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W. B. Wan Nik 1,5 , M. R. Ishak 2, R. A. Ilyas 7,8,* and M. J. Suriani 1,5,*

����������
�������

Citation: Azman, M.A.; Asyraf,

M.R.M.; Khalina, A.; Petrů, M.;
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Abstract: Natural fibers have attracted great attention from industrial players and researchers
for the exploitation of polymer composites because of their “greener” nature and contribution to
sustainable practice. Various industries have shifted toward sustainable technology in order to
improve the balance between the environment and social and economic concerns. This manuscript
aims to provide a brief review of the development of the foremost natural fiber-reinforced polymer
composite (NFRPC) product designs and their applications. The first part of the manuscript presents
a summary of the background of various natural fibers and their composites in the context of
engineering applications. The behaviors of NFPCs vary with fiber type, source, and structure. Several
drawbacks of NFPCs, e.g., higher water absorption rate, inferior fire resistance, and lower mechanical
properties, have limited their applications. This has necessitated the development of good practice
in systematic engineering design in order to attain optimized NRPC products. Product design and
manufacturing engineering need to move in a mutually considerate manner in order to produce
successful natural fiber-based composite material products. The design process involves concept
design, material selection, and finally, the manufacturing of the design. Numerous products have
been commercialized using natural fibers, e.g., sports equipment, musical instruments, and electronic
products. In the end, this review provides a guideline for the product design process based on natural
fibers, which subsequently leads to a sustainable design.

Keywords: natural fiber composite; product design; sustainability design; design process

1. Introduction

A new product begins with an idea and ends with the physical production of the
product. According to Milton and Rodgers [1], to minimize or reduce the impact of a
product on the environment, it is necessary to reconsider its impact throughout its life
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cycle, such as how it is produced, the development process, usage, packaging, preservation,
and recycling or disposal. When a product ignores environmental factors in its design
process, designers are likely to face backlash from their customers. The competition of the
product market nowadays is increasing; therefore, designers should consider the selection
of environmentally friendly materials as the main criteria in their design.

Natural fiber composites are environmentally friendly materials that have attracted
attention in the field of product manufacturing engineering [2,3]. Starting 3000 years ago,
straw-reinforced clay was the first composite material to be used by the ancient Egyptians
in their building construction. Research and development have proven that natural fibers
have been successfully applied as reinforcements in the composites industry, such as for
transportation, interior components, building, aircraft, and construction [4–8]. Furthermore,
natural fiber composites have the advantages of being cheaper than synthetic composites,
bio-degradable, abundantly available, renewable, and lightweight [9–16]. Natural fibers
originate from three sources, namely, plants, animals, and minerals. There are more than
2000 types of fiber plants in the world, and these are mostly composed of cellulose, e.g., ke-
naf, sugar palm, bamboo, corn, cotton, flax, hay (from grass cutting), hemp, henequen, jute,
pineapple leaf, banana, ramie, and sisal [17,18]. The use of natural fibers in composites can
also solve some other problems, such as moderate energy consumption during production,
leaving almost no carbon footprint, and reducing disposal problems [19–22].

Design is the first step in the manufacturing process; at this stage, many important
decisions need to be made that will affect the result of a product. Therefore, several things
need to be considered, such as manufacturing, assembly, cost, sales, maintenance, disposal,
and recycling, early on in the design process. In addition, 70% of product manufacturing
costs are determined at an early stage of the design process [23]. Product design using
natural fiber composite uses the same method as other product design processes [24–26].
Product designers will determine the formal qualities of products manufactured by industry
by focusing on aptness in function, use, ease of production, materials, cost, and the number
of constituent parts. Additionally, they also concentrate on user experience—the interaction
between users and products, types of meanings products evoke, and what sorts of emotions
the products elicit [17]. Marzuki [27] also reported that designers need three things, namely,
material, machinery, and method of manufacturing. This means that designers do not
only have to produce quality designs, but they are also responsible for proposing and
determining the appropriate materials so that the product can be produced at an affordable
cost. This shows that the use of materials, human factors, and design are interrelated and
can serve as a guideline to designers.

Fundamentally, design and manufacturing need to move in an integrated manner to
complete the design process, including design concepts, material selection, and manufac-
turing process selection. Each problem needs to be addressed according to its respective
expertise. Some experts will focus on the materials to be used, while others will focus on
design concepts [24,28]. Design concepts and materials can be combined in a computer
system, namely, computer-aided drawing (CAD) and finite element analysis (FEA).

2. Natural Fiber Reinforced Composite Material
Natural Fiber

Natural fiber materials have become increasingly popular in the manufacturing in-
dustry and have been studied by many researchers. Natural fibers are divided into three
categories, namely, cellulose-based, protein-based, and mineral-based, as shown in Table 1.
Natural fibers are sustainable materials that are available in nature and have advantages
as listed in Table 2. The compositions of natural fibers can be divided into three main
components, which are cellulose, hemicellulose, and lignin. Table 3 displays the chemical
composition of the natural fibers, in which the chemical composition and cell structures
are quite complex and differ between plant parts and origins. Depending on the cellulose
crystallinity, the physical, chemical, and mechanical behaviors of the lignocellulosic fibers
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vary from one to another [29,30]. Generally, natural fiber’s main constituent is cellulose, at
30–80%, followed by hemicellulose at 7–40%, and 3–33% lignin, as shown in Table 3.

Table 1. Types of natural fibers [31–34].

Natural
Fiber

Cellulose/Lignocellulose

Grass/Reed Bamboo, corn

Stalk Wheat, maize, oat, rice

Wood Hardwood, softwood

Fruit Coir

Seed Cotton

Leaf Abaca, banana, pineapple, sisal

Bast Flax, hemp, jute, kenaf, ramie

Animal
Wool/hair Cashmere, goat hair, horse hair,

lamb wool

silk Mulberry

Mineral - Asbestos, ceramic, metal

Table 2. The advantages of natural fibers.

Author (Year) Advantages of Natural Fibers

Bakar et al. [10] Low cost, low elongation, low density, non-conductivity, corrosion resistance, absorb
significant amounts and able to solve environmental pollution.

Corona et al. [35] Renewable, moderate energy consumption for production and disposal can reduce
environmental problems.

Hanan et al. [4]
Has certain strength properties, non-rough surface, lightweight, renewable, has specific

modulus properties, can reduce pollution, biodegradable, require less energy to produce,
and inexpensive.

Aji et al. [36]
Low density, cost-saving during manufacturing, less rough surface, harmless

biodegradation, renewable, comparable mechanical properties with inorganic fiber,
recyclable in most countries, and the surface is easily modified.

Amir et al. [37] Substitute for synthetic fibers and as a reinforcing material in composites.

Nordin et al. [11]
In terms of mechanical properties, natural fibers are a good substitute for polymer

composites because of their renewable material source, light weight, inexpensiveness, low
density, and the materials are readily available.

Maleque et al. [38] Ease of use in chemical and mechanical modifications.

Rognoli et al. [17] Environmentally friendly materials.

Taekema and Karana, [39]

Low density, high specific strength, renewable, recyclable according to the mixture of
materials used, high thermal and acoustic insulation, energy consumption savings of up to
60% in the production process (average for automotive component manufacturing), can be

produced with low technology and investment and highly recommended for
developing countries.

Sapuan and Maleque [40] Mechanical properties are comparable to existing conventional materials that include low
production costs, renewability, and environmentally friendly materials.

Shekar and Ramachandra [41] Good mechanical properties, renewable, non-abrasive to process equipment, and can be
burned at the end of its life cycle for energy recovery, and also abundantly available.

Elanchezhian et al. [9]

Renewable, inexpensive, completely or partially recyclable material, and biodegradable. In
addition, this material has low density, low cost, and has environmentally friendly
mechanical properties. It is also an alternative material for fiberglass, carbon, and

human-made fibers for composite manufacturing.
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Table 2. Cont.

Author (Year) Advantages of Natural Fibers

Ilyas et al. [42–44] Cost-effective, biodegradable, and renewable materials.

Peças et al. [31] Renewable, low production costs, low density, acceptable modulus–weight ratio, low
manufacturing energy consumption, low carbon, and biodegradable.

Huda et al. [45] Cheaper, less energy required in the production of fiber reinforcement compared to
conventional fibers such as glass and carbon.

Thyavihalli Girijappa et al. [46] Abundantly available and cost-effective production.

Arpitha et al. [47] Good mechanical properties, light weight, low cost, high specific strength, less rough
surface, environmentally friendly, and good biodegradation characteristics.

Madhu et al. [48]

Creates huge employment opportunities in the rural plantation sector, available in large
quantities, biodegradable, recyclable, better energy recovery, low production costs,

lightweight materials, high strength and specific modulus, lower health risks, low density,
low cost, less skin irritation, less abrasion of equipment, reduced tool wear, improved

energy recovery, and reduced skin irritation and respiration

Table 3. Chemical composition of selected common natural fibers.

Fibers Holocellulose (wt. %)
Lignin (wt. %) Ash (wt. %) Extractives

(wt. %)
Crystallinity

(%) Ref.Cellulose
(wt. %)

Hemicellulose
(wt. %)

Arecanut husk 34.18 20.83 31.60 2.34 - 37 [49]

Banana 7.5 74.9 7.9 0.01 9.6 15.0 [50]

Curauna 70.2 ± 0.7 18.3 ± 0.8 9.3 ± 0.9 - - 64 [51]

Helicteres isora plant 71 ± 2.6 3.1 ± 0.5 21 ± 0.9 - - 38 [52]

Kenaf bast 63.5 ± 0.5 17.6 ±1.4 12.7 ± 1.5 2.2 ± 0.8 4.0 ± 1.0 48.2 [53]

Kenaf core powder 80.26 23.58 - - 48.1 [54]

Mengkuang leaves 37.3 ± 0.6 34.4 ± 0.2 24 ± 0.8 2.5 ± 0.02 55.1 [55]

Oil palm empty fruit bunch
(OPEFB) 37.1 ± 4.4 39.9 ± 0.75 18.6 ± 1.3 - 3.1 ± 3.4 45.0 [56]

Oil palm empty fruit bunch
(OPEFB) 40 ±2 23 ±2 21 ± 1 - 2.0 ± 0.2 40 [57]

Oil palm frond (OPF) 45.0 ± 0.6 32.0 ± 1.4 16.9 ± 0.4 - 2.3 ± 1.0 54.5 [56]

Oil palm mesocarp fiber (OPMF) 28.2 ± 0.8 32.7 ± 4.8 32.4 ± 4.0 - 6.5 ± 0.1 34.3 [56]

Phoenix dactylifera palm leaflet 33.5 26.0 27.0 6.5 - 50 [58]

Phoenix dactylifera palm rachis 44.0 28.0 14.0 2.5 - 55 [58]

Pineapple leaf 81.27 ± 2.45 12.31 ± 1.35 3.46 ± 0.58 - - 35.97 [59]

Ramie 69.83 9.63 3.98 - - 55.48 [60]

Rubber wood 45 ±3 20 ± 2 29 ± 2 - 2.5 ± 0.5 46 [57]

Soy hull 56.4 ± 0.92 12.5 ± 0.72 18.0 ± 2.5 - - 59.8 [61]

Sugar beet 44.95 ± 0.09 25.40 ± 2.06 11.23 ± 1.66 17.67 ± 1.54 - 35.67 [62]

Sugar palm 43.88 7.24 33.24 1.01 2.73 55.8 [63]

Sugarcane bagasse 43.6 27.7 27.7 - - 76 [64]

Water hyacinth 42.8 20.6 4.1 - - 59.56 [65]

Wheat straw 43.2 ± 0.15 34.1 ± 1.2 22.0 ± 3.1 - - 57.5 [66]

3. Composites

In 1980, a fiberglass-reinforced plastic composite (GFRP) known as fiberglass and
carbon fiber-reinforced polymer composite (CFRP) was designed. Composites are formed
from a combination of two or more materials of physical and chemical difference [41].
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This combination consists of the reinforcement phase, in the form of fibers, pieces, or
particles [67,68], being embedded in other materials, referred to as the matrix phase [69–71].
Reinforcement is load-bearing, while the matrix phase serves as a binder of the reinforcing
material and distributes the load between the fibers. According to Elanchezhian et al. [9],
the matrix also acts as a material to protect the fiber material from damage, before, during,
and after composite processing. This combination is able to produce new materials with
better properties than the individual material [15,72].

On the other hand, composite hybrids involve a combination of two or more fibers in
a matrix [10]. Composite hybrids also have broad prospects in product design as manufac-
turing materials. Hybrid composites can overcome several natural fiber deficiencies, e.g.,
low mechanical properties, high absorption properties, poor adhesion, and poor thermal
stability during the process [4]. The results of the studies by Rashid et al. [73] on Kevlar
reinforced with woven coir found that the impact strength showed minimal enhancement
while the breakable properties of pure epoxy composites were decreased. According to
Jawaid et al. [74], the addition of fibers and coupling agents significantly improved the
thermal stability (e.g., decomposition and residue content) of the hybrids. In addition, a
study conducted by Masoodi and Pillai [75] found that hybrid jute composites possessed
high resistance to water absorption. However, the strength of hybrid jute composites was
decreased as the humidity was increased. To reduce this effect, more jute fiber fractions are
needed. Past studies have also found that the combination of natural fiber with synthetic
fiber should be preferably recommended. For instance, a study on long kenaf fibers with
Kevlar highlighted the effectiveness of materials, as well as cost material savings. The
result of the study showed that reinforcing 20% of Kevlar’s weight within the composite
kenaf enabled it to absorb a maximum energy of 12.76 J [10]. This has proven that the com-
bination of Kevlar fiber with a kenaf composite is capable of improving energy absorption
and imparting higher strength properties.

4. Product Design for Natural Fiber Composite (NFC)

Industrial design (ID) is the professional practice of designing products, devices,
objects, and services used by millions of people around the world every day [76]. Prod-
uct design is one of the sub-areas in industrial design that include medical and safety
equipment and home appliances. A good product design needs to go through a long
process, namely, the design process, before entering the manufacturing stage. According
to Abidin et al. [77], furniture design has a very wide scope and comprises furniture in
houses, offices, and public places. For transportation design, it consists of land, sea, and air
vehicles, e.g., cars, motorcycles, buses, sea trucks, ships, jet skis, helicopters, and airplanes.
According to Ramani et al. [78], in 2007, the industrial sector in the United States of Amer-
ica had produced over 1235 × 106 metric tons of carbon dioxide gas that would further
complicate the restoration of the greenhouse gases.

4.1. Selection Material in Product Design

Product designers can use natural fiber composite materials in design proposals in
order for the design to be promoted as an eco-design. Eco-design is also known as design for
the environment, and is defined as the process of “integrating a systematic environmental
system into product design and development” [79]. Designers need to be more careful
in choosing the right natural fiber for a product. According to research conducted by
Karana [80], the choice of material often depends on the material that has been used
before, to ensure that the material to be used is safe. However, this method causes the
selection of materials to be limited. The selection of material plays an important role in the
production of an innovative product. According to a study by Taekema and Karana [39],
materials can be distinguished according to their sensory properties, e.g., blurred texture
and transparency, or mechanical properties such as tensile strength, thermal conductivity,
and the ability of materials to be processed and shaped, for example, they can be painted or
injected. This process needs to be completed in the conceptual design phase. Figure 1 shows
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the design process starting from the initial stage of idea sketching to 2D rendering [81].
Therefore, as an introduction, designers should form an overview of these key properties,
e.g., sensorial properties (such as its velvet-like texture and its transparency), technical
properties (such as it specific tensile strength), and formability properties (such as its ability
to undergo injection molding or being paintable) to inspire and stimulate them to decide on
a particular material. Unless technical requirements are defined at the outset of the project,
product designers consider the technical properties at an overview level, and not in detail at
the conceptual design stage [39]. According to Elvin Karana et al. [82], designers can use the
Meanings of Material (MoM) model as a guideline for material selection. These guidelines
can also be applied by product designers to select natural fibers that are appropriate for
the designed product. In addition, natural fibers also have intangible properties, such
as their relation to trends and value to the culture, and emotions evoked by a material.
These circumstances play important roles in helping product designers to make decisions
in material selection.
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4.2. Evaluation Concept for Product Design

Product designers need reliable, rigorous, and robust methods for evaluating and se-
lecting their design proposals. Choosing the right method is very important, and choosing
the wrong product design proposal to be developed can be very costly to the manufacturer
in terms of money, time, and other valuable resources. Designers need to constantly evalu-
ate the direction of their design concept while, at the same time, creating many concepts to
choose from. When considering the selection of proposals, product design specifications
(PDS) are very useful because they serve as evaluation parameters in the process [1]. Poor
PDS is also one of the reasons for low-quality or unsuccessful products. Specifications are
desired as measurable parameters of features that facilitate the realization of a function [83].
Table 4 shows some of the key points that should appear in a PDS. These are taken from
a pilot study conducted by Azman et al. [84] into redeveloping a face mask design for
hajj people.

Matrix evaluation, or the Paugh method, is a quantitative technique used by designers
to evaluate their proposed design concepts by ranking them against the set criteria stated
in the PDS [1]. This method was invented by a British engineering design professor Stuart
Paugh, who was considered a pioneer in product design development, and this method
has been used worldwide in the field of design for manufacturing [23]. The selection of
concept design proposals is one of the processes involved in narrowing down a number
of alternative proposals and aims to select one for further development and refinement.
Below is the decision matrix model (Paugh’s method). As stated by Mahmud et al. [83],
a significant increase in the information available on product design specifications (PDS)
during the design process leads to a lower rate of product desertion. The process of
selecting the most satisfactory design proposal according to the PDS is very important in
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ensuring that the proposed design concept does not deviate from the guidelines as stated
in the PDS. Matrix evaluation can help designers, engineers, manufacturers, marketing
staff, users, clients, and buyers to reduce ambiguity and confusion in the evaluation and
selection process, resulting in clearer communication and the delivery of successful new
products to market more frequently.

Table 4. Product design specification (PDS).

Design Specifications Explanation

Universal design Usable by both genders; availability of different sizes; usable by pilgrims with a beard, other facial hair,
or other conditions that prevent a good seal between the face and the sealing surface of the face mask

Comfortable Ergonomic; large breathing space (or dead space) for relaxed breathing; reduced facial covering
without compromising the face mask’s efficiency

Effectiveness Therapeutic effectiveness of the face masks against airborne infectious diseases is highly critical

Low cost The low cost can allow face masks to be given for free by Tabung Haji, as preferred by the pilgrims

4.3. Development of Product Design by Integrating Design for Sustainability with Other
Concurrent Engineering Techniques

During the process of the development of NFCs products, product engineers have to
implement the concept of design for sustainability (DfS) in order to promote sustainable
products. Design for sustainability (DfS) could play a vital role in directing us towards
sustainable consumption and production, which is defined based on the four pillars of
sustainability ((1) ecological, (2) social, (3) economic, and (4) institutional, as shown in
Figure 2) that are essential to achieving sustainable life quality [85]. For designers to
practice sustainability, they should include and assess these four pillars, from obtaining the
resources to producing final products [86]. It is fundamental to incorporate constituents that
adhere to consumption and production standards, including the use of the most appropriate
technology, materials, and production processes to achieve zero carbon emissions and
minimal non-renewable resource use, whilst paying attention to the impacts on human
well-being [87].
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Commonly, the DfS approach exploits the design for excellent (DfX) to produce a
sustainable product. This process involves the analysis of the environmental impacts of
specific design attributes, comprising safety and biodegradability prospects, in the devel-
opment of sustainable components/products. Jawahir et al. [89] proposed a conceptual
framework for DfS based on the DfX principles as displayed in Figure 3. The implementa-
tion of concurrent engineering in product development is essential to satisfying human
needs and developing sustainable products before the manufacturing process [90]. In par-
ticular, a biocomposite product has to meet the requirements of life cycle analysis and sales
trends, e.g., raw material and production costs, product’s performance, and consumer’s
demands [91,92].
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4.3.1. Theory of Inventive Problem Solving (TRIZ)

TRIZ, or the theory of inventive problem solving, is a tool used by concurrent en-
gineers to develop various solutions using inventive principles to cater to the problems
that arise [93]. The tool also eliminates any negative drawbacks that may arise during
the development of the solution, as it is focused on the root cause of the problem [94–96].
Initially, the tool is applied to determine the design intentions (purpose subject of the
design) before the development of inventive solutions, specifically for the design. The TRIZ
tool can be categorized into four main techniques: (1) Su-field modeling, (2) algorithms
of inventive problem solving (ARIZ), (3) prediction of technology trends, and (4) contra-
diction engineering with 40 inventive principles [97]. The application of the techniques
depends on the complexity level of the targeted problems when attempting to system-
atically solve a problem by identifying opportunity and innovation techniques [98]. In
this case, Cascini et al. [99] developed a new concept of sheet metal snips based on TRIZ
contradiction methods, which compare the improving and worsening parameters to select
suitable inventive principles. At the end of the product development process, they refined
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the design concepts via a CAD optimization tool. Figure 4 displays the conceptual design
process conducted by Asyraf et al. [100].
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Figure 4. The application of TRIZ in the concurrent engineering conceptual design framework to develop the product [100].

4.3.2. Voice of Customer

Voice of customer (VOC) is one of the main approaches in concurrent engineering
to generate ideas for design intends. The voice of the customer is obtained via many
techniques, including direct customer specifications, observation, surveys, discussion
or interviews, focus groups, warranty data, and field reports. From these VOC data,
this information is then incorporated in a product planning matrix or quality function
deployment (QFD) [101]. The QFD is used to define customer requests and turn this
information into systematic plans to produce products to meet those desires [101].

4.3.3. Morphological Chart

The morphological chart is a concurrent engineering technique that implements
a chart with various arrangements to aid designers in selecting new combinations of
attributes/elements. The “morphology” term refers to the study of the form or shape of the
material, whereas “morphological chart” is defined as a systematic approach to generating
and analyzing the form or characteristics of a product that might be selected [102,103]. The
chart functions to offer a series of choices for each element and component that can be
combined to become a solution idea. The combination of elements and components would
create multiple design features beneficial for the product’s functions. Figure 5 displays
an example of a morphological chart used to develop and model conceptual designs for a
natural fiber composite fire extinguisher.
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4.3.4. Extending the Search Space

This concurrent engineering approach is also called the “Why? Why? Why?” tech-
nique, which is used to elaborate the search option by questioning the root cause of the
problem [105]. For this case, the question would be “Why do we need safety in com-
posite products?” After getting the answer to the question, it would be followed with
another “why” question, until a conclusive solution is reached. For this case, the method is
highly dependent on luck, thus brainstorming is suggested to solve the problems of the
product’s development.

4.3.5. Gallery Method

This technique is used by designers to produce ideas by displaying many generated
concepts simultaneously with a conducted discussion. Typically, these concepts are visu-
alized by sketching and taping them on the wall of the designer’s design room to review
each aspect of the idea. Designers may consequentially be able to suggest improvements
for the concept, or they might even suddenly generate related ideas via this process [106].
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4.3.6. Brainstorming

Analysis of the current systems or products is one of the methods used by many
designers and researchers to initiate new models or prototypes with better solutions [107].
This type of method is also called brainstorming, which involves discussions covering
the physical analysis of current products. The discussion might produce a clearer picture
by mind mapping problems, generating ideas, producing concept designs, and deter-
mining fabrication processes and finalized prototypes [91]. Usually, the analysis of the
existing product would be in relation to competitors’ products, older products of one’s
own company, and similar products that have several sub-functions of function structures.

According to Sapuan et al. [108], several generation techniques have been used by
designers to develop conceptual designs for products, e.g., theory of inventive problem solv-
ing (TRIZ), brainstorming, strengths, weaknesses, opportunities and threats (SWOT) analy-
sis, gallery method, and systematic exploitation of proven ideas of experience [109,110]. For
this project, the simplest way to generate the idea for conceptualizing the design concepts
was using the brainstorming approach. A design focus group was formed for discussion
among the members of Advanced Engineering Materials and Composites Research Cen-
tre (AEMC), Department Mechanical and Manufacturing Engineering, Universiti Putra
Malaysia. Every concept design was outlined and listed based on discussion outputs and
PDS documents of the previous design stage. In the end, around five conceptual designs
of a roselle fiber-reinforced polymer composite smartphone holder were developed. The
details of each concept design are laid out in Table 5.

Table 5. New conceptual designs of a roselle fiber-reinforced polymer composite smartphone holder
and their descriptions [108].

Conceptual Design Description

1.
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• Simple and minimal design.
• Isometric design, hence easy to fabricate.

In another study conducted by Ilyas et al. [111], a focus group was formed to com-
prehensively discuss and produce ideas on the conceptual design of a biocomposite mug
pad among members of the Advanced Engineering Materials and Biocomposites Research
Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti
Putra Malaysia. After the brainstorming output, every concept design was listed based on
the previous PDS document. Specifically, for this research activity, five design concepts
of a roselle fiber biocomposite mug pad with details were produced and are tabulated in
Table 6. Creative and innovative variations were developed to add value to the ideas, in
addition to using roselle biocomposites.

Table 6. Proposed conceptual designs of a roselle fiber biocomposite mug pad [111].

Conceptual Design Description

1.
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5. Natural Fibers Composite Applications

The applications for NFCs are growing rapidly in numerous engineering fields. Var-
ious types of natural fibers have been used as reinforcements in polymer composites,
including corn [112], water hyacinth [113], coir [114], ginger [115,116], cotton [117,118],
kenaf [7,91,119–122], sugarcane [123–125], flax [126], ramie [60], hemp [127], kapok [128],
sisal [129], wood [22], oil palm [130,131], banana [132], as well as sugar palm [43,63,133–141].
Along with biodegradability, natural fibers come with many other advantages, e.g., sub-
stituting timber for wood plastic composite, being less costly, availability, and reducing
deforestation [21]. Natural fibers have huge potential to be converted into useful prod-
ucts [20], as it was revealed by Ilyas et al. [142] that natural fibers are the right material for
the replacement of glass and carbon fibers. Different natural fibers, e.g., jute, hemp, kenaf,
oil palm, and bamboo-reinforced polymer composites, have become of great importance
in different automotive applications, structural components, packaging applications, fur-
niture, and constructions [46,143]. NFCs are used in electrical and electronic industries,
aerospace, sports, recreation equipment, boats, machinery, office products, and so forth. A
roselle fiber-reinforced polymer composite smartphone holder developed using the design
for sustainability (DfS) approach was achieved by Sapuan et al. [108], as shown in Figure 6.
The concept development of the environmentally friendly smartphone holder product
was carried out using concept generation and concept evaluation techniques. The roselle
composite smartphone holder development process involved market analysis, product
design specification (PDS) document generation, conceptual design creation, and detailed
design of the finished product. The mold of the product was fabricated using a 3D printing
method. Then, the roselle fiber composite smartphone holder was fabricated via a hand
lay-up process.

Another study was conducted by Ilyas et al. [111] on a roselle fiber-reinforced polymer
composite mug pad’s product development process using the sustainability (DfS) approach,
as shown in Figure 7. The concept development of the environmentally friendly mug pad
product was performed using concept generation and concept evaluation techniques. The
processes involved in their study were similar to those in the study of Sapuan et al. [108],
in which the final design of the molded product was fabricated using a 3D printer, and
the roselle fiber composite mug pad was fabricated using a hand lay-up process. The
final product was completed and demonstrated easy fabrication, light weight, low overall
cost, and an appropriate balance between functionality and aesthetics. Table 7 shows the
example applications of the natural fiber composite.
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Table 7. Applications of natural fibers composites [143].

Natural Fiber
Composite Applications

Bamboo Application in building, construction, and others

Roselle Mug pad, smartphone holder, furniture, automotive applications

Hemp Construction products, textile, cordage, geotextile, paper and packaging, furniture, electrical, banknote, and pipe

Oil palm Building materials such as window, door frame, structural insulated panel building system, siding, fencing,
roofing, decking, and others

Wood Window frame, panel, door shutter, decking, railing system, and fencing

Flax Window frame, panel, decking, railing system, fencing, tennis racket, bicycle frame, fork, seat post,
snowboarding, and laptop case

Rice husk Building materials such as building panel, brick, window frame, panel, decking, railing system, and fencing

Bagasse Window frame, panel, decking, railing systems, and fencing

Sisal Used in the construction industry such as in panels, doors, shutting plates, and roofing sheet; also, in the
manufacturing of paper and pulp

Stalk Building panel, furniture panel, brick, drain, and pipeline

Kenaf Packing material, mobile case, bag, insulation, clothing-grade cloth, soilless potting mix, animal bedding, and
material that absorbs oil and liquids

Cotton Furniture industry, textile and yarn, food packaging, and cordage

Coir
Building panel, flush door shutter, roofing sheet, storage tank, packing material, helmet and postbox, mirror
casing, paperweights, projector cover, voltage stabilizer cover, filling material for seat upholstery, brush and

broom, rope and yarn for net, bag, and mat, as well as padding for mattress and seat cushion

Ramie Industrial sewing thread, packing material, fishing net, and filter cloth. It is also made into fabrics for household
furnishings (upholstery, canvas) and clothing, as well as paper manufacture

Jute Building panel, roofing sheet, door frame, door shutter, transport, packaging, geotextiles, and chipboard

5.1. Natural Fibers Composites’ Applications in Electrical and Electronic Components

Currently, the increased importance of raw materials derived from renewable re-
sources, as well as the recyclability or biodegradability of products, are causing a trans-
formation from petroleum-based synthetics to natural fibers in electrical and electronic
applications [31]. The broad advantages of natural fiber-reinforced composites, such as
high stiffness to weight ratio, light weight, and biodegradability, make them suitable for
different applications in electrical and electronic industries. “FOMA(R) N701iECO” utilize
kenaf fibers in their eco-mobile phone casing, as shown in Figure 8.
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5.2. Natural Fibers Composites’ Applications in Packaging

More recently, natural fiber composites have provided an alternative solution for better
packaging. Previously, most of the petroleum-based plastics being used for food packaging
have been non-degradable, causing many environmental problems associated with their
disposal, including damage to the environment and eco-systems, water supplies, sewer
systems, rivers and streams [144]. Moreover, they are non-renewable, and their prices are
rising and unstable, given the impending depletion of petroleum resources. According
to Ngo [145], the utilization of coir (coconut) fiber reinforced with natural latex, in place
of synthetic materials, is of great interest for reducing the utilization of non-renewable
and petroleum-based resources. Coconut fiber is a very tough yet also elastic material
that hardly deteriorates at all over time. It is a durable material that can be re-used many
times. After it is used, it can be recycled or disposed of without problem. After molding
the material into the right shape, the material is heated to vulcanize the natural latex. The
result is a very open structure that is strong and resilient. Figure 9 shows the packaging
products produced by Enkev Manufacturer out of coconut fiber.
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5.3. Natural Fibers Composites’ Applications in Sports Equipment

Despite the most prominent applications of natural fiber composites being in the auto-
motive industry, there are additional fields of application for natural fiber composites, such
as in sports products. Before the advent of fiber-reinforced composites, sports equipment
materials were made of wood, steel, stainless steel, aluminum, and alloy. In comparison
with these materials, fiber reinforced composite materials have obvious advantages in the
following aspects. The lower weight and relatively lower cost of natural fibers are the
main aspects referred to as the reasons for the use of natural fiber composites in sports
equipment. Most sports equipment relies on humans to move; therefore, lightweight
equipment is desirable [146]. According to a study conducted by Yusup et al. [147], an oil
palm empty fruit bunch fiber/epoxy composite that went through 24 h fiber treatment
showed high potential to be used as a reinforcement to epoxy as a suitable material for
sports equipment. Based on the results obtained related to the mechanical and physical
properties, the composite of OPEFB fiber/epoxy had a flexural strength between 67.90 MPa
and 83.63 MPa, which falls in the range of field hockey sticks’ strength requirements. The
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longboard shown in Figure 10 is one of the products made from AmpliTex®, bCores®,
powerRibs, and natural fiber (flax, balsa wood) composite reinforcement materials [148].
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6. Conclusions

This review article provides a compact and informative summary of natural fiber-
reinforced polymer matrices from the perspective of product design development. Among
the three main sources of natural fibers are plants, animals, and minerals, and these plant
fibers or cellulosic fibers are in high demand, having developed since the resources they
require are widely available, consume less energy, and are non-toxic to nature and humans.
In general, natural fibers are made up of several main constituents, such as cellulose,
hemicellulose, lignin, and pectin. Many researchers have discovered the good mechanical
performance of these natural fibers due to the cellulose, which provides the good shape
and structural integrity of the fibers. Thus, the integration of natural fibers with a poly-
mer matrix in composites benefits various industries, as they exhibit low density, lower
solidity, biodegradability, and cheapness compared to synthetic composites. Natural fiber
composites are an effective way of improving the quality of products developed from
them, in terms of environmental suitability, and economic and technical feasibility. The
most common natural fibers used in composite products are flax, coir, hemp, and jute,
while roselle, sugar palm, and kenaf are examples of emerging fibers due to their high
mechanical strength and stiffness that are suitable for many engineering applications. It
can be concluded that appropriate product design and manufacturing processes of NF-
PCs are required to enhance the properties of the products and their materials toward
optimized strength and functionality. To ensure the optimization of the strength and func-
tionality of natural fiber composite products, engineering design processes and techniques
such as TRIZ, brainstorming, the voice of customers (VOCs), and morphological charts
are essential. These techniques could define the problems of users and refine them in
terms of the product’s functionality. In the end, an appropriate manufacturing process
incorporates the product’s design and its applications. In the future, further research will
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be required to develop optimized engineering design techniques that complement the
strength of the natural fiber composites, manufacturing processes, and functionality for
heavy industry applications. Even now, natural fiber composites have the potential to be
used in many applications that do not require very high load-bearing or high-temperature
working capabilities.
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