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Abstract 
 

Currently, the catalytic residue of the highly prolific fungal β-glucosidase (BGL) of 

Trichoderma asperellum UC1 remains unvalidated.  The study used the alanine 

scanning method to confirm the catalytic residues of the BGL as Glu165, Asp226, 

and Glu423. This method cancels out all intermolecular hydrogen bonds with 

substrates, lignin, hemicellulose, and cellulose. Results revealed an overall decline 

in the stability of the energy-minimized mutant enzymes' compared to the wild-

type BGL. The mutant enzyme registered lower PROCHECK (91.0%), ERRAT 

(93.09%), and Verify-3D (98.92%) values, in comparison to 90.2%, 92.09%, 98.06%, in 

the wild-type BGL, respectively. The mutant BGL UC1-substrate complexes were 

less stable than the wild-type enzyme, in which the mutant exhibited higher 

binding energies for docked lignin (−7.4% kcal mol-1), cellulose (−7.2 kcal mol-1), 

and hemicellulose (−7.2 kcal mol-1). Binding energies of the wild-type BGL with the 

corresponding substrates were lower at −7.9 kcal mol-1, −8.1 kcal mol-1, and −7.8 

kcal mol-1. An interesting observation was that the alanine scanning changed the 

substrate preference order based on the calculated binding energies. The mutant 

BGL bound preferentially to lignin>cellulose=hemicellulose, while the wild-type BGL 

was selective to cellulose>lignin>hemicellulose. Hence, the findings convey the 

high likelihood of Glu165, Asp 256, and Glu423 are the catalytic residues of the 

BGL of T. asperellum UC1. 

 

Keywords: β-glucosidase from UC1, alanine scanning, catalytic triad, β-

glucosidase, molecular docking, molecular dynamics 
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Abstrak 
 

Kini, sisa pemangkin β-glukosidase kulat (BGL) Trichoderma asperellum UC1 yang 

sangat produktif masih belum disahkan. Kajian ini menggunakan kaedah imbasan 

alanina untuk mengesahkan residu pemangkin BGL sebagai Glu165, Asp226, dan 

Glu423. Kaedah ini membatalkan semua ikatan hidrogen intermolekul dengan 

substrat, lignin, hemiselulosa, dan selulosa. Hasil kajian menunjukkan penurunan 

kecil kestabilan enzim mutan terminimum-tenaga berbanding BGL liar. Enzim 

mutan mencatatkan niai PROCHECK yang lebih rendah (91.0%), ERRAT (93.09%), 

dan Verifikasi-3D (98.92%), berbanding BGL liar yang masing-masing ialah 90.2%, 

92.09%, 98.06%. Kompleks substrat mutan BGL UC1 kurang stabil daripada enzim 

liar, di mana yang mutan menunjukkan tenaga pengikatan yang lebih tinggi 

untuk lignin berlabuh (.4 7,4% kcal mol-1), selulosa (− 7,2 kcal mol-1), dan 

hemiselulosa ( −7.2 kcal mol-1). Tenaga pengikat BGL liar dengan substrat masing-

masing adalah lebih rendah pada −7.9 kcal mol-1, −8.1 kcal mol-1, dan −7.8 kcal 

mol-1. Pemerhatian yang menarik ialah pengimbasan alanin mengubah susunan 

pilihan substrat berdasarkan tenaga pengikat yang dikira. Mutan cenderung 

mengikat lignin> selulosa = hemiselulosa, sementara kepilihan BGL liar adalah 

terhadap selulosa> lignin> hemiselulosa.Oleh itu, hasil kajian ini menunjukkan 

kemungkinan besar Glu165, Asp 256, dan Glu423 adalah residu pemangkin BGL 

dari T. asperellum UC1. 

 

Kata kunci: β-glucosidase daripada UC1, imbasan alanine, triad pemangkin, β-

glucosidase, pengodekan molekul, dinamika molekul 
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1.0 INTRODUCTION 
 

Carbohydrate degrading enzymes secreted by the 

Trichoderma genus' fungi are favored due to their 

ability to secrete large quantities of the enzymes 

extracellularly [1]. Recently, Ezeilo et al. [2] isolated a 

novel T. asperellum UC1 fungus (GenBank accession 

number MF774876) that secretes an array of 

synergistic carbohydrate hydrolyzing enzymes. The 

crude enzyme cocktail consisted of four endo-β-1,4-

xylanases and endoglucanases, and one exo-

glucanase and a β-glucosidase [1]. The enzymes are 

key bioremediation agents that recycle carbon from 

lignocellulosic biomass into the environment. 

Lignocellulose is the most abundant biopolymer on 

Earth, with cellulose, hemicellulose, and lignin being 

the major components [2–4]. However, this study 

focuses on the extracellular β-glucosidase (BGL) of T. 

asperellum UC1 since it is among the commonplace 

enzymes produced by organisms [1]. 

BGL hydrolyzes β-glycosidic bonds of terminal 

non-reducing residue in β-D- glucosides and 

oligosaccharides. This action liberates glucose or 

other sugars as products, which explains its valued 

role in cellulose saccharification and degradation 

[5].  The BGL of T. asperellum UC1 has a higher 

enzymatic activity reportedly over other crude 

enzyme cocktails, in conjunction to better digests 

cellulosic components than β-glucosidases of T. 

reesei [6, 7]. For this study to comprehend the 

catalytic workings of the BGL UC1, a resolved crystal 

structure of a comparable extracellular β-

glucosidase called the ThBgl [8] was used as the 

enzyme template. The ThBgl falls under the β-

retaining glycosyl GH1 family (E.C. 3.2.1.21), in which 

protein architecture is made up of a single (α/β)8 TIM 

barrel fold with two glutamate residues (Glu) as the 

catalytic residues that are placed at a certain 

distance to retain mechanism [8]. β-retaining glycosyl 

BGLs hydrolyze form glycosidic bonds in plants via a 

mechanism called deglycosylation. The mechanism 

is instigated by an attack on a water molecule by the 

general acid or base to discharge the glutamic acid 

(nucleophile) while the configuration of anomeric 

carbon is left unchanged [9]. Florindo et al. [10] 

deduced the catalytic residues of the BGL of ThBgl to 

be made up of nucleophilic Glu367 (E367) and 

Glu166 (E166). It is thought that the catalytic 

glutamate of BGL of T. asperellum UC1 is at positions, 

Glu165, and Glu423, alongside Asp226 [11]. However, 

this aspect is yet to be confirmed. Our earlier study 

only performed phylogenetic tree and sequence 

alignment studies to identify the species and 

characterized the biochemical- and catalytic 

behaviors of the BGL of T. asperellum UC1. We did 

not delve into the roles of the catalytic triad of the 

fungal enzyme. Although a crystal structure of 

another BGL is available, the catalytic residues of the 

BGL UC1 remain an educated guess. Hence, there is 

still a lacking of affirmative investigation to identify 

the BGL UC1 catalytic residues.  

In this milieu, the method of alanine scanning 

comes in handy to validate active site residues. The 

technique has been regularly used to identify 

catalytic residues in various enzymes without 

disrupting their cores' folding [12]. In this study, the 

technique systematically substitutes putative 

catalytic residues with alanine, thereby nullifying any 

possible interactions between the side-chains of 

amino and the ligand(s) [13]. It was expected that 
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the interaction of the mutant BGL-ligand complex 

(ΔGM) becomes destabilized and gives a higher 

Gibbs free energy when compared to the wild-type 

(ΔGW). The more negative the value, the stronger the 

interaction between the side chain of the enzyme 

and ligand [14]. The method was useful to 

demonstrate the binding of human growth hormone 

(hGH) to hGH-binding protein (hGHbp) [15], ligand-

binding pocket for the human Vitamin D receptor 

[16], and complete alanine scanning of the 

Esherichia coli RbsB ribose binding protein involved in 

chemoreceptor signaling [17] amongst many others. 

Hence, the molecular modeling approach using 

in silico alanine scanning performed by using the 

GROMACS software can further expedite the 

clarification of the catalytic residues in BGL UC1. It 

can overcome the time-consuming, expensive, and 

laborious shortcomings in the conventional empirical 

validation studies to identify the catalytic residues. 

GROMACS allows the rapid comprehension of the 

structure-activity relationships between the substrate 

and an enzyme's binding site. The software can 

rapidly gauge changes in the mutant enzyme 

[18][19]. This technique highlights the salient 

contribution of in silico alanine scanning to 

expediently identify and affirm the catalytic residues 

of the BGL of T. asperellum UC1 while 

complementing other empirical validation methods. 

It is hypothesized that the replacement of the 

putative catalytic residues in the BGL UC1 invalidates 

the essential intermolecular hydrogen bonds that 

anchor the substrates into the active site. This, in turn, 

renders the general increase in binding energies of 

the β-glucosidase-substrate complex. Pertinently, this 

is the first study detailing the in silico attempt to 

identify the catalytic residues of the BGL BGL of T. 

asperellum UCI. 

Pertinently, the approach proposed here is 

feasible due to the availability of a similar three-

dimensional (3D) molecular model of the BGL of T. 

asperellum in the National Center for Biotechnology 

Information (NCBI) database. In this work, the 3D 

structure of the β-glucosidase UC1 must first be 

constructed, followed by in silico substitution of 

Glu165, Asp226, and Glu423 into alanine, using the 

GROMACS package. Using AutoDock version 4.2.6, 

the enzyme's natural substrate was docked into the 

mutated catalytic site. Next, the study used 

molecular dynamics to estimate changes in binding 

energies before and post mutation.  

 

 

2.0 METHODOLOGY 
 

2.1 Construction of the 3D Structure of T. asperellum 

UC1 by Homology Modeling 

 

The study first retrieved relevant data from the NCBI 

needed for protein Basic Local Alignment Search 

Tool (BLAST). This was necessary to identify 

homologous protein structures in the Protein Data 

Bank [20]. The amino acid sequences of β-

glucosidases were retrieved from GenPept database 

(ID: XP_018660766.2) in NCBI. Based on the highest 

percentage of sequence similarity of alignment 

(90.06% similarity) for BGL (GenBank accession No. 

ARW78142.1) from another T. asperellum, isolated by 

another study, was selected as the structural 

template. Next, the target enzyme's homology 

modeling used the SWISS-MODEL comparative 

protein modeling server to construct the three-

dimensional (3D) structure of the BGL of Trichoderma 

asperellum UC1. The generated three-dimensional 

(3D) structure of the fungal β-glucosidase of T. 

asperellum UC1 was saved as a PDB file. 

 
2.2 In Silico Site-directed Mutagenesis of BGL T. 

asperelum UC1 

 

Based on a previous study, three structurally 

conserved active site residues of the BGL were 

reportedly located at Glu165, Asp226, and Glu423 

[11]. In this study, mutations of catalytic residues of 

BGL to alanine (Ala) were introduced by Pymol 2.3 to 

yield mutant residues Glu165Ala, Asp226Ala and 

Glu423Ala, respectively. The mutant β-glucosidase 

was analyzed on an on-line Site Directed Mutator 

server (http://www-

cryst.bioc.cam.ac.uk/~sdm/sdm.php) to assess for 

any changes in protein stability after the triple 

mutations. The analysis was based on a specific 

structural environment of a known 3D structure of 

another BGL [21]. The sequence of a highly similar 

BGL was obtained from a previously isolated T. 

asperellum (Genebank accession: ARW78142.1).  

 

2.3 Model Refinement by Energy Minimization 

 

Refinement of the generated model structure of the 

mutant BGL UC1 was then completed by allowing a 

subroutine within the energy minimization to replace 

missing atoms of altered residues before minimizing 

the structure using the appropriate parameters. 

Energy minimization is mandatory for protein 

structures with mutations. The process refines the 

generated protein model and improves any 

significant errors from its native structure [22]. 

Molecular dynamics (MD) simulation to refine the BGL 

of T. asperellum UC1 model was carried out on a 

GROMACS 2018.6 using the Gromos96 53a7 

forcefield. Here, energy minimization by the steepest 

descent and conjugate gradient methods was done 

[23]. This step is important to establish the native state 

of the BGL UC1 protein structure and that it was truly 

at the global minimum [24]. The optimization process 

to obtain a better protein structure converges on 

achieving the model enzyme's highest possible 

absolute performance [25]. 

 

2.4 Evaluation of Structural Validity 

 

The default parameters of ERRAT checked the 

constructed mutant BGL UC1 model's reliability and 
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quality to evaluate non-bonded interactions [26]. 

Next, VERIFY3D checked the sequences' 

compatibility to the structure  [27, 28] using the SAVES 

server (http://servicesn.mbi.ucla.edu/SAVES/). The 

PROCHECK examined the stereochemical quality 

and authenticated the constructed 3D model of the 

BGL protein in the Ramachandran plot. This plot 

typically evaluates the correctness of backbone 

conformation based on phi/psi distribution and the 

presence of non-GLY residues at the disallowed 

regions in the model [28] 

 

2.5 Substrate Docking  

 

The ligands' 3D structures were constructed in 

ChemSketch [29], and docking simulations were 

performed on the Autodock version 4.2.6 and 

AutoTools 1.5.6.[20]. The binding region was defined 

by the Autogrid tool in Autodock as ±1.000 Å from 

39.214 Å, 39.185 Å, and 42.877 Å coordinates with the 

sizes 22, 16, and 14 (x, y and z positions, respectively). 

The docking analysis was performed in triplicate using 

the Autodock Vina for comparison purposes. For 

each substrate in this work, the best result was taken 

as the largest conformation cluster showing the 

lowest binding energy. The “pdbqt” file for each BGL-

substrate complex was converted into the pdb 

format and visualized using Pymol version 2.3[30]. 

 

2.6 MD Simulation on Enzyme-ligand Complex 

 

BGL-substrate complexes were converted into the 

pdb format and visualized using Pymol version 2. MD 

simulation for refining each mutant BGL 3D model 

was done on the parallel version of GROMACS 5.1.2 

using the Gromos96 53a6 force field. The mutant BGL 

protein was simulated in a cubic simulation box (10.0 

x 10.0 x 10.0 nm3) and solvated with 18000 SPC/E 

water molecules through the addition of counterions 

to neutralize the net charge of the enzymes [11, 30]. 

A total of 7 Na+ were added for the BGL, and the 

system was energy-minimized using the steepest 

descent algorithm. A maximum of 10,000 steps was 

used to ensure the protein-ligand complex's solvated 

system was free from steric clashes or incorrect 

geometry. The structures of ligand-bound mutated β-

glucosidase proteins were evaluated. NVT and NPT 

were used to equilibrate the complete system by 

compiling for 50,000 steps (100 ps) at 300K at 1 atm 

[30]. The equilibrated structures were subjected to 

MD simulations for 100 ns in triplicate, with an 

integration time steps of 2 fs. Each output was 

obtained as a finished Xmgrace graph to analyze 

the simulation trajectory. The established step-by-step 

configuration in this work was founded on published 

protocols [31]. Analysis of the dynamic behavior and 

structural changes of the BGL protein model was 

performed by calculating the root mean square 

deviation (RMSD) and root mean square fluctuation 

(RMSF) at the end of the 100 ns production simulation 

[30]. RMSD quantifies the deviation from the 

minimized crystal structure, where each part of the 

protein has altered from the initial conformation over 

the production simulation time. RMSF exemplifies the 

deviation from the mean structure over a dynamic 

production simulation and demonstrates the protein's 

moving regions. In this work, the frame was stored at 

every 1.0 ps intervals during the simulation. 

 

 

3.0 RESULTS AND DISCUSSION 
 

3.1 In Silico Site-directed Mutagenesis   

 

Previously, a BLAST search through the Protein Data 

Bank (PDB) using the target sequence as the query 

yielded the closest similarity to BGL from a T. 

asperellum species (ARW78142.1) [30], BGL UC1 

enzyme showed 90.04% % of sequence identities to 

two other T. reesei fungi with PDB identification 

number of 3AHY. The multiple sequence alignment of 

some BGL proteins was reported in our previous 

study, which showed their predicted conserved 

catalytic trial (Figure 1). The RMSD of the wild-type 

BGL model (0.51 °A) and the mutant enzyme (1.73 

°A) were both in the acceptance range (RMSD < 2 

°A). In this study, the putative catalytic residues, 

namely the Glu165, Asp226, and Glu423, were 

mutated into alanine by the Pymol 2.3 program to 

give mutants Glu165Ala, Asp226Ala, and Glu423Ala, 

respectively. The sequence was subjected to 

homology modeling using the SWISS-MODEL web 

server to generate the 3D structures of the mutant 

BGL. Figures 1a and 1b depict the SWISS-MODEL web 

server generated 3D structure of the BGL UC1 in 

cartoon. Literature has shown that a >30% degree of 

sequence similarity between the target-template is 

acceptable for homology modeling studies [27, 32].  

A naked-eye inspection of the wild-type and 

mutant BGL 3D structures yielded non-discernible 

structural differences. It appears that the generated 

3-D structures of the mutant BGL protein preserved a 

similar fold as the wild-type enzyme (Figure 2). The 

study assumed that the backbone fold of the protein 

was retained after the substitution of the enzyme's 

catalytic residues with three alanine residues. There 

were subtle changes to the mutant BGL UC1 model 

structure, with slight rotations of side-chain torsions, 

revealing a minimum mixture of side-chain and main-

chain shifts.  
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Figure 1 Multiple sequence alignment displaying the 

conserved catalytic triad of BGL UC1 protein (Glu165-

Asp226-Glu423) 

 

 
Figure 2 The SWISS-MODEL generated 3D structures of (a) 

wild-type BGL (b) mutant BGL UC1. Red, yellow, and 

green represent the α-helices, β-sheet, and loop of the 

enzyme 

 

 

3.2 Energy Minimization and Evaluation on the 3D 

Structure of Mutant BGL UC1 

 

All the models generated were energy minimized. 

Local strains within the generated 3D protein model 

for both wild-type and mutant BGL models were 

eliminated by energy minimization using Gromos97 to 

procure stable structures for the subsequent substrate 

docking. This is because minor errors from localized 

strain(s) can exist in the original protein structure, such 

as atomic overlap or bad Van der Waals interaction 

[30]. Energy minimization of enzymes helped remove 

any local strain after the addition of hydrogens. Also, 

a broken hydrogen bond network in water would 

lead to large forces and structure distortion. 

Therefore, PROCHECK, ERRAT, and Verify-3D were 

used as indicators to verify and validate this data 

(Table 1).   

In this study, the energy minimized mutant model 

of BGL UC1 was docked with substrates, cellulose, 

hemicellulose, and lignin before molecular dynamic 

(MD) simulations. This step is important to observe 

interactions between substrates with the new 

catalytic residues mutant BGL model, namely 

Glu165Ala, Asp226Ala, and Glu423Ala. This study 

anticipated an increase in the binding energy 

between the substrates and the mutant BGL 

catalytic residues. Crucially, a model structure 

showing higher binding energy signifies a negative or 

poorer interaction between the substrates and 

catalytic site. It also indicates the likelihood of 

catalytic failure. The energy minimized mutant BGL 

UC1 was subjected to several model evaluation tools 

to assess its quality (Table 1). In this study, evaluations 

were done on the local geometry (PROCHECK and 

ERRAT), while Verify3D gauged the mutant enzyme's 

local environment  [27, 30, 33]. 

 
Table 1 Summary of the validation result of wild-type and 

mutant BGL models before and after energy minimization 

Model 

Evaluation 

Tools 

Normal 

Score 

Range 

(%) 

Wild-type BGL 

(%) 

Mutant BGL  

(%) 

Before After Before After 

Procheck >90 90.0 90.5 89.9 90.2 

Verify3D >80 97.65 98.85 98.04 98.04 

ERRAT >50 93.41 92.09 91.43 92.09 
 

 

 

3.2.1 PROCHECK 

 

PROCHECK examines the geometrical properties of 

protein molecules by analyzing the residue-by-

residue geometry of the structure. A protein model's 

acceptable quality has over >90% residues within the 

most favored regions [33]. The quality of the mutant 

BGL UC1 was also evaluated based on the 

backbone conformation and overall stereochemical 

by observing the phi (Φ) and psi (ᴪ) torsion angles. 

The output of the analysis was demonstrated by 

Ramachandran plots (Figure 3).  

 

 
Figure 3 Plot calculation on the 3D models of BGL UC1 

computed by the PROCHECK program. The following is the 

comparison of Ramachandran’s plot for (a) wild-type BGL 

UC1, (b) energy minimized wild-type BGL UC1 model, (c) 

mutant BGL UC1 and (d) energy minimized mutant BGL UC1 

model. The most favored regions [A, B, L], the additional 

allowed regions [a, b, l, p], the generously allowed regions 

[~a, ~b, ~l, ~p] are colored in red, yellow, and pale yellow 

respectively. All non-glycine and proline residues are 

illustrated as a filled black square, and glycine (non-end) 

are indicated as filled black triangles; disallowed regions are 

colored in white 
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Despite mutation of the catalytic residues, it appears 

that the 3D model of mutant BGL UC1 retained good 

stereochemical quality as that of the wild-type 

enzyme. This was apparent in the Ramachandran 

plots where the plotted (Φ- ᴪ) predicted model of 

the wild-type BGL UC1, refined BGL, mutant BGL, and 

refined Mut-BGL (Figure 3) shared distribution of 99.5% 

amino acid residues in the allowed regions. About 

0.5% of residues resided in a disallowed region. This 

meant that little has changed in terms of the quality 

of the protein structure post-mutation.  For brevity, 

the most favored regions are labelled as [A, B, L], the 

additional allowed regions as [a, b, l, p], and the 

generously allowed regions are [~a, ~b, ~l, ~p]. 

Summary of the Ramachandran plot statistics for BGL 

of T. asperellum UC1 by PROCHECK is presented in 

Table 2. 

 

Table 2 Summary of the Ramachandran plot statistics for 

BGL UC1 as computed by PROCHECK 

Stereochemical 

parameter 

Calculated Values (%) 

Wild-

type 

BGL 

(%) 

Refined 

Wild-

type 

BGL 

Mutant 

BGL 

Refined 

Mutant 

BGL 

Residue in most 

favoured 

regions [A, B, L] 

91.0 89.9

% 

89.9% 90.2% 

Residue in the 

additionally 

allowed zones 

[a, b, l, p] 

8.3 9.3% 9.3% 9.0% 

Residue in the 

generously 

allowed regions 

[~a, ~b. ~l, ~p] 

0.3% 0.3% 0.3% 0.3% 

Residue in 

disallowed 

regions 

0.5% 0.5% 0.5% 0.5% 

Non-glycine 

and non-proline 

residues 

100.0% 100.0% 100.0% 100.0% 

 

 

 

3.2.2 ERRAT 

 

The study also employed ERRAT to gauge the overall 

quality of the BGL UC1 protein model. The web-server 

program verifies the BGL protein structures by the 

numbers of nonbounded contacts. The accepted 

valid range for an ERRAT score for a good protein 

model should be >50% [30]. In this study, the ERRAT 

histogram depicted the correct regions and incorrect 

regions in grey and black, respectively (Figure 4). It is 

worth mentioning here that the two lines drawn 

indicated the confidence to reject regions that 

exceeded the 99% error value. Our data revealed 

that the BGL UC1 protein model exhibited an overall 

good quality with corresponding values of 93.41%, 

92.09%, 91.43%, and 92.09% for the wild-type and 

refined model, alongside the mutant- and the refined 

mutant β-glucosidase, respectively. The findings 

affirmed that the mutant fungal BGL UC1 predicted 

3D structure was good (>50%) and reliable for the 

structural analysis. 

 

 
Figure 4 Overall quality of the models evaluated by the 

ERRAT for (a) non-refined BGL, (b) BGL after refinement, (c) 

mutated BGL, and (d) refined Mut-BGL. Black bars represent 

the poorly modeled regions, grey bars depict the error 

region, while white bars indicate the region with a lower 

error rate for protein folding 

 

 

3.2.3 VERIFY-3D 

 

Data calculated using Verify3D are useful in 

establishing an atomic model's compatibility with its 

own amino acid sequence. This is done by assigning 

a structural class based on its location and 

environment. Kuriata et al. [34] deemed that a 

satisfactory Verify3D score should be >80%. In this 

study, the data of Verify3D revealed the wild-type 

BGL UC1 has a score of 98.92% while refined-, 

mutant- and the refined mutant BGL UCI showed a 

marginally reduced common score of 98.06% (Figure 

5). The high scores for Verify3D seen here indicated 

the tested protein models achieved good side chain 

environments. In all, the integrated data of 

PROCHECK, ERRAT, and Verify3D for the mutant BGL 

UC1exceeded the minimum cut-off score for a good 

3-D structure. This conveyed that the mutant BGL UC1 

maintained overall structural stability close to its wild-

type counterpart. 
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Figure 5 Results of Verify3D for (a) wild-type-, (b) refined-, (c) 

mutant-and (d) refined mutant BGL UC1 with the score 

corresponding to 98.92%, 98.06%, 98.06% and 98.06%, 

respectively. 

 

 

3.4 The 3D Modeling of Refined Mutant BGL UC1 

Structure  

 

Comparison of 3D poses of refined BGL UC1 and 

mutant BGL UC1 is presented in Figure 6. There were 

subtle differences in the protein's conformation in the 

proximity of the mutation sites, obtained from the 

superimposed proteins of the wild-type and mutant 

BGL UC1 (Figure 2 (a)). Protein side chains at positions 

165, 226, and 423 of wild-type BGL UC1 appeared 

longer and more kinked. These changes were 

consistent with the presence of larger side chains of 

three- and two carbon carboxylic acids of glutamic 

acid (residue 165) and aspartic acid (residues 226 

and 423), respectively [35]. Whereas residues E165A, 

D226A, and D423A of Mut-BGL UC1 adopted a more 

compact structure that corresponded well with the 

smaller methyl (−CH3) side chain of alanine. 

 

 
 
Figure 6 Comparison of wild-type BGL UC1 protein structure 

with its mutant. (a) The superimposed 3D structure of wild-

type BGL UC1 protein (red) with mutant BGL UC1 (green) 

and locations of mutated residues of E165A, E423A on the 

front side view, while D226A is shown as the backside view. 

(b) The individual tertiary structure of wild-type BGL UC1 

before mutation and (c) the mutant BGL UC1 after mutation 

to Ala 

 

 

To further examine the crucial key catalytic 

residues of mutant BGL UC1 for protein-chemical 

interactions, the in silico site-directed mutagenesis 

showing mutations on the catalytic amino acid 

residues was used to create substitutions, followed by 

docking simulations [36]. Herein, the conserved 

residues 165, 265, and 423 of the mutant BGL UC1 

were mutated from Glu and Asp to Ala. The 

introduction of non-polar residues will hypothetically 

nullify hydrogen bonds forming between the docked 

substrates and the catalytic residues of BGL UCI. In 

this investigation, the results of the on-line Site 

Directed Mutator data showed that residues E165 

(ΔΔG =), D265 (ΔΔG=) and E423 (ΔΔG =) yield values 

of ΔΔG corresponding to − 0.51 kcal mol-1, − 0.14 

kcal mol-1 and − 1.13 kcal mol-1. The predicted data 

was that the resultant alanine scanning mutation on 

BGL UC1 had destabilized the 3D structure, proven by 

the decrease in protein stability post mutation. A 

positive and negative sign corresponds to 

destabilizing and stabilizing mutations predicted to 

decrease and increase the binding affinity of an 

enzyme-substrate complex. Literature has shown that 

destabilizing mutations at catalytic residues typically 

result in gains in binding energies of proteins or 

enzyme-protein complexes [37]. 
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3.5 Molecular Docking of Mutant BGL UC1 with 

Cellulose, Hemicellulose, and Lignin  

 

This study's subsequent investigation involved 

molecular docking of the natural substrates, 

cellulose, hemicellulose, and lignin into the refined 

structures of the wild-type- and mutant BGL UC1. This 

investigation compared the interaction between the 

enzyme and the three ligands using the AutoDock 

version 4.2.6 and AutoTools 1.5.6, followed by 

AutoGrid tools. Considering that mutant BGL UC1 has 

three alanine residues replacing the putative 

catalytic residues in BGL UC1 (Glu165, Asp226, and 

Glu423), hydrogen bonds between the carbonyl 

oxygen atom of the substrates were not expected to 

occur. Another scenario that may transpire was 

forming another type of hydrophobic interaction (in 

lieu of alanine's neutral nature) with a ‘neighboring’ 

amino acid. This scenario is possible for the mutant 

BGL UC1 as residues in its catalytic pocket are tightly-

packed as any other enzymes. Close-ranging 

residues are bound to be attracted to one another, 

as ‘likes attract likes.’ Furthermore, the complexity of 

a protein structure is determined by the sequence of 

amino acids. Meanwhile, the available group side 

chains' chemical nature and the polar and nonpolar 

side chains, alongside the twisting and conformations 

of proteins, are caused by hydrophobic and 

hydrophilic interactions. Hence, alanine's 

hydrophobicity enables the residue to be  ‘wedged’ 

into tight loops or chains. 

A previous study has shown that the wild-type BGL 

UC1 docked with cellulose (−8.1 kcal mol-1) recorded 

the most favorable binding energy followed by lignin 

(− 7.9 kcal mol-1) and hemicellulose (− 7.5 kcal mol-1). 

As anticipated, mutation with alanine yields the BGL 

UC1-substrate complex showing increased binding 

energies to the substrate lignin (− 7.4 kcal mol-1), 

cellulose (− 7.2 kcal mol-1), and hemicellulose (− 7.2 

kcal mol-1) (Table 2). Next, the docking study's 

binding energy was used to calculate the equilibrium 

dissociation constant (Ki) as described by Manas et 

al. [38]. Low binding energy is related to a low Ki 

value that signifies high binding affinity, and this can 

measure substrate-binding strength with the enzyme. 

From the docking analysis of the mutant GBL model, 

lignin exhibited the lowest Ki value (2.8239 X 10-6), 

followed by cellulose and hemicellulose (3.9887 X 10-

6). Conversely, the Ki was constant for cellulose and 

hemicellulose (Table 3). The data proved that lignin 

was bound tightly to BGL UC1. On the other hand, 

the wild-type of BGL showed that cellulose displayed 

the lowest Ki value (8.432 X 10-7), followed by 

hemicellulose (1.415 X 10-6) and cellulose (1.191 X 10-

6) (Table 3). The results seen here indicated the poor 

interaction between the mutant BGL UCI-substrate 

complex after the triple substitutions of Glu165, 

Asp265, and Glu423 with alanine. The data was also 

affirmative of the residues' important role in the 

hydrolysis of the three aforesaid natural substrates of 

BGL. Interestingly, the mutation led to a change in 

the substrate-binding preference order of the mutant 

BGL UC1. The mutant enzyme preferred lignin over 

hemicellulose and cellulose. Conversely, the wild-

type BGL favorably hydrolyzed cellulose, followed by 

lignin and hemicellulose [11]. Thus, our in silico study's 

outcome supported the catalytic role of residues 

Glu165, Asp265, and Glu423 in BGL UC1 to hydrolyze 

cellulose, lignin, and hemicellulose [1]. Thus, the 

increased binding energies strongly indicated that 

replacing the catalytic residues with alanine has 

marked adverse repercussions on hydrolytic activity 

and substrate specificity of the mutant of BGL UC1. 

The best interaction poses for the protein-ligand 

complex of mutant BGL UC1 model are illustrated in 

Figure 7. The lower binding energy recorded for lignin 

indicated a stronger binding in the protein-ligand 

complex interaction, as the carboxylate group of 

BGL UC1 formed hydrogen bonds to Asn224 and 

Trp424 at distances of 2.3 Å and 3.0 Å (< 3.0 Å) 

(Figure 6c), respectively. Mutation to alanine led to 

weaker hydrogen bond interactions in mutant BGL 

UC1 model with cellulose through residues Asn164 

(2.3 Å), Asn224 (2.0 Å) (Figure 7a), and Trp424 (1.8 Å). 

The same was also observed for hemicellulose 

through Asn164 (2.1 Å) and Asn224 (1.6 Å) (Figure 

7b). Intermolecular distances of less than 3 Å are 

universally accepted, as which hydrogen bonds are 

formed [39, 40]. Pertinently, the appreciable increase 

in binding energies for all mutant BGL UC1-substrate 

complexes, alongside the reduced number of 

hydrogen bonds in the enzyme-hemicellulose and 

enzyme-lignin complexes, were clear indications of 

their reduced stability of interactions. The findings 

thus hypothetically validated the reduced ability of 

the mutant BGL UC1 to hydrolyze all three substrates 

while arguably, affirming the catalytic role of Glu165, 

Asp226, and Glu423.  

 
Table 3 Comparison of the minimum binding energies in 

kcal/mol, as estimated for the wild-type- and mutant BGL 

UC1 as calculated by AutoDock. 

 

Ligand 

Binding Energy 

(kcal/mol) 
Residues 

Wild-

type 

Mutant 

Cellulose − 8.1 − 7.2 Asn224 - Asn164 - 

Trp424 

Hemicellulose − 7.8 − 7.2 Asn164 – Asn224 

Lignin − 7.9 − 7.4 Asn224 – Trp424 
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Figure 7 The best interaction poses for the protein-ligand 

complex by molecular docking; (a) mutant BGL-cellulose, 

(b) mutant BGL-hemicellulose, and (c) mutant BGL UC1-

lignin complexes.         --> (a) mutant BGL-cellulose formed 

hydrogen bond at Asn224, Asn164, and Trp424, (b) mutant 

BGL interact with hemicellulose by hydrogen bonding at 

Asn164 and Asn224 residue, and (c) mutant BGL UC1-lignin 

complexes formed the hydrogen bond at Asn224 and 

Trp424. The hydrogen bond distances are illustrated as 

yellow dashed lines. 

 

 

3.6 MD Simulations of the BGL UC1-ligand Complex 

 

Protein-ligand interactions are a prerequisite to 

visualizing the structural and dynamic characteristics 

of the mutant BGL UC1 model. In this study, the initial 

protein-ligand molecular interactions were docked 

by AutoDock 4.2 using the classical Lamarckian 

genetic algorithm (LGA) as energy optimization 

algorithms. The best conformations of each docking 

algorithm were then subjected to molecular dynamic 

(MD) simulations to analyze the molecular 

mechanisms of protein-ligand interactions further. 

Here, we analyzed the binding energy between the 

protein receptors and ligands, hydrogen bonds' 

interactions in the docking region, and the structural 

changes when the wild-type- and mutant BGL UC1 

model interact with all three substrates. In this study, 

MD simulation was performed by looking at the total 

root mean square deviation (RMSD) and total root 

mean square fluctuation (RMSF) of the Cα 

backbone-backbone. We assessed the RMSD to 

study the residue behavior of the protein during the 

simulations. In general, a residue’s RMSD value 

represents the local flexibility of a protein. It reflects 

the mobility of an atom during the MD simulation 

trajectory. Therefore, a higher residue RMSD value 

indicates a higher mobility. Conversely, a lower 

residue RMSD value indicates lower mobility. A 

relatively lower RMSD value indicates the complex 

structures' high stability and vice versa [41, 42]. 

Therefore, a complex's stability is affected by the 

binding affinity between a ligand and its target 

molecule.  

The MD simulations of BGL-cellulose complexes 

were run in a 10 Å cubic box containing water 

molecules at 300K, and the spc216 template was 

applied to solvate the protein [11]. All MD simulations 

were carried out by the GROMACS 5.1.2 package 

using the Gromas96 53a6 force field. The BGL UC1-

substrate complexes' trajectories were appreciably 

stable for the most part of the 100 ns production 

simulation run. The trajectory stability was checked 

and corroborated by the RMSD analysis (Figure 8) as 

the function of time for the mutant BGL UC1-substrate 

complexes. The RMSD values for all mutant BGL 

complexes increased in the first 10 ns and stabilized 

for most of the simulation (Figure 8a). RMSD value of 

the mutant BGL UC1-cellulose revealed that the 

system first reached equilibrium at 30 ns (2.4 Å) and 

fluctuated closely between 1.2 Å to 2.5 Å. Notably, 

MD simulation for mutant BGL UC1-lignin equilibrated 

soon after 42 ns (2.5 Å), and its corresponding RMSD 

value fluctuated between 1.2 Å to 2.8 Å. The 

complex incrementally deviated (RMSD ~ 2.5 Å) and 

fluctuated again to 2.8 at 98 ns (Figure 8a). 

Conversely, the mutant β-glucosidase-hemicellulose 

complex RMSD value fluctuated between 1.1 Å to 2.5 

Å while equilibrated at 72 ns (2.4 Å). 
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Figure 8 Averaged RMSD plots were computed for 100 ns at 

constant temperature and volume for (a) mutant BGL-

cellulose, mutant BGL-hemicellulose, and mutant BGL-lignin 

complexes and (b). wild-type BGL-cellulose, wild-type BGL-

hemicellulose, and wild-type BGL-lignin complexes 

 

 
Conclusively, the afore MD data reiterated the 

lower binding ability of the mutant BGL UC1 to 

interact with the natural substrates of BGL UC1, 

namely, cellulose, hemicellulose, and lignin. The 

observation was consistent with the inability of the 

triple alanine substitutes to bind them strongly. 

Nonetheless, the β-glucosidase-cellulose complex 

appeared to be more stable than the two other 

complexes. Despite the mutation, the trend was seen 

to correlate excellently with an earlier study on the 

wild-type BGL UC1 by Bahaman et al. [11]. RMSD of 

the BGL-cellulose complex showed the system 

reached equilibrium at 25 ns (2.2 Å) and fluctuated 

narrowly within the range 1.0 − 2.2 Å (Figure 8b). In 

comparison, the average RMSD value for BGL -

hemicellulose complex ranged between 1.2 − 2.8 Å. 

This was followed by an increase in deviation (RMSD 

~2.5 Å) and fluctuated to 2.8 Å at 97ns (Figure 8b). 

For the RMSD of the BGL-lignin complex, the system 

reached equilibrium at 30 ns (2.4 Å) within a range of 

1.5 - 2.4 Å (Figure 8b). Remarkably, the results showed 

that their BGL-cellulose complex was the most stable 

structure. Their results also agreed with observations 

from the docking study with the substrate cellulose 

(−8.1 kcal mol-1) compared to lignin (−7.9 kcal mol-1) 

and cellulose complex (−7.8 kcal mol-1). While the 

mutant BGL UC1 MD simulation results  refuted the 

earlier substrate docking data showing lignin being 

the preferred substrate, the study by Bahaman et al. 

[11] showed that the wild-type BGL UC1 binding 

energies in complexed with lignin, cellulose and 

hemicellulose were −7.4 kcal mol-1, −7.2 kcal mol-1 

and −7.2 kcal mol-1, respectively.  

Confirming an early study by Cheng[ 40], a RMSD 

value that fluctuates > 3.0 Å is acceptable for stable 

protein structure [43]. However, the MD simulations 

results for mutant BGL UC1 negated the wild-type 

BGL UC1 substrate docking data which showed lignin 

as the preferred substrate. Again, our results proved 

that alanine scanning on the BGL UC1 catalytic triad 

did alter the enzyme's specificity and catalytic 

properties, as stated by [44]. Nonetheless, such a 

change requires further empirical study since this 

study focused on the consequence of the in silico 

mutation on BGL UC1. 

To identify the flexible residues in the mutant BGL 

UC1-substrate complexes, root mean square 

fluctuations (RMSF) were calculated from the MD 

trajectories. The residue number is shown in the 

abscissa axis, and the RMSF for the Cα of each 

residue is the inordinate axis. It is worth mentioning 

that the threshold value of RMSF at > 0.5 Å represents 

a significant change in structural movements that 

correspond with enzyme stability [45]. As can be 

seen, the RMSF plots appeared stable for most of the 

simulation trajectory, fluctuating between 0.5 Å to 3.1 

Å for all mutant BGL UC1-substrate complexes (Figure 

9). The highest RMSF peak for the mutant BGL UC1-

cellulose complex was sited at residue 315 at 3.1 Å. 

Several other fluctuations were also identified at 

residues 23, 50, 218, and 440, with values ranging 

between 2.4 Å to 3.0 Å. Comparingly, the wild-type 

BGL UC1-cellulose highest peak was recorded 

differently compared to its mutant-cellulose complex 

for residue 48 at 3.0 Å [11]. This was an apparent 

distinction in the mutant BGL UC1 protein's flexibility 

compared to the wild-type, despite their close 

structural similarity seen in earlier PROCHECK, ERRAT, 

and Verify3D assessments.  

As shown in Figure 8, a small fluctuation is 

incidental of the α-helix region's low flexibility 

compared to its average position, which implied a 

rigid secondary structure conformation. RMSF value 

of wild-type BGL UC1 appeared stable for most of 

the simulation trajectory, fluctuating only between 

0.5-3.1 Å. Comparingly, mutant BGL UC1 complexes 

recorded the same fluctuation average. However, 

the wild-type BGL UC1-cellulose complex's highest 

peak was recorded differently compared to its 

mutant-cellulose complex for residue 48 at 3.0 Å. This 

was an apparent distinction in the flexibility of the 

mutant BGL UC1 protein compared to the wild-type. 

The protein fluctuation was then related to the 

catalytic residue of mutant BGL UC1 to recognize 

and interact with all three substrates as mutation took 

place. This can further influence the complexes' 

behavior and catalytic activity, resulting in the 

enzyme's poor ability to bind all three substrates.  

Hence, it can be construed that the observed 

disparity in protein fluctuation was related to the 

mutant BGL UC1 catalytic residues' ability to 

recognize and interact with the substrates (cellulose, 

hemicellulose, and lignin). This was consistent with the 

markedly poorer ability of the enzyme to bind the 

substrates. Finally, this study's findings collectively 

affirmed the crucial role of Glu165, Asp26, and 

Glu423 as the catalytic residues of BGL secreted by 

the fungus T. asperellum UC1. 
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Figure 9 The RMSF of the Cα atoms in the mutant BGL- 

cellulose, -hemicellulose, and -lignin complexes showing 

stable interactions 

 

 

4.0 CONCLUSION 
 

Based on this research, this study successfully 

constructed a 3D structure of mutant BGL UC1 using 

the SWISS-MODEL data extracted from NCBI based 

on the BGL (ARW78142.1) amino acid sequence. This 

allowed the subsequent in silico site-directed 

mutation on the catalytic triad (Glu165, Asp226, and 

Glu423) with the neutral and chargeless amino acid, 

alanine. The in-silico docking of substrates, cellulose, 

lignin, and hemicellulose (ligand) into the wild-type 

and mutant BGL UC1 active sites corroborated the 

crucial catalytic role of Glu165, Asp226, and Glu423 

in the enzyme. This was proven after comparing the 

binding energies of the wild-type BGL UC1 with its 

mutant counterpart. A notable increase in the 

enzyme-substrates complexes' binding energies 

proved the diminished catalytic role of the active site 

of mutant BGL UC1 to bond the substrates tightly for 

further hydrolysis. Thus, we demonstrated that the 

alanine scanning could assert that the Glu165, 

Asp226, and Glu423 were pertinent in hydrolyzing the 

substrates. 
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