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Optimal ELM–Harris Hawks Optimization
and ELM–Grasshopper Optimization Models to Forecast
Peak Particle Velocity Resulting from Mine Blasting
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Most mining and tunneling projects usually require blasting operations to remove rock mass.
Previous studies have mentioned that if the blasting operation is not properly designed, it may
lead to several environmental issues, such as ground vibration. This study presents various
machine learning (ML) techniques, i.e., hybrid extreme learning machines (ELMs) with the
grasshopper optimization algorithm (GOA) and Harris hawks optimization (HHO) for con-
trolling and predicting ground vibrations resulting from mine blasting. Actually, the GOA–ELM
and HHO–ELM models are improved versions of a previously developed ELM model, and they
are able to provide higher performance capacity. For the proposed ML modeling, a database was
established consisting of 166 datasets collected from Malaysian quarries. The efficacy of the
proposed ML techniques was observed in the training stage as well as in the testing stage, and the
results were evaluated against five parameters constituting the fitness criteria. The results showed
that the GOA–ELM model delivered more accurate ground vibration values compared to the
HHO–ELM model. The system error values of the GOA–ELM model for the training and
testing datasets were 2.0239 and 2.8551, respectively. The coefficients of determination of the
GOA-ELM model for the training and testing datasets were 0.9410 and 0.9105, respectively. It
was concluded that the new hybrid model is able to forecast ground vibration resulting from mine
blasting with high level of accuracy. The capabilities of this hybrid model can be extended further
to mitigate other environmental issues caused by mine blasting.

KEY WORDS: Ground vibration, Blasting environmental issues, Extreme learning machine, Harris
hawks optimization, Grasshopper optimization algorithm.
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INTRODUCTION

In today�s context, an engineer�s first choice for
fragmenting rock in opencast mines, construction
projects and tunneling is blasting. The main reason is
that it is economical, as compared to any other
method (Raina et al. 2004). The main purpose of
blasting is to break in situ rock into pieces of the
right sizes to facilitate loading and transportation.
However, blasting is associated with some undesir-
able side effects on the neighborhood and environ-
ment, e.g., air overpressure, flyrock and ground
vibration (Saadat et al. 2014; Koopialipoor et al.
2018a; Shang et al. 2020 ; Zhou et al. 2019; Nguyen
et al. 2019, 2020). To ensure the safety of blasting
operations, it is important to forecast all the results
of blasting, in particular its undesirable side effects.

Several scientific techniques and forecasting
models have been developed over the years for
assessing and predicting the negative side effects of
blasting. Of all the environmental issues arising out
of blasting, the most serious is blast-induced ground
vibration (BIGV). That is because it gives rise to a
host of other issues—vibration and damage to
building structures, slope instability and bench
instability in opencast mines, negative effects on
groundwater, damage to railways and highways and
annoyance to local communities (Verma and Singh
2011; Khandelwal et al. 2011; Mahdiyar et al. 2020).
Many neighboring families have complained about
the possible risk to their health and safety when they
experience blasting in nearby opencast mines and
quarries. That is all the more reason for BIGV to be
predicted accurately before a blast, so that the
undesirable side effects of blasting operations can be
controlled or mitigated (Armaghani et al. 2015).

The most important measures of BIGV are
frequency and peak particle velocity (PPV). As per
the Bureau of Indian Standards (Standard 1973), of
these two parameters, PPV is more important and
relevant for controlling structural damage (Khan-
delwal and Singh 2009). Many researchers have gone
into the development of empirical formulas for
predicting BIGV (Duvall and Fogelson 1962;
Langefors and Kihlstrom 1963; Davies et al. 1964;
Roy 1993). However, the problem with empirical
methods/equations is that they suffer from poor
accuracy (Monjezi et al. 2011). One reason for the
inaccuracy of empirical equations is that they can
handle just two parameters, namely distance from
blast site and maximum charge per delay. They ig-
nore other important parameters, like spacing, bur-

den and powder factor, which influence vibration
due to blasting (Standard 1973; Armaghani et al.
2015). Another reason for the inaccuracy of empir-
ical methods is that they are usually designed for a
specific geological area and are generally not cap-
able of being applied to another location. It has been
demonstrated that when applied to other locations,
empirical equations became more inaccurate
(Monjezi et al. 2013). Other statistical methods with
multiple inputs have been tried for BIGV predic-
tion, but like empirical equations, the accuracy of
the predictions was not good enough, particularly
when new data are used in place of old data.

The availability of artificial intelligence (AI) was
used to solve many problems related to science and
engineering (Yang et al. 2018a, b; Koopialipoor et al.
2018b, c, d, 2019a; Guo et al. 2019; Xu et al. 2019; Liu
et al. 2019; Huang et al. 2019, 2020, 2021a, b; Zhao
et al. 2019, 2020a, b; Tang et al. 2020; Armaghani et al.
2020; Asteris et al. 2020; Qi 2020; Pham et al. 2020).
Several researchers reported the effective role of AI
models in predicting PPV (Khandelwal and Singh
2007; Dindarloo 2015). During the construction of a
dam project in Iran, Monjezi et al. (2011) used an
artificial neural network (ANN) model. This model
used two hidden layers for the prediction of BIGV.
The predictions derived from the ANN model were
compared with predictions from empirical and sta-
tistical models using multiple linear regression
methods. It was found that the ANN model was more
accurate than all of the other models in the prediction
of BIGV. Amiri et al. (2016) combined an ANN with
the K-nearest neighbors (KNN) algorithm, called the
ANN–KNN model, to predict PPV. They compared
the PPV predicted by the ANN–KNN model with that
of an ANN model, a few empirical models and a few
other models from published sources. They concluded
that the ANN–KNN model had the best accuracy for
prediction of PPV. Another hybrid AI-based model
for predicting PPV was developed by Shahnazar et al.
(2017), in which particle swarm optimization (PSO)
was used along with the neuro-fuzzy technique called
the PSO–ANFIS model. In another study, Zhou et al.
(2020a) used a new hybrid gene expression program–
Monte Carlo (GEP–MC) technique to introduce a
novel method of predicting BIGV. This GEP–MC
model showed the probabilities of risk in the surface
mine technologies through PPV.

According to several published papers in the field
of ground vibration, it seems that the new models based
on AI and machine learning (ML) algorithms would be
very useful for the prediction of PPV. Therefore, in this
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study, two combinations of the grasshopper optimiza-
tion algorithm (GOA) and Harris hawks optimization
(HHO) with extreme learning machines (GOA–ELM
and HHO–ELM) were used to predict PPV. The PPVs
predicted by the GOA–ELM and HHO–ELM were
compared with those of the basic ELM model. In the
following sections, the background of each of these ML
models and the development of these ML techniques
are described. The predictions of PPV from each of
these models based on the data available are compared
and thoroughly evaluated. Finally, the most accurate
model is identified and recommended for use in fore-
casting BIGV.

RESEARCH SIGNIFICANCE

One of the most undesirable side effects of rock
blasting is related to ground vibration and PPV.
Ground vibrations from blasting, if not controlled, not
only lead to major annoyances and inconveniences to
the local population, but they also adversely affect
nearby structures, property and equipment. In some
cases, local populations have caused mines to close.
High levels of vibration can damage and choke
groundwater bodies and upset the ecological balance
in the neighborhood (Khandelwal and Singh 2009).
Uncontrolled PPV can give rise to deforestation in
nearby forest areas. In mining operations, PPV can
damage free faces and generate significant amounts of
back-breaks (Duvall and Fogelson 1962), resulting in
problems in drilling and the generation of boulders in
subsequent blasts. It is therefore important to forecast
PPVs accurately and to demarcate accurately blast
safety zones, so that blasting engineers are able to
forecast, restrict and contain ground vibrations and
flyrock arising from blasting operations.

The prediction and control of PPV therefore
become a major concern in blasting operations be-
cause it is dependent on many complex parameters.
The output parameter and predictor variables are
highly dynamic and nonlinear. The most elementary
simulation models for the prediction of blast vibra-
tions are based on physical parameters (Duvall and
Petkof 1959; Edwards and Northwood 1960). Simply
put, these physically based models consisted of one
equation to take into account all physical phenomena
and blasting parameters and predict blast vibration in
a simple manner. The major drawback of the physi-
cally based model was the requirement to measure the
parameters and the complexity of the mathematical
formulation necessary to arrive at a simple solution.

ML models are practical and viable options to
be adopted when the availability of data is limited,
and their simple forecasts are more crucial than an
in-depth understanding of the cause-and-effect
mechanism. However, if the operators are keen on
understanding the relationships between blast
geometry and other factors and examining the con-
nection between input variables, more sophisticated
versions of ML, such as the basic ELM and its
variants (hybrid models), would be needed to sim-
ulate, explore and establish empirical relationships
between the blasting parameters and PPV.

THEORETICAL BASIS OF THE ML
TECHNIQUES

Grasshopper Optimization Algorithm

Based on the herding pattern of grasshoppers, a
meta-heuristic algorithm called GOA (grasshopper
optimization algorithm) was developed by Saremi
et al. (2017). In GOA, there are three kinds of
relationships that determine the swarming behavior
of grasshoppers; each of these is represented by an
equation given below:

Social relationships : SRi ¼
XN

j¼1

s dij
� �

d̂ij ð1Þ

Gravity force:GFi ¼ �gx ð2Þ

Wind advection: WAi ¼ ux ð3Þ
Mi is the location of the ith member and it is

represented by

Mi ¼ r1SRi þ r2GFi þ r3WAi ð4Þ
In the above equations, r1, r2, r3 are random

numbers in the range (0,1); s and dij define the social
forces and Euclidean distances between the ith and
jth individuals, respectively; g is the gravitational
constant; u is a constant drift; êg is the unit vector

toward the center of the earth; and êw is the unit
vector for the wind direction. The social distance,
s(r), is derived from the following relationship:

sðrÞ ¼ feð�r=akÞ � eð�rÞ ð5Þ

where f is the attractive length scale and k is the
attraction severity. Mafarja et al. (2019) studied the
effects of f and k on grasshopper behavior. They
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observed that there is a strong opposition or repul-
sion between any two grasshoppers if the physical
distance between them falls in the range of 0 and
2.079. If not, the grasshoppers are in a comfort zone
(Fig. 1). More information regarding this optimiza-
tion technique can be found in Saremi et al. (2017).

Harris Hawks Optimization

The cooperative hunting behavior of the HHO
has been used to represent various issues for which
optimal solutions need to be found (Bui et al. 2019).
The HHO algorithm was proposed by Heidari et al.
(2019) to solve optimization problems in different
areas of science and engineering. As one can see
from Fig. 2, there are three phases in HHO—an
exploration phase, an exploitation phase and a
transition phone in between. In the first phase, a
hawk searches and locates a prey animal and its
position, Xrabit. Assigning a random relationship to
the prey, Xrand, the hawks define their own position
in relation to the position of the prey through an
iterative process:

Xðiterþ1Þ ¼XrandðiterÞ�r1XrandðiterÞ�2r2XðiterÞ ifq� 0:5

Xrabit iterð Þ�Xm iterð Þ�r3ðLBþr4ðUB�LBÞÞifq\0:5

ð6Þ

where Xm is the average position and ri is a position
based on i, a random number varying from
i = (1,2,3,4,…q). The term m is given by:

XmðiterÞ ¼ 1=ðNÞ
XN

ði¼1Þ
XiðiterÞ ð7Þ

where N is the size of the hawk and Xi is the loca-
tion. The escaping energy of the hunt, Eh, is given
by:

Eh ¼ 2E0 1 � iter

T

� �
ð8Þ

where T is the maximum size of the repetitions and
E0 is the initial energy. It is noted that E0 2 �1; 1ð Þ
and that the decision to start the exploration phase
or exploitation phase is dependent on the value of
Ej j. For instance, in the exploitation phase, the value

of Ej j represents the type of attack made to capture

Figure 1. Definition of GOA position (Jia et al. 2019).
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the rabbit. When Ej j � 0:5, it is said to be an easy
catch, whereas when Ej j\0:5, the catch is said to be
difficult (Bao et al. 2019; Du et al. 2019).

Extreme Learning Machine

The ELM is a mechanism containing a single
hidden layer and a neural feed-forward network
called SLFN, which is useful for solving classification
and regression problems (Pal and Deswal 2014). In
some cases, such as in a model suggested by Huang
et al. (2011), a kernel function is used in place of a
hidden layer consisting of many nodes. This tech-
nique was further elaborated by Pal and Deswal
(2014) and Huan et al. (2011) as follows. In the
ELM, the relationship between the training data
(N), the hidden neurons (H) and the activation
function ( f ðxÞ is defined as:

ej ¼
XH

i¼1

f ðwi; ci; xjÞj ¼ 1 . . .N ð9Þ

where wi represents the weight vector of the hidden
input layer, ai represents the weight vector of the
hidden output layer, xj is the input variable, ci is the

bias measure of the ith hidden neuron and ej rep-
resents the ELM output for data point j. A contin-
uous probability distribution (Pal and Deswal 2014)
gives randomly generated input weights. A simple
method of measuring the output weights is:

b ¼ AþY ð10Þ

where A represents the hidden layer output matrix
[see Eq. (11)], A+ is the generalized inversion of A
as per the Moore–Penrose formula and Y denotes
the target values of the ELM. Equation (10) can be

Figure 2. The three phases of HHO algorithm (Aleem et al. 2019).
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rewritten in a compact manner as A = Y, where A
stands for the hidden layer output matrix of the
neural network and Y represents the output of
variable vectors. The three matrices can be depicted
in a compact manner as follows:

A ¼
h x1ð Þ
..
.

h xNð Þ

2

64

3

75 ¼
f w1; c1; x1ð Þ . . . f wH ; cH ; x1ð Þ

. . .
f w1; c1; xj
� �

. . . f wH ; cH ; xj
� �

2
4

3
5

ð11Þ

a ¼
aT1
..
.

aTH

2

64

3

75 andY ¼
yT1
..
.

yTN

2

64

3

75 ð12Þ

where h(x) represents the feature mapping of the
hidden layer. Matrix A forms the basis of the output
from the ELM algorithm. The ELM is solved using
the kernel function (k, xi, xj). In such a case, the
feature mapping is done using the kernel matrix
calculation given as:

k xi; xj
� �

¼ h xið Þ:h xj
� �

: ð13Þ

Compared to many conventional neural net-
work models, the ELM has a higher learning rate at
higher speeds; its generalization capacity is also
higher, and so, its forecasts are more accurate. Some
input layer neurons �n� and some output layer neu-
rons �m,� along with some hidden layer neurons, are
shown in the SLFN (see Fig. 3). For example, if {Xi,
Yi} is the training dataset, Xi = [X1, X2,…, Xn] will
be the input data, Yi = [Y1, Y2, …, Ym] will be the
output data and �m� will be the number of training
samples.

Hybridization of ELM

Huang et al. (2006) established that the ELM
model is versatile enough to employ many activation
functions. It uses general universal approximations
and enjoys a capacity for fast learning that makes it
an attractive and feasible technique to be applied by
many researchers in prediction tasks (Cui et al.
2018). These features of ELM can be strengthened
by mixing it with other algorithms, like those in-
spired by nature (Zhu et al. 2018). For example,
Mohapatra et al. (2015) combined the ELM with a
�cuckoo search� algorithm, which is used to classify
medical data. In another study, Satapathy et al.
(2017) used a �firefly algorithm� to optimize the ELM

and make it amenable to analyzing the photovoltaic
interactive microgrid. Li et al. (2019) used a �whale
optimization� algorithm to optimize an ELM for
assessing the aging factor in insulated gate bipolar
transistors. In these related studies, it was found that
the optimized versions of ELM can perform better
than the basic ELM in terms of performance pre-
diction capacity. One reason for this could be that
the basic ELM uses stochastic initialization of the
network input weights. This, along with hidden
biases, can increase the probability of solutions
getting stuck in local minima (Cao et al. 2012). For
this reason, the present study focused on combining
ELM with two optimization algorithms, i.e., GOA
and HHO, to update the input weights and hidden
biases of the ELM model and to get optimal results.
These hybrid models can be used to control and
predict ground vibration induced by mine blasting.

DESCRIPTION OF THE DATA

A good starting point to evaluate new models
for predicting ground vibration is to establish and
use a solid database. For this study, Pulau Penang, a
granite quarry in Penang, Malaysia (Fig. 4), was
chosen, and blasting data were collected accord-
ingly. This quarry consists of two granite plutons:
North Penang Pluton and South Penang Pluton. The
North Penang Pluton has three units—Granite
Tanjung Bunga, Granite Feringgi and microgranite
at the top. The South Penang Pluton is comprised of
muscovite–biotite granite, containing mostly micro-
cline. The surface of this area is just top soil, mea-
suring about a meter in thickness, consisting of
sandy clay with tree roots in most parts.

Blasting here is carried out for the production
of granite aggregates for construction projects. The
quarry has a capacity to produce about 500,000 to
700,000 tons per year. Generally, blasting is carried
out about 2–4 times a week, using blast hole diam-
eters of 76 mm and 89 mm. The number of holes per
blast ranges from 18 to 84. The total explosives
quantity used in a blast ranges from 856.6 to
9420.5 kg. Data for 166 blasting operations were
measured and recorded for critical parameters like,
among others, burden-to-spacing ratio, hole diame-
ter, stemming length, maximum charge per delay,
total charge and powder factor. For each blast, the
PPV was measured and recorded together with dis-
tance of PPV monitoring from the free face, which
ranged from 285 to 531 m. The database included
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166 measured operations for the prediction of PPV.
This database was used for developing the basic
ELM and the optimized ELMs, namely GOA–ELM
and HHO–ELM. Figure 5 provides an overview of
each input and system output (i.e., PPV) in the da-
tabase that was used.

PROPOSED MODELS TO PREDICT PPV

In this study, input weights and hidden biases,
which constitute the ELM parameters, were cali-
brated for predicting ground vibration using the
GOA–ELM and HHO–ELM hybrid models. The
optimal parameters obtained for each of the two of
optimization algorithms were applied separately to
the ELM to find output weights and predict test data
output. Figure 6 shows the process of hybrid ELM
models. These models were developed by applying

subroutines provided by MATLAB. In the model
created as part of this study, PPV was the output (y)
and the input matrix was x = (BS, HD, St, PF, MC,
and DI).

In the development of models for prediction,
the first step is generally determining datasets for
training and testing. In this study, for the develop-
ment of the ELM, GOA–ELM and HHO–ELM
models, 80% of datasets were randomly identified
and kept aside for training and the remainder for
testing (Koopialipoor et al. 2018b, 2019b; Lu et al.
2020). Using a trial-and-error approach, the models
were tuned for optimization to give the best PPV
estimation. The parameters for value tuning of the
models were chosen and varied until the best fit was
reached. The models were then evaluated for the
highest efficiency on the basis of six indices: coeffi-
cient of correlation (R), coefficient of determination
(R2), root-mean-square error (RMSE), mean abso-

Figure 3. View of the proposed basic ELM.
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lute error (MAE), mean absolute percentage error
(MAPE) and Nash–Sutcliffe efficiency coefficient
(NSE). These indices have been used to assess the
performance prediction capacities of many pub-
lished researches (Koopialipoor et al. 2019c, d; Sun
et al. 2019; Cai et al. 2020; Ye et al. 2020; Zhou et al.
2020b, c). Their formulas are given below:

R¼
Pk

i¼1 PPVEi
�PPVEi

� �
PPVOi

�PPV
Oi

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pk

i¼1 PPVEi
�PPVEi

� �2Pn
i¼1 PPVOi

�PPVOi

� �2
r

2
664

3
775

ð14Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pk

i¼1

PPVi � PPVOið Þ2

k

vuuut
ð15Þ

MAE ¼ 1

k

Xk

i¼1

PPVOi
� PPVEi

j j
 !

ð16Þ

MAPE ¼ 100

k

Xk

i¼1

PPVOi
� PPVEi

PPVOi

				

				

 !
ð17Þ

Figure 4. Location of the study area.
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NSE ¼ 1 �
Pk

i¼1 PPVEi
� PPVOi

ð Þ2

Pn
i¼1 PPVOi

� PPV
Oi

� �2

2

64

3

75 ð18Þ

where PPVEi
is the ith estimated PPV ;PPVOi

is the
ith observed PPV; PPV�Ei

is the average of esti-
mated PPV; PPV�Oi

is the average of observed PPV
and k is the number of observations.

Figure 5. Mosaic display of all data.
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Figure 6. The proposed process of hybrid ELMs.

Table 1. Results of developed models based on various indices

Indices R MAE MAPE RMSE NSE R2

Training

ELM 0.9449 2.2896 26.0361 2.7961 0.8927 0.8928

GOA-ELM 0.9701 1.353 15.1388 2.0239 0.9410 0.9410

HHO-ELM 0.9663 1.6514 19.7654 2.1687 0.9337 0.9337

Testing

ELM 0.9220 2.6151 39.0075 3.4667 0.8364 0.8501

GOA-ELM 0.9542 2.3417 31.3342 2.8551 0.9083 0.9105

HHO-ELM 0.9487 2.6071 33.9205 3.0467 0.8883 0.9001
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Figure 7. Colorful zoning of results for training data.

Figure 8. Colorful zoning of results for testing data.
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RESULTS AND DISCUSSION

Development of Models

The ELM, GOA–ELM and HHO–ELM mod-
els were tried out on various fitness parameters with
the objective of finding the best ML technique. Ta-
ble 1 and Figures 7 and 8 show the fitness measures
and the observed and predicted PPVs, considering
various computing methods, for the training datasets
and testing datasets. In the case of the ELM model,
during the training phase, there was a good corre-
lation between observed and predicted PPVs; how-
ever, during the testing phase, it significantly failed
to achieve a good correlation. On the other hand,
the hybrid ELM groups were consistent in both the
training and testing stages. The GOA–ELM showed
the best results in the prediction of PPV induced by
blasting, followed by HHO–ELM and ELM.

During the training and testing phases for the
hybrid ELM groups, GOA–ELM showed the mini-
mum deviation (R of 0.9701 and 0.9542, MAE of
1.353 and 2.3417, MAPE of 15.1388 and 31.3342,
RMSE of 2.0239 and 2.8551, NSE of 0.9410 and
0.9083 and R2 of 0.9410 and 0.9105). Therefore, this
model outperformed the other developed models,
and it is introduced as a new, powerful and appli-
cable hybrid technique in the field of ground vibra-
tion prediction and generally in solving
environmental issues caused by blasting.

In an earlier study, Faradonbeh et al. (2016)
developed a GEP equation for the prediction of
PPV in blasting, using the same database. For the
training and testing datasets, this model was able to
achieve R2 values of 0.914 and 0.874, respectively. In
the present study, the authors used the same data-
sets with a new hybrid prediction model, i.e., GOA–
ELM, to predict PPVs produced by blasting. The R2

values from this hybrid GOA–ELM model for
training and testing were 0.9410 and 0.9105,
respectively, which are better than the GEP model
results by Faradonbeh et al. (2016). Besides, further
improved versions of the hybrid ELM models
showed results superior to the GEP model in the
training and testing phases. It has also been seen that
the performance of the hybrid models presented in
this research is superior to many other models re-

ported in the literature (Monjezi et al. 2013; Arma-
ghani et al. 2014; Amiri et al. 2016; Sheykhi et al.
2018). In summary, the GOA–ELM is a hybrid
model enjoying the advantages of both the GOA
and ELM algorithms, which give it a higher perfor-
mance compared to other models. It can be used
reliably to solve environmental issues caused by
blasting.

Outlier Effect on the Models

One of the interesting ideas in this research was
to design the developed models based on appropri-
ate criteria for the detection of effective data. Be-
cause, in different models, data quality has a direct
impact on the results, four types of features were
used to select the appropriate data. Here, we
implemented filters for the data by rating them
based on their quality. The four best criteria for
selecting valuable data were the one-class SVM,
covariance estimator, local outlier factor and isola-
tion forest. This process was used for all datasets.
Then, the output data were randomly divided into
training and testing data for the developed models.
The results of the models are shown in Figure 9. As
shown in the figure, the error distributions of the
new models based on the four filters are shown.
Upon closer inspection, it can be concluded that the
error distributions were concentrated close to zero,
and the range of large errors was reduced by these
filters. Of these four techniques, the model that used
the isolation forest filter can be used as an optimized
model. This process is applicable to a variety of data
and can provide better recognition than more valu-
able data. This model, built with the isolation forest
filter, can be used to evaluate more accurately the
PPVs resulting from mine blasting.

CONCLUSIONS

Safety in blasting operations and the reduction
in damage to the environment require an accurate
prediction of PPV arising out of ground vibration. In
this research, PPVs were predicted by different hy-
brid ML models: ELM, GOA–ELM and HHO–
ELM. The prediction performances of these models
were then evaluated using different fitness indices. It
was found that the GOA–ELM model was the best
among all models in terms of accuracy in both the
training and testing phases. The fitness indices for

bFigure 9. Distributions of errors for the developed GOA–ELM

model based on four filters.
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the training and testing phases of the ELM, GOA–
ELM and HHO–ELM models, respectively, were
obtained as follows:

1. RMSE values for training = 2.7961, 2.0559
and 2.0616; and for testing = 3.4667, 2.8541
and 3.0467

2. R2 values for training = 0.8928, 0.9410 and
0.9337; and for testing = 0.8501, 0.9105 and
0.9001

The above results showed that the hybrid
GOA–ELM model had higher performance ratings
for predicting PPVs. In addition, it was established
that the GOA–ELM model is better than some
techniques from other published studies. In conclu-
sion, the hybrid GOA–ELM model is recommended
for use not only to predict PPVs but also to resolve
other environmental issues caused by blasting (e.g.,
flyrock and air overpressure) and to determine the
blast safety zone. It is further recommended to apply
the model within specified ranges over repeated
conditions of input parameters to achieve a higher
accuracy level. Finally, four types of filters were used
to improve the prediction quality of the GOA–ELM
model. The results of these filters indicated that by
scoring the data, more valuable data should be
available to increase the accuracy of the models
made to predict PPV.
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