan kansel yang berlainan juga dikaji. 

Semua korteks, kansel, logam dan simen dianggap sebagai lelurus, elastik, 

isotropisme dan seragam. Analisis lelurus elastik dipilih dan kriteria utama ialah 

tegasan/terikan prinsipal maksimum dan tegasan von Mises. Keputusan 

menunjukkan bahawa tegasan pada kedua-dua model femur penuh and separuh 

adalah serupa. Selain itu, tegasan pada bahagian paling atas femur yang dijalankan 

pembedahan selalu sangat rendah. Total hip replacement (THR) jenis bersimen 

mengenakan tegasan dengan lebih bagus ke atas femur. Di samping itu, pinggul 

palsu yang berbatang pendek dapat mengagihkan tegasan ke atas femur dengan lebih 

seragam. Ketumpatan kansel yang berlainan tidak banyak mempengaruhi tegasan ke 

atas femur. 
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CHAPTER 1 
 
 
 
 

INTRODUCTION 
 
 
 
 

1.1 Problem Definition 
 

 
Hip problem is getting more and more common nowadays. According to 

Cristofolini (1997), there are approximately 800,000 total hip replacements (THR) 

being performed around the world every year. In Malaysia, for past four years, there 

are at least 600 THR being reported (Norhan, 2005). The main reason of hip failure 

is due to osteoarthritis, where the cartilage of a person is broken down. Cartilage is 

the connective tissue that covers the head of the hip bones. When the cartilage is 

being worn away, the femoral head and the acetabulum will rub one another. This 

will cause wear on the bone. Consequently, one will feel pain due to the friction 

between the ball and socket of the hip. It happens even with small movements. 

Figure 1.1 and 1.2 show the normal working hip and the degenerated hip respectively. 

 

Therefore, it is important to design an implant, which is called hip prosthesis, 

to replace the failed femur part. In this project, the analyses will be mainly 

concerning about how does the stress distributed when the hip prosthesis is 

implanted compared to the intact femur. Besides, the ability of the hip prostheses to 

withstand the loading will be determined, too. For cemented total hip replacements 

(THR), the sustainability of bone cement under loading will also be determined. 

 

The main purpose in this project is to study the stresses carried by the femur 

before and after total hip replacement. Similarity in the stress is important to ensure 

the femur is still being properly stressed under loading and thus also enhance the 
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bone growth. If the femur is overstressed, there will be bone thickening, whereas if it 

is understressed, bone resoprtion will occur. Consequently, there is a high possibility 

for the implant to loose (Frost, 1964; Cowin and Hart, 1985; Harrigan et al., 1996; 

van Rietbergen et al., 1997).   

 

Besides, the stresses carried by the hip prosthesis and bone cement are also 

studied. This is to make sure that stresses experienced by those two components do 

not exceed the yield strength of the materials. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 Figure 1.1 Normal working hip (Coordinated health, 2004) 
 
 
 
 
 
 
 
 
 
 
 
 



 3

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 1.2 Degenerated hip (Coordinated health, 2004) 
 
 
 
 
 
1.2 Objectives  
  
 
 The objectives of this project are to 

i. Develop finite element modeling procedure of current available hip 

prostheses, bone cement and femur. 

ii. Perform static analysis to estimate the stress distribution within the 

hip prostheses, bone cement and femur. 

iii. Study the difference between the stress distribution on the femur with 

cemented and cementless type of total hip replacement. 

iv. Study the effects of different stem length on the stress distribution in 

the femur. 
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1.3 Scopes  
 
 

The scopes of this project include 

i. Intact femur. 

ii. Charnley and Anatomic Medullary Locking (AML) hip prostheses. 

iii. Linear elastic static analysis, where the major outputs of concern are 

maximum principal strains and von-Mises stresses. 

 




