Universiti Teknologi Malaysia Institutional Repository

Model-Based Fault Detection Using Hierarchical Artificial Neural Network

Ahmad, Arshad and Leong, Wah Heng (2001) Model-Based Fault Detection Using Hierarchical Artificial Neural Network. In: Regional Symposium on Chemical Enginering, 29-31 October 2001, Bandung.

[img]
Preview
PDF
445Kb

Abstract

In this paper, a two-stage approach integrating a neural network dynamic estimator and a neural network fault classifier is proposed to overcome the problem of malfunction in sensors. The process estimator is designed to predict the dynamic behaviour of the normal or fault-free operating process even in the presence of sensor failures. The difference between this estimated “normal� values and the actual process measurements, termed the residuals are fed to the classifier for fault detection purposes. The classifier then identifies the source of faults. The scheme was implemented under dynamic operating conditions of the Tennessee Eastman challenge process and was successful in detecting various sensor faults introduced within the system.

Item Type:Conference or Workshop Item (Paper)
Uncontrolled Keywords:neural networks, fault detection, steady state model.
Subjects:T Technology > TP Chemical technology
Divisions:Chemical and Natural Resources Engineering (Formerly known)
ID Code:967
Deposited By: Pn Norazana Ibrahim
Deposited On:23 Feb 2007 06:48
Last Modified:01 Jun 2010 02:49

Repository Staff Only: item control page