Universiti Teknologi Malaysia Institutional Repository

Photocatalytic performance improvement by utilizing GO_MWCNTs hybrid solution on sand/ZnO/TiO2-based photocatalysts to degrade methylene blue dye

Idris, Nur Jannah and Abu Bakar, Suriani and Mohamed, Azmi and Muqoyyanah, Muqoyyanah and Othman, Mohd. Hafiz Dzarfan and Mamat, Mohamad Hafiz and Ahmad, Mohd. Khairul and Birowosuto, Muhammad Danang and Soga, Tetsuo (2021) Photocatalytic performance improvement by utilizing GO_MWCNTs hybrid solution on sand/ZnO/TiO2-based photocatalysts to degrade methylene blue dye. Environmental Science and Pollution Research, 28 (6). pp. 6966-6979. ISSN 0944-1344

Full text not available from this repository.

Official URL: http://dx.doi.org/10.1007/s11356-020-10904-y

Abstract

In this work, sand/zinc oxide (ZnO)/titanium dioxide (TiO2)–based photocatalysts were hybridized with graphene oxide (GO) and GO_multi-walled carbon nanotubes (MWCNTs) hybrid solution. The novel hybrid was then used in photocatalysis to degrade dye contamination. The nanocomposite photocatalyst was initially fabricated by growing ZnO nanorods (NRs) via sol–gel immersion followed by synthesizing TiO2 NRs for different times (5 and 20 h) using a hydrothermal method on sand as a substrate. Prior to the hybridization, the initial GO was synthesized using electrochemical exfoliation and further mixed with 1 wt% MWCNTs to form GO_MWCNTs hybrid solution. The synthesized GO and GO_MWCNTs hybrid solution were then incorporated onto sand/ZnO/TiO2 nanocomposite–based photocatalysts through immersion. Various sand/ZnO/TiO2-based photocatalysts were then tested for methylene blue (MB) dye degradation within 3 days. On the basis of UV-Vis measurement, the highest MB degradation was achieved by using sand/ZnO NRs/TiO2 NRs (5 h)/GO_MWCNTs (92.60%). The high surface area and high electrical conductivity of GO_MWCNTs prolonged the lifetime of electron/hole separation and thus enhanced the photocatalytic performance.

Item Type:Article
Uncontrolled Keywords:dye, GO_MWCNTs, photocatalysis, Sand, TiO2, ZnO
Subjects:Q Science > QD Chemistry
Divisions:Science
ID Code:96582
Deposited By: Yanti Mohd Shah
Deposited On:28 Jul 2022 06:59
Last Modified:28 Jul 2022 06:59

Repository Staff Only: item control page