STRESS ANALYSIS OF FEMUR AND FEMORAL STEMS FOR HIP ARTHROPLASTY

WONG KING JYE

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Mechanical Engineering

> Faculty of Mechanical Engineering Universiti Teknologi Malaysia

> > MAY 2006

To my beloved family

ACKNOWLEDGEMENTS

First of all, I would like to thank my project supervisors, Dr. Nazri Kamsah, Assoc. Prof. Dr. Mohd Nasir Tamin, and Dr. Mohammed Rafiq Abdul Kadir for guiding me along this period in doing this project. They have sound knowledge on finite element modeling, structural analysis and biomechanics. They always give very constructive opinions on how to carry out this project. Their patience is also highly appreciated.

Besides, I would like to express my appreciation to Assoc. Prof. Dr. Amran Ayob, Dr. Hishamuddin Alham and Mr. Ainullotfi Abdul Latif for becoming my examiners. Their effort in evaluating my report and presentation is highly appreciated.

In addition, I would like to thank Mr. Liew Yek Ban and Ms. Pang Hooi San for assisting me in using ABAQUS software. Their help makes me easier in handling the software.

Special thanks are given to my family for giving me full support in doing this project. They always give encouragement and concerning about my progress.

Last but not least, the encouragement and help by my dear friends are acknowledged with thanks, too.

ABSTRACT

Osteoarthritis is the major reason that causes hip problem. According to Cristofolini (1997), there are more than 800,000 hip replacements being implanted worldwide annually. It is important to know the performance of hip prostheses especially the stability and the longevity. In this project, numerical simulation based on finite element method is used to analyze the mechanical behavior of femurimplant system. Finite element analysis is carried out on three-dimensional model of a human femur on both full and half models. This is to investigate the behavior of an intact femur under loading. Then, the analysis is repeated for an Anatomic Medullary Locking (AML) hip prosthesis, which is of one type of cementless hip prosthesis, implanted inside the femur. This is only done on half femur model. Both the stem and the head are made by Cobalt Chromium Molybdenum (CoCrMo). After that, the analysis is carried out on a cemented hip prosthesis. The cement is made by polymethylmethacrylate (PMMA), which is of flexible polymeric cement. The hip prosthesis model used for analysis is of Charnley type. The study on the stem length effect is then done. Lastly, the analysis is repeated for cancellous with different density. The cortical, cancellous, metal and cement are assumed to be linear, elastic, isotropic and homogeneous. Linear elastic analysis is adapted and maximum principal stress/strain and von Mises stress are the criterions that are of concern. Results show that both full and half femur modeling give similar stress distribution. Besides, the treated femur is always understressed at the upper most region of the femur. Cemented type of total hip replacement (THR) gives a better stress distribution on the femur compared to cementless type. In addition, hip prosthesis with shorter stem induces the stresses more evenly on the femur. Also, different cancellous density does not significantly affect the stresses.

ABSTRAK

Osteoartitis merupakan sebab utama yang mengakibatkan masalah pinggul. Menurut Cristofolini (1997), setiap tahun sekurang-kurangnya 800,000 kes penggantian pinggul dilaporkan. Mengetahui prestasi pinggul palsu terutamanya kestabilan dan panjang hayatnya adalah penting. Dalam projek ini, kaedah unsur terhingga digunakan untuk membuat analisis. Pertama, analisis ke atas model femur penuh dan separuh dalam 3 dimensi dijalankan. Ini bertujuan mengkaji kelakuan femur atas bebanan. Selepas itu, analisis dijalankan ke atas pinggul palsu tanpa simen, iaitu "Anatomic Medullary Locking" (AML), yang ditanam ke dalam pinggul. Analisis ini turut dibuat ke atas model separuh sahaja. Bahan yang digunakan untuk membuat pinggul palsu ialah Kobalt Kromium Molibdenum (CoCrMo). Seterusnya, analisis dijalankan ke atas pinggul palsu jenis bersimen. Simen yang digunakan adalah diperbuat daripada sejenis polimer lentur, iaitu "polymethylmethacrylate" (PMMA). Model pinggul palsu yang digunakan ialah jenis Charnley. Analisis diteruskan untuk mengkaji kesan panjang batang pinggul palsu ke atas pengagihan tegasan pada femur. Akhirnya, kesan ketumpatan kansel yang berlainan juga dikaji. Semua korteks, kansel, logam dan simen dianggap sebagai lelurus, elastik, isotropisme dan seragam. Analisis lelurus elastik dipilih dan kriteria utama ialah tegasan/terikan prinsipal maksimum dan tegasan von Mises. Keputusan menunjukkan bahawa tegasan pada kedua-dua model femur penuh and separuh adalah serupa. Selain itu, tegasan pada bahagian paling atas femur yang dijalankan pembedahan selalu sangat rendah. Total hip replacement (THR) jenis bersimen mengenakan tegasan dengan lebih bagus ke atas femur. Di samping itu, pinggul palsu yang berbatang pendek dapat mengagihkan tegasan ke atas femur dengan lebih seragam. Ketumpatan kansel yang berlainan tidak banyak mempengaruhi tegasan ke atas femur.

TABLE OF CONTENTS

CHAPTER		TIT	LE	PAGE
	DEC	LARA	TION	ii
	DED	ICAT	ION	iii
	ACK	NOW	LEDGEMENTS	iv
	ABS	TRAC	Т	v
	ABS'	TRAK		vi
	TAB	LE OI	F CONTENTS	vii
	LIST	T OF T	ABLES	X
	LIST	r of f	IGURES	xi
	LIST	r of s	YMBOLS	xix
4			CITION	1
1	INTI	KODU	CTION	1
	1.1	Prob	blem Definition	1
	1.2	Obje	ectives	3
	1.3	Scop	pes	4
2	LITI	ERATI	URE REVIEW	5
	2.1	Fem	ur Structure	5
	2.2	Hip	Joint Failure	8
	2.3	Tota	ll Hip Replacements (THRs)	9
	2	.3.1	Cemented Total Hip Replacements	9
	2	.3.2	Cementless Total Hip Replacements	11
	2	.3.3	Hybrid Total Hip Replacements	14
	2.4	Meta	allic Biomaterials	14

2.	4.1	Cobalt-Chromium Molybdenum Alloy	
		(CoCrMo)	15
2.	4.2	316L Stainless Steel	15
2.	4.3	Titanium Alloy	16
2.	4.4	Tantalum	17
2.5	Cerar	nic Biomaterials	18
2.	5.1	Alumina (Al ₂ O ₃)	18
2.	5.2	Zirconia (ZrO ₂)	19
2.	5.3	Carbons	19
2.	5.4	Calcium Phosphate	20
2.	5.5	Glass Ceramics	20
2.6	Polyr	neric Biomaterials	21
2.	6.1	Polyethylene (PE)	21
2.	6.2	Polymethylmetacrylate (PMMA)	22
2.7	Total	Hip Replacement (THR) Operation	23
2.	7.1	Before Operation	23
2.	7.2	During Operation	25
2.	7.3	After Operation-At Hospital	32
2.	7.4	After Operation-At Home	33
2.8	Musc	ele Forces on the Femur	39
2.9	Probl	ems in Total Hip Replacement (THR)	41
2.	9.1	Thrombophlebitis	42
2.	9.2	Joint Infection	42
2.	9.3	Joint Dislocation	43
2.	9.4	Joint Loosening	43
2.10	Curre	ent Researches	43
MET	HODO	DLOGY	46
3.1	Finite	e Element Modeling	46
3.2	Mode	eling of Intact Femur	49
3.3	Solid	and Finite Element of Full Intact Femur	54
3.4	Resul	lts	56
3.5	Discu	ission	58
3.6	Solid	and Finite Element of Full Intact Femur	59

3

	3.7	Results	64
	3.8	Discussion	69
	3.9	Solid Model of Total Hip Replacement	70
		3.9.1 Anatomic Medullary Locking (AML)	
		Hip Prosthesis	70
		3.9.2 Charnley Hip Prosthesis	77
		3.9.3 Bone Cement	84
		3.9.4 Acetabular Cup	87
		3.9.5 Assemblies	89
	3.10	Finite Element Model of Total Hip Replacement	96
4	RESU	JLTS AND DISCUSSION	99
	4.1	Output Variables	99
	4.2	Cementless THR Modeling with AML	
		Hip Prosthesis	100
	4.3	Cemented and Cementless THR Modeling	
		with Charnley Hip Prosthesis	110
	4.4	Cemented THR Modeling with Different	
		Stem Lengths	125
	4.5	Cemented THR Modeling with Different	
		Cancellous Density	140
5	CON	CLUSIONS AND RECOMMENDATIONS	147
	5.1	Conclusions	147
	5.2	Recommendations on Future Works	148
REFERENC	CES		150

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Geometry of the Proximal Femur	7
2.2	Chemical Compositions of Cast CoCrMo Alloys (F75)	15
2.3	Chemical Compositions of 316L Stainless Steel	16
2.4	Density of Some Metallic Biomaterials	17
2.5	Chemical Compositions of Titanium Alloy (Ti6Al4V)	17
2.6	Maximal Joint Force in Multiples of Body Weight	41
3.1	Material Properties of Femur	52
3.2	Maximum Loading Configurations of the Major Muscles	53
3.3	Comparison Between the Elements and Nodes of Full and Half Intact Femur Model	62
3.4	Material Properties	96
3.5	Elements and Nodes for Different Finite Element Models	97
4.1	Maximum and Minimum Principal Stress on Bone Cements with Different Length	136
4.2	Maximum and Minimum Principal Stress on Bone Cements with Cancellous Density	143

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
1.1	Normal Walking Hip	2
1.2	Degenerated Hip	3
2.1	Composition of a Typical Femur Structure	6
2.2	Nomenclature of the Femur	6
2.3	The Femoral Head Diameter	7
2.4	The Neck-Shaft Angle	7
2.5	The Anteversion Angle	8
2.6	Charnley Prosthesis with Acetabular Cup	10
2.7	Section View of Cemented THR	11
2.8	AML Prosthesis with Acetabular Cup	12
2.9	Section View of Cementless THR	13
2.10	Removing of Femoral Head	25
2.11	Reaming of Acetabulum	26
2.12	Insertion of Acetabular Cup	27
2.13	Preparation of Femoral Canal	28
2.14	Insertion of Femoral Stem	29
2.15	Attachment of Femoral Head	30
2.16	Completed Hip Replacement	31

2.17	X-ray of Completed Hip Replacement	31
2.18	Active Hip and Knee Flexion	33
2.19	Active Abduction	34
2.20	Quadriceps Setting	34
2.21	Gluteal Setting	35
2.22	Terminal Knee Extension	35
2.23	Hip Movement Limitation	36
2.24	Undesired Chair (without Arms)	36
2.25	Incorrect Getting Up Posture	36
2.26	Undesirable Toilet Height	37
2.27	Wrong Blanket Pulling Method	37
2.28	Avoid Bend Way Over	37
2.29	Avoid Moving Knee Cap Inward	38
2.30	Avoid Crossing Legs	38
2.31	Wrong Sleeping Posture	38
2.32	Muscles Acting on the Anterior Femur	39
2.33	Muscles Acting on the Posterior Femur	40
2.34	Acetabular Component and Femoral Head	45
3.1	Methodology in This Project	47
3.2	Computed mass density distribution of a standardized femur model	48
3.3	All Muscle Forces on the Femur	51
3.4	Boundary Condition: Fixing Distal Epiphysis	51

3.5	The Locations of the Corresponding Anatomical Terms	52
3.6	The Corresponding Normalized Height of the Femur for Maximum Principal Strains Presentation	52
3.7	Major Forces on a Femur	53
3.8	The Coordinate System for the Femur	54
3.9	Solid Model of Full Intact Femur	55
3.10	Finite Element Model of Full Intact Femur	55
3.11	Maximum Principal Strain of Full Femur Model	56
3.12(a)	Maximum Principal Strain at Ventral Aspect of Duda's and This Study	57
3.12(b)	Maximum Principal Strain at Lateral Aspect of Duda's and This Study	57
3.12(c)	Maximum Principal Strain at Medial Aspect of Duda's and This Study	57
3.13	Deflection of a Typical Beam	58
3.14	Solid Model of Half Intact Femur	61
3.15	Boundary Condition: Fixing Cut-off Surface	61
3.16	Finite Element Model of Half Femur Model	62
3.17	The Corresponding Normalized Height of the Femur for Stresses Presentation	63
3.18	Maximum Principal Stress of Full Femur Model	64
3.19	Minimum Principal Stress of Full Femur Model	65
3.20	Maximum Principal Stress of Half Femur Model	66
3.21	Minimum Principal Stress of Full Femur Model	67
3.22(a)	Stress Distribution at Ventral Aspect of Full and Half Intact Femur Model	68

3.22(b)	Stress Distribution at Lateral Aspect of Full and Half Intact Femur Model	68
3.22(c)	Stress Distribution at Medial Aspect of Full and Half Intact Femur Model	68
3.23	Sketch of AML Hip Prosthesis	71
3.24	Extrusion of 15mm	72
3.25	Filleted Model	73
3.26	Construction of the Neck of AML Hip Prosthesis	74
3.27	Construction of the Femoral Head of AML Hip Prosthesis	75
3.28	Solid Model of AML Hip Prosthesis	76
3.29	Sketch of the Shoulder of Charnley Hip Prosthesis	77
3.30	Shoulder of the Charnley Hip Prosthesis	78
3.31	Sweep Path for the Stem of Charnley Hip Prosthesis	79
3.32	Swept model	79
3.33	Model with Sharp Edge Removed	80
3.34	Charnley Hip Prosthesis Stem after 'dome'	80
3.35	Construction of the Neck of Charnley Hip Prosthesis	81
3.36	Construction of Femoral Head of Charnley Hip Prosthesis	82
3.37	Neck Region with Sharp Corner	83
3.38	Solid Model of Charnley Hip Prosthesis	83
3.39	Solid Models of Charnley Hip Prosthesis with Different Stem Length	84
3.40	Solid Model of Bone Cement	85

3.41	Solid Models of Bone Cement with Different Length	86
3.42	Sketch of the Acetabular Cup	87
3.43	Revolved Sketch	88
3.44	Solid Model of Acetabular Cup	88
3.45	Section of the Femur to be Removed	89
3.46	Femur Model for THR Modeling	90
3.47	Cancellous Region to be Removed	90
3.48	Cancellous after the Selected Region is Removed	91
3.49	Assembly of Hip Prosthesis, Bone Cement and Cancellous	91
3.50	Final Model of Cancellous	92
3.51	Assembly of Hip Prosthesis, Bone Cement, Cancellous and Cortical	92
3.52	Final Model of Cortical	93
3.53	Assembly of Solid Models for THR Modeling	94
3.54	Assemblies of (a) Cementless THR (AML), (b) Cemented THR (Charnley Original Stem), (c) Cementeless THR (Charnley Original Stem), (d) Cemented THR (Charnley Long Stem) and (e) Cemented THR (Charnley Short Stem)	95
3.55	Finite Element Models of Total Hip Replacement with (a) AML and (b) Charnley Hip Prosthesis	98
4.1	Maximum Principal Stress of Cementless THR Modeling with AML Hip Prosthesis	100
4.2	Minimum Principal Stress of Cementless THR Modeling with AML Hip Prosthesis	101
4.3	Von Mises Stress on AML Hip Prosthesis	102

4.4(a)	Stress Distribution at Ventral Aspect of Intact Femur and Treated Femur with AML Hip Prosthesis	103
4.4(b)	Stress Distribution at Lateral Aspect of Intact Femur and Treated Femur with AML Hip Prosthesis	103
4.4(c)	Stress Distribution at Medial Aspect of Intact Femur and Treated Femur with AML Hip Prosthesis	103
4.5	Transfer of Load in Both Intact Femur and Treated Femur	105
4.6	The Mechanics of Load Transfer	106
4.7	Abrupt Change in Geometry causes stress "flow lines" crowd and induces high stress concentration	109
4.8	Maximum Principal Stress of Cemented THR Modeling with Charnley Hip Prosthesis	110
4.9	Minimum Principal Stress of Cemented THR Modeling with Charnley Hip Prosthesis	111
4.10	Von Mises Stress on Cemented Type of Charnley Hip Prosthesis	112
4.11	Maximum Principal Stress on Bone Cement	113
4.12	Minimum Principal Stress on Bone Cement	114
4.13	Maximum Principal Stress of Cementless THR Modeling with Charnley Hip Prosthesis	115
4.14	Minimum Principal Stress of Cementless THR Modeling with Charnley Hip Prosthesis	116
4.15	Von Mises Stress on Cementless Type of Charnley Hip Prosthesis	117
4.16(a)	Stress Distribution at Ventral Aspect of Intact Femur and Treated Femur with Cemented and Cementless Type of Charnley Hip Prosthesis	118
4.16(b)	Stress Distribution at Lateral Aspect of Intact Femur and Treated Femur with Cemented and Cementless Type of Charnley Hip Prosthesis	118

4.16(c)	Stress Distribution at Medial Aspect of Intact Femur and Treated Femur with Cemented and Cementless Type of Charnley Hip Prosthesis	118
4.17	The Corresponding Cross Section to Analyze the Stress across the Femur and Femoral Stem	119
4.18	Maximum Principal Stress across Section B-B	120
4.19	Minimum Principal Stress across Section B-B	121
4.20	Abrupt change of Cross Section	124
4.21	Smoother change of Cross Section	124
4.22	Maximum Principal Stress of Cemented THR Modeling with Charnley Hip Prosthesis of Long Stem	125
4.23	Minimum Principal Stress of Cemented THR Modeling with Charnley Hip Prosthesis of Long Stem	126
4.24	Von Mises Stress on Cemented Type of Charnley Hip Prosthesis (Long Stem)	127
4.25	Maximum Principal Stress on Bone Cement with Long Hip Prosthesis Stem	128
4.26	Minimum Principal Stress on Bone Cement with Long Hip Prosthesis Stem	129
4.27	Maximum Principal Stress of Cemented THR Modeling with Charnley Hip Prosthesis of Short Stem	130
4.28	Minimum Principal Stress of Cemented THR Modeling with Charnley Hip Prosthesis of Short Stem	131
4.29	Von Mises Stress on Cemented Type of Charnley Hip Prosthesis (Short Stem)	132
4.30	Maximum Principal Stress on Bone Cement with Short Hip Prosthesis Stem	133
4.31	Minimum Principal Stress on Bone Cement with Short Hip Prosthesis Stem	134

4.32(a)	Stress Distribution at Ventral Aspect of Intact Femur and Treated Femur with Cemented Type of Charnley Hip Prosthesis of Different Stem Length	135
4.32(b)	Stress Distribution at Lateral Aspect of Intact Femur and Treated Femur with Cemented Type of Charnley Hip Prosthesis of Different Stem Length	135
4.32(c)	Stress Distribution at Medial Aspect of Intact Femur and Treated Femur with Cemented Type of Charnley Hip Prosthesis of Different Stem Length	135
4.33	Maximum Principal Stress of Cemented THR Modeling with Cancellous Elastic Modulus = 75MPa	140
4.34	Minimum Principal Stress of Cemented THR Modeling with Cancellous Elastic Modulus = 75MPa	141
4.35	Von Mises Stress on Hip Prosthesis of Cemented THR Modeling with Cancellous Elastic Modulus = 75 MPa	142
4.36	Maximum Principal Stress on Bone Cement of Cemented THR Modeling with Cancellous Elastic Modulus = 75MPa	143
4.37	Minimum Principal Stress on Bone Cement of Cemented THR Modeling with Cancellous Elastic Modulus = 75MPa	144
4.38(a)	Stress Distribution at Ventral Aspect of Treated Femur with Different Cancellous Density	145
4.38(b)	Stress Distribution at Lateral Aspect of Treated Femur with Different Cancellous Density	145
4.38(c)	Stress Distribution at Medial Aspect of Treated Femur with Different Cancellous Density	145

LIST OF SYMBOLS

A	-	Cross sectional area
A_c	-	Cross sectional area of the cortical
A_i	-	Cross sectional area of the implant
d	-	Femoral head diameter
Ε	-	Elastic modulus
E_c	-	Elastic modulus of the cortical
E_i	-	Elastic modulus of the implant
F	-	The total applied axial load
F_c	-	Load carried by the cortical
F_i	-	Load carried by the implant
Ι	-	Moment of inertia
M	-	The total applied moment
n	-	Factor of safety
З	-	Strain
θ	-	Anteversion
ρ	-	Density
$ ho_c$	-	Density of the cortical
σ	-	Stress carried by a body
$\sigma_{ m UTS}$	-	Ultimate tensile strength
$\sigma_{ m Y}$	-	Yield strength of a body
υ	-	Poisson's ratio

CHAPTER 1

INTRODUCTION

1.1 Problem Definition

Hip problem is getting more and more common nowadays. According to Cristofolini (1997), there are approximately 800,000 total hip replacements (THR) being performed around the world every year. In Malaysia, for past four years, there are at least 600 THR being reported (Norhan, 2005). The main reason of hip failure is due to osteoarthritis, where the cartilage of a person is broken down. Cartilage is the connective tissue that covers the head of the hip bones. When the cartilage is being worn away, the femoral head and the acetabulum will rub one another. This will cause wear on the bone. Consequently, one will feel pain due to the friction between the ball and socket of the hip. It happens even with small movements. Figure 1.1 and 1.2 show the normal working hip and the degenerated hip respectively.

Therefore, it is important to design an implant, which is called hip prosthesis, to replace the failed femur part. In this project, the analyses will be mainly concerning about how does the stress distributed when the hip prosthesis is implanted compared to the intact femur. Besides, the ability of the hip prostheses to withstand the loading will be determined, too. For cemented total hip replacements (THR), the sustainability of bone cement under loading will also be determined.

The main purpose in this project is to study the stresses carried by the femur before and after total hip replacement. Similarity in the stress is important to ensure the femur is still being properly stressed under loading and thus also enhance the bone growth. If the femur is overstressed, there will be bone thickening, whereas if it is understressed, bone resoprtion will occur. Consequently, there is a high possibility for the implant to loose (Frost, 1964; Cowin and Hart, 1985; Harrigan et al., 1996; van Rietbergen et al., 1997).

Besides, the stresses carried by the hip prosthesis and bone cement are also studied. This is to make sure that stresses experienced by those two components do not exceed the yield strength of the materials.

Figure 1.1 Normal working hip (Coordinated health, 2004)

Figure 1.2 Degenerated hip (Coordinated health, 2004)

1.2 Objectives

The objectives of this project are to

- i. Develop finite element modeling procedure of current available hip prostheses, bone cement and femur.
- ii. Perform static analysis to estimate the stress distribution within the hip prostheses, bone cement and femur.
- iii. Study the difference between the stress distribution on the femur with cemented and cementless type of total hip replacement.
- iv. Study the effects of different stem length on the stress distribution in the femur.

1.3 Scopes

The scopes of this project include

- i. Intact femur.
- ii. Charnley and Anatomic Medullary Locking (AML) hip prostheses.
- iii. Linear elastic static analysis, where the major outputs of concern are maximum principal strains and von-Mises stresses.