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ABSTRACT 

Reinforcement Learning is being used to solve various tasks. A Complex 

Environment is a recent problem at hand for Reinforcement Learning, which 

employs an Agent who interacts with the surroundings and learns to solve whatever 

task has to be done. To solve a Complex Environment efficiently using a 

Reinforcement Learning Agent, a lot of parameters are to be kept in perspective. 

Every action that the Agent takes has a consequence in the form of a Reward 

Function. Based on the value of this Reward Function, our Agent develops a Policy 

to solve the Environment. The Policy is generally developed to maximize the Reward 

Functions. The Optimal Policy employs an Exploration Strategy which is used by the 

Agent. Reinforcement Learning Architectures are relying on the Policy and 

Exploration Strategy of the Agent to solve the Environment efficiently. This research 

is based upon two parts. Firstly, the optimization of a Deep Reinforcement Learning 

Architecture “Dueling Deep Q-Network” is conducted by improving its Exploration 

strategy. It combines a recent and novel Exploration technique, Curiosity Driven 

Intrinsic Motivation, with the Dueling DQN. The performance of this Curious 

Dueling DQN is checked by comparing it with the existing Dueling DQN. Secondly, 

the performance of the Curious Dueling DQN is validated against Noisy Dueling 

DQN, a combination of Dueling DQN with another recent exploration strategy called 

Noisy Nets, hence, finding an optimal exploration strategy. The performance of both 

solutions is evaluated in the environment of Super Mario Bros based on Mean Score 

and Estimation Loss. The proposed model improves the Mean Score by 3 folds, 

while the loss is increased by 28%. 
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ABSTRAK 

Reinforcement Learning digunakan untuk menyelesaikan pelbagai masalah. 

Perselitaran yg kompleks adalah satu masalah baru dalang Reinforcement Learning, 

yang menggunakkan ejen bagi berinteraksi dengen persekitaran dan belajar 

menyelesaikan apa jua tugasen yang perlu difuat. Bagi menyelesaikan persekitaran 

kompleks dengen lebih cekap, banyak parameter perlu difelit. Setiap tindakan ejen 

aken mempengerahu Fungsi Ganjaran. Berdasarkan nilai ganjaran, Ejen yang 

dibangukan menghasilkan satu polisi untuk menyelesaikan penselataren terselat. 

Polisi itu secara umumay memaksimumkan fungsi ganjaran. Strategi penjelajeran 

digune ken untulemen dapatuan polisi optimal. Rangka kerja Reinforcement 

Learning bergantung kepada polisi dan strategi penjelajeran ejen. Penyelidikan ini 

terbenag kepada dua. Pertama, pensoptinuman Deep Reinforcement Learning 

”Dueling Deep Q-Network” difuat dengan memperbaiki strategi penjelajeran. Ia 

menggabungkuan teknik penjelajeran Curiosity Driven Intrinsic Motivation dengen 

Dueling DQN. Prestasi Curious Dueling DQN dibandingkan dengan Dueling DQN 

yang ada. Kedua, prestasi Curious Dueling DQN dibandingkan dengan Noisy 

Dueling DQN, gabungan Dueling DQN den strategi penjelajeran yang terluhi Noisy 

Nets, yang menghasilkan strategi penjelajeran yg optimal. Prestasi kedua-dua 

cadagan penyelesaian disalikan delan persekitaran Super Mario berdasarkan Skor 

Min dan Estimation Loss. Model yang dicadangkan meningkatkan Skor Min 

sebanyak 3 lipatan, manakala loss meningkat sebanyak 28%. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Motivation 

In this technology dependent era of digital gadgets, Artificial Intelligence 

(AI) has gained immense importance. It is being used in every business enterprise, 

applications, operating systems and websites. The use of AI is valid as it makes our 

life easier. It provides us those services which were unheard of in the past. With the 

rapid growth in AI, the appropriate decision making mechanism is a dire need of the 

hour. Reinforcement Learning is one of those domains in AI which tackles this 

aspect. 

Reinforcement Learning empowers the concept of cognition (Huhns and 

Singh, 1998) as it learns things and makes decisions in the most humanized way 

possible. It uses trial and error to learn from its experiences which is the same as a 

normal human being. Humans interact with an environment based upon what they 

like and dislike about it. They tend to go for the experiences which provided them 

with some amusement and they never think about doing something which they rather 

disliked. Reinforcement learning works on similar principle. 

Reinforcement Learning has number of applications and advantages based 

upon its improvements over the past few years. It is being applied to a number of 

fields for the ease of work without requiring a human worker. It is being applied in 

Robotics (Kober et. al, 2013), Web System configuration (Bu et. al, 2009), 

Optimizing reactions in Chemistry (Zhou et. al, 2017), Cluster Management (Mao et. 

al, 2016), Traffic Light Control networks (Arel et. al, 2010), Bidding and Advertising 

(Jin et. al, 2018) and most prominently in solving Gaming Environments (Silver et. 

al, 2016). 
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Reinforcement learning when combined with Deep Neural Networks is 

further modified. The decision making capability of Reinforcement learning 

combined with learning capability of Deep Neural Networks can solve Complex Real 

World problems. Deep Reinforcement Learning is capable of performing on par with 

humans and even exceeding it to have Super-Human Performance (Mnih et. al, 

2013). 

Google’s DeepMind has been very active in Deep Reinforcement Learning 

research. In fact, DeepMind’s AlphaGo Zero (Silver et. al, 2017), the Deep Q 

Learning based algorithm, was able to defeat the world champion in the game of GO 

and achieved Super-Human Performance (Mnih et. al, 2013). Similarly, a lot of other 

Deep RL Frameworks have been developed since then, which are performing even 

better than the DQN approach. 

The algorithms are applied to specific characters which solve the game or 

environment, called “Reinforcement Learning Agents”. A lot of environments have 

been developed for the research purposes, to check the performance of our RL 

Agent. Many of these Benchmarks are related to Complex Environments like games 

or situations in which our Agent has to solve them efficiently. Arcade Learning 

Environment (ALE) was developed which is based on the Atari 2600 (Bellamare et. 

al, 2013). Super Mario Bros is another environment in which a lot of research has 

been done (Pathak et. al, 2017). The RL Agents can be trained and tested on these 

Benchmarks to check their performance. 

Such a Deep RL Agent was proposed called ‘Dueling Deep Q-Network’. This 

Model of RL is an extension of DQN in which they break the state value function 

and action advantage function into two separate streams. This algorithm was trained 

and tested on ALE and it outperformed the state of the art agent (Wang et. al, 2016). 

But the Policy used in this approach was the traditional one which learns by 

maximizing the reward functions. Changing the Policy which applies Optimal 

Exploration techniques can further improve the performance of the Dueling 

Networks (Pathak et. al, 2017). 
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There are many state of the art Exploration techniques which have come up 

recently. Curiosity Driven Intrinsic Motivation (Pathak et. al, 2017) is one of them 

which don’t focus on the extrinsic rewards of the environment but rather its own 

internal curiosity to explore the environment, leading to much efficient results. Noisy 

Networks is a Noise Driven exploration strategy which adds learned Perturbations to 

the weights, thus increasing the exploration (Fortunato et. al, 2017). Thus, enhancing 

the exploration parameter can give a performance boost. 

1.2 Problem Background 

Recently, a lot of work has been done on Deep Reinforcement learning 

algorithms and frameworks. A lot of new Models have come forward with each 

tackling a specific parameter and improving it further. Some of these Models have 

also been combined together to form Hybrids which tackle multiple parameters 

together, hence enhancing the performance of these Models (Mnih et. al, 2016). 

Many Deep RL Models have been developed recently. Deep Q Learning 

(Mnih et. al, 2015), Double Q Learning (Hasselt et. al, 2016), Asynchronous Actor-

Critic (Mnih et. al, 2016) and Deep Dueling Network Architectures (Wang et. al, 

2016) are some of them. All of these models have Super-Human Performance (Mnih 

et. al, 2013) and tackle different perspectives. But these algorithms focus much on 

upgradation of the Network Architecture instead of local parameters. However, 

improving these parameters can also result in better performance. 

Each parameter in Reinforcement Learning has different impact on the 

learning problem. RL Architectures tackle the state-action functions to improve the 

response of the agent (Tsay et. al, 2011), optimize the policy by reward shaping 

(Harutyunyan et. al, 2015), optimize the value functions to maximize the rewards 

(Mohan and Laird, 2010), optimize search space (Brys et. al, 2014) and improve 

exploration strategies (Kormelink et. al ,2018). Some of these parameters are related 

together and changing or improving one of them impacts the other parameter. While 

each parameter tackles different perspectives, all of them contribute to the overall 

performance of the agent. 
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The performance of the agent depends upon the timing and sample efficiency. 

To solve some complex problem, the RL Agent first needs to be trained on that 

environment using the basic Reinforcement Learning approach. The agent is given a 

set of actions through which it can interact with the environment. Using these 

actions, the agent goes through multiple iterations ranging from hundreds to 

thousands, to learn the working of the environment. The amount of time and the 

iterations it takes accounts for the timing efficiency. Based upon these samples, the 

agent forms a policy to solve the environment. This accounts for the sample 

efficiency. 

The policy of the agent depends on the exploration strategy used by it. 

Exploration means how the agent likes to go about interacting with the environment. 

It can go for the rewards like coins, it can go straight for the finish line, can explore 

new hidden areas, can kill enemies etc. The type of exploration a policy employs in 

turn affects the overall performance. 

Some exploration techniques have been proposed in the recent past 

(Kormelink et. al, 2018). These exploration techniques are usually based on the 

extrinsic rewards present in the environment. But these external rewards are sparse 

and in turn affect the exploration of the agent. These techniques are usually used in 

some of the Architectures. Recently, a novel technique was proposed which went for 

the curiosity factor of the agent which comes from the intrinsic motivation to explore 

different areas in the environment (Pathak et. al, 2017). It accounted for the sparse 

rewards and time efficiency and involved more exploration. This approach was 

combined with policy based A3C Architecture (Mnih et. al, 2016), and it was shown 

that it clearly lifted the performance of the existing A3C. Another approach, Noisy 

Networks (Fortunato et. al, 2017) was proposed which adds measured noise in the 

weights of the agent, and uses noise to drive it to explore further. 

The effect of Intrinsic Motivation was not tested further on other Deep RL 

Architectures. It has not been combined with a value based algorithm yet. Noisy Nets 

was tested on some, and it improved the performance, but it still remained to seek 

which of these techniques is the better one. It is hence clear that no attention was 
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given to test how well intrinsic motivation works on other models. Moreover, the 

optimal strategy for exploration was not found out of these latest approaches. Finding 

the optimal technique will result in further improvement of any Architecture which 

comes forward in the future. 

1.3 Problem Statement 

The performance of the agent is optimized by upgrading the frameworks, 

which enhances the timing and sample efficiency significantly, but the parameters 

are kept out of perspective, which can further improve the performance of the agent. 

This research investigates the combination of a Deep Reinforcement Learning 

Architecture, Dueling DQN, with a recent Exploration strategy called Curiosity 

Driven Intrinsic Motivation, to optimize the performance of our Agent to solve the 

environment efficiently. The results of the Curious Dueling DQN are compared with 

the existing architecture to check the performance optimization. Moreover, another 

exploration technique, Noisy networks combined with Dueling DQN, which is state 

of the art, is compared with Curious Dueling DQN, thus to evaluate the performance 

and to find the optimum strategy out of the two. 

1.4 Research Aim 

The aim of this research is to produce an effective Deep Reinforcement 

Learning Agent which can solve a Complex Environment efficiently using the 

enhanced exploration approach of Curiosity Driven Intrinsic Motivation. 
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1.5 Research Objectives 

The objectives of the research are:  

1. To propose Curious Dueling DQN, an enhancement of Dueling DQN by 

optimizing its exploration parameter using Curiosity Driven Intrinsic 

Motivation. 

2. To evaluate the performance of Curious Dueling DQN against state of the art 

Noisy Nets Dueling DQN. 

1.6 Research Scope 

The scope of this research is: 

1. Based upon the Deep Reinforcement Learning Architecture, this research 

focuses to improve the Exploration perspective of the learning. 

2. The Complex Environment of 2d Super Mario game is used for Experiment 

setup and testing of the Agent. 

3. Performance Evaluation is done by comparing it with the Existing Dueling 

Network Architecture and state of the art Noisy Dueling DQN. 

4. The Optimum Exploration strategy is found by comparing the two 

approaches. 

1.7 Research Contribution 

This Research contributes to the Performance Optimization of the 

Reinforcement learning agent as follows: 

1. It applies Dueling DQN to Super Mario Environment, which has not been 

used for this Architecture before. 
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2. It optimizes the performance of Dueling DQN by applying recent exploration 

strategies. 

3. It finds the Optimum Exploration Strategy by comparison of Curious Dueling 

DQN and Noisy Dueling DQN which has not been done before. 

1.8 Report Organization 

The research proposal is comprised of six chapters, each chapter giving specific 

details about the proposed research. 

Chapter 1 is the Introduction. It gives the basic idea of what the research is about. It 

includes the introduction, problem statement, background, objects, scope and 

significance of the research. 

Chapter 2 is Literature review. It focuses on the previously done work related to this 

research. It discusses Markov Decision Process, Models, Policies, Reinforcement 

Learning Models, Deep Reinforcement Learning and its Models, different 

Exploration Strategies and Complex Environments. 

Chapter 3 is Methodology. It gives the Operational Framework to solve the problem. 

It also describes the Environment is which our Agent is trained and tested, and the 

software used to implement the basic functionality. 

Chapter 4 gives the Research Design and Implementation. It explains in detail the 

flow of each objective and how it was implemented. The implementation details 

contain flowcharts and pseudocodes. The specifications and working of the Super 

Mario environment are also given. 

Chapter 5 is the Analysis and Discussion of the results. It shows all the performance 

graphs of training and testing of the agent. These graphs are used for validation and 

comparison of the techniques. 
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