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ABSTRACT 

Cartoon characters are currently being used in various applications such 

as comic and cartoon production. The ability to generate a variety of poses and 

facial expression of cartoon characters from simple sketches of stickfigures can 

ease the drawing process in production. Previous studies show only few 

research focused on the task of sketch to character translation. With low 

performance of detecting rare pose features and improving rare feature detection 

has not been significantly studied. The aim of our research is to investigate the 

capabilities of generative adversarial networks (GANs) in the application of 

Sketch to Character translation. A wide range of extended GAN versions has 

been reviewed and in this research, a new dataset collection has been proposed 

which consists of images of sketches and cartoon characters that are manually 

drawn. A Cycle GAN has been implemented and its performance against 

Conditional GAN is compared. Cycle GAN’s cycle consistent loss is the main 

reason for learning a mapping between the domain of source images and the 

domain of target images without the need of paired training samples. Cycle 

GAN has been proven successful in handling a verity of applications in unpaired 

translation setting. The Conditional GAN has been also proven successful in a 

wide range of applications, however, it requires paired training samples. Results 

show that Conditional outperforms the Cycle GAN in accurately mapping the 

cartoon characters to the stickfigure, which is due to the nature of the paired 

training sample. However, the Cycle GAN still managed to produce sharper 

images that compete with the results of a Conditional GAN. 
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ABSTRAK 

Watak-watak kartun kini sedang digunakan dalam pelbagai aplikasi 

seperti pengeluaran komik dan kartun. Keupayaan untuk menghasilkan pelbagai 

pose dan ekspresi muka watak kartun dari lakaran mudah melekat dapat 

memudahkan proses lukisan dalam pengeluaran. Kajian terdahulu menunjukkan 

hanya sedikit penyelidikan yang difokuskan pada tugas lakaran untuk 

terjemahan aksara. Dengan prestasi rendah mengesan ciri pose yang jarang 

berlaku dan meningkatkan pengesanan ciri langka belum banyak dikaji. Tujuan 

penyelidikan kami adalah untuk menyiasat keupayaan rangkaian adversarial 

generatif (GANs) dalam penerapan terjemahan Sketch to Character. Pelbagai 

versi GAN yang diperluaskan telah dikaji dan dalam kajian ini, koleksi dataset 

baru telah dicadangkan yang terdiri daripada imej lakaran dan watak kartun 

yang ditarik secara manual. Kitaran GAN telah dilaksanakan dan prestasinya 

berbanding GAN Bersyarat dibandingkan. Siklus kitaran GAN yang konsisten 

adalah sebab utama pembelajaran pemetaan di antara domain imej sumber dan 

domain imej sasaran tanpa memerlukan sampel latihan berpasangan. Kitaran 

GAN telah terbukti berjaya dalam mengendalikan kebenaran aplikasi dalam 

tetapan terjemahan yang berpasangan. GAN Conditional juga telah terbukti 

berjaya dalam pelbagai aplikasi, bagaimanapun, ia memerlukan sampel latihan 

berpasangan. Keputusan menunjukkan bahawa Conditional mengungguli GAN 

Kitaran dengan tepat memetakan watak-watak kartun dengan tepat, yang 

disebabkan oleh sifat sampel latihan berpasangan. Walau bagaimanapun, Siklus 

GAN masih dapat menghasilkan imej yang lebih tajam yang bersaing dengan 

hasil GAN Bersyarat. 
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CHAPTER 1 

 

INTRODUCTION 

1.1 Introduction 

Cartoon characters have been a part of many of us from an early age. We 

have been exposed to them as early as when we started perceiving and opening 

our eyes to the world. Drawing is used as a form of visual art in which an artist 

expresses their thoughts and imagination though simple lines of sketches to 

detailed illustrations to present a picture and further, using colours and shading 

to enhance its reality. Drawing is used in many commercial productions such 

commercial illustrations, comic and animation production, architectural 

designing, and many more. The traditional technique for illustration productions 

was to manually draw them on traditional equipment such as pencil, paper, 

paint, light tables, etc. Moreover, the process of the actual production involved 

for each image to be drawn repeatedly with slight changes to indicate 

movement. Now a days, the majority of the process is digitized, and the rise of 

animation software has become more popular. Animation and 

storyboarding software such as Toon Boom, have been used in the production 

of numerous famous cartoon series; Family Guy, The Simpsons, Rick and 

Morty, Bob’s Burgers, and many more.  However, the reliance on the repetitive 

task of redrawing the character between time lapse to represent an action such 

as walking or running still exists. A different tool that was provided by Toom 

Boom software is the use of joint configuration to assemble movement points 

that allow the character to move on those points. Also, another software 

designed for computer animation and modelling is Maya.  The process of 

production of 3D computer graphics creation involves 3D modelling and 

https://en.wikipedia.org/wiki/3D_modeling
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forming the object's shape, animation and placement of movement of objects, 

and 3D rendering based on light, surface types, and other qualities to generate 

the image. 

 

Having the Imagination to create but no skills of drawing can make the 

process more difficult. However, the ability to sketch is easy. A sketch is 

defined as fast, freehand drawing or a form of doodling, and most likely is not 

intended to be complete or claimed as finished work. It is mostly used a first 

draft which acts as a base for something more detailed. Generative Adversarial 

Networks (GANs), a model that generates new images, are applicable to many 

applications. An eye-catching implementation by MIT is Nightmare Machine, 

where they used GANs for image translation, specifically style transfer. 

Moreover, training GANs to auto generate illustrations of characters by drawing 

simple sketches with defining the special features, can ease the process 

tremendously by lowering the production time consumed in drawing each 

character as more characters are generated in fewer time, thus, avoiding 

repetitive tasks.   

  

https://en.wikipedia.org/wiki/Computer_animation
https://en.wikipedia.org/wiki/3D_rendering
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1.2 Problem Background 

Existing methods of cartoon and comic production is mainly revolved on 

having drawing talent and skills in using software tools. We take a step into 

automating the process of generating cartoon characters. 

 

Generative models are models that learn the natural characteristics of a 

dataset and generate new samples that cannot be differentiated from existing 

data. The generative algorithm learns about the distribution of joint probability 

over data observations. GANs have been proven successful in understanding a 

variety of data types such as images, audios, and videos. Many studies have 

come up to address the problem of image generation and have proposed many 

modifications of the original GAN. These architectures have been applied on a 

wide variety of applications, which will be discussed in chapter two.  

 

Despite the success of GANs, it can suffer from several serious problems 

including Mode Collapse, and Non-convergence (Goodfellow, Pouget-abadie, 

Mirza, Xu, & Warde-farley, 2014). Mode Collapse occurs when the model 

learns only a single class from the set of target images that achieves a low error 

value and uses it repeatedly until all of the generated images are of that only 

class. Non-convergence is the inability for the model to converge to a final state, 

in more detail, the gradient becomes unsure which direction to place the next 

step. (Goodfellow et al., 2014). 

 

Another problem that can affect the learning process is the data 

availability. Having enough training samples is important for it to perform well. 

In most cases, collecting a paired dataset by having a corresponding input image 

for every target image, can be expensive. This creates a problem as there are 

cases where paired training samples are not available or does not exist. As a 

result, the performance of the model may degrade when it is given unseen 
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training samples. State of the arts models now exist to handle rare or unseen 

training samples using unpaired training. As a result, it alleviates the big burden 

in obtaining label-intensive pixel-to-pixel supervision. Existing research 

attempted to address unpaired datasets by developing extended versions of 

GAN. The most popular and domain diverse model is the Cycle GAN, where 

the authors have adopted it for many applications (Jun-yan Zhu, Park, & Efros, 

2018). Furthermore, other state of the art models such as BIGAN, CoGAN, and 

DiscoGAN share in common an objective function that focuses on unpaired 

dataset. However, not many researches have addresses the problem of sketch-

to-character translation 

 

 

1.3 Problem Statement 

Despite the successes recorded in the area of image-to-image translation, 

several challenges continue to persist particularly in the areas of robustness of 

the models being able to identify and generate rare features. Low performance 

in detecting rare features which leads to the model generating blurred images 

for unseen data samples. Furthermore, previous studies examined the problem 

of sketch to cartoon character translation but involved only training the model 

using paired data samples. Moreover, most research focused on various 

applications, such as sketch-to-face translation and a very few focusing on 

sketch-to-character generation. The main purpose of this study was to adopt and 

examine Cycle GAN model that can effectively identify and generate unseen 

features using an unpaired training dataset. Having a corresponding input and 

its label in a dataset can be difficult and the process of creation can be expensive, 

therefore, the need to explore unpaired based model. 
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1.4 Aim of the Study 

The study adopted a Cycle GAN model to translate simple sketches, with 

defined facial and body features, to detailed cartoon characters. Specifically, it 

trained the model in an unpaired setting, to produce synthesised cartoon images 

that represents that features given by the stick figure. 

 

 

 

1.5 Objectives of the Study 

The basis of comparison in this study is to make use of two approaches of 

feeding data to models. As follow, the following objectives achieved in this 

study: 

I. To generate images of cartoon characters, from unpaired images of stick 

figure sketches and target cartoon characters, using Cycle GAN. 

II. To compare its performance with synthesized images, from paired 

images of stick figures and cartoon characters, generated by Conditional 

GAN. 

 

 

 

1.6 Research Questions of the Study 

 

The study answers the following research questions: 

I. Can a Cycle GAN translate unpaired images of cartoon characters from 

stick figure sketches and produce good results? 

II. How does the cartoon characters generated by Cycle GAN compare to 

Conditional GAN which translates based on paired images of cartoon 

characters from stick figure sketches?  
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1.7 Significance of the Study 

The outcome of this study will be of benefit to both individuals and 

industries who will need to produce good quality cartoon characters, with 

defined poses and facial expressions, from simple sketches without much talent 

needed. This will allow individuals and artists to produce many amounts of 

characters with little time and effort, and thus improving the production rate. 

Moreover, it eliminates the expensive process of collecting a dataset to train a 

model, and thus automatically generate sketch based images of cartoon 

characters. The significance of the study therefore encompasses the following: 

I. The created dataset yields a better incite on the effect of paired and 

unpaired training samples on the model's performance. 

II. The adopted Cycle GAN model eliminates the need for paired training 

examples; Sketches matched with its corresponding cartoon character. 

III. The study produces an adopted model that generates images of cartoon 

characters from sketches with defined facial and body pose features. 

IV. The study shows a comparison between the performances of paired and 

paired based models, where the unpaired based model gives competing 

results with the paired based model. 
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1.8 Scope of the Study 

The scope of this study has been limited to the image-to-image translation 

task of generating cartoon characters from stick figure sketches, with the use of 

paired and unpaired datasets. Moreover, the study focused on: 

I. Difficulty rating of Easy and Moderate; images will have unified sizing, 

framing, and include only a single, and with varied pose orientation. It 

will not cover the Hard rating as our scope is to only generate single 

subjects (does not include other objects such as furniture, pets, 

accessories). 

II. Defined facial and body pose features. 

III. Used Python programming language, and TensorFlow and Pytorch 

Libraries to code the models. 

 

 

 

1.9 Organization of the Dissertation 

Chapter one of the dissertation introduces the true essence of the research 

proposal. It begins with an introduction to the research topic, brief commentary 

of the background to the problem, and the problem statement. The chapter then 

highlights the objectives, aim, and scope of the research. 

 

Chapter Two presents the literatures review. It is conducted in order to gain an 

in-depth understanding of the current research area and find the research gaps 

in the domain of image-to-image translation. Firstly, the definition of 

Generative Adversarial Network, problems, and optimization techniques are 

introduced. Secondly, the problem of image-to-image translation and its 

applications are explained. Thirdly, previous researches related to the tasks of 

sketch-to-character translation are studied. Finally, the concept of paired and 

unpaired datasets is explained. 
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