DESIGN AND SIMULATION OF HYDRAULIC SHAKING TABLE

KHAIRULNIZAM BIN NGADIMON

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Mechanical)

> Faculty of Mechanical Engineering University of Technology Malaysia

> > 7 APRIL 2006

To my beloved family, The lover in you who brings my dreams comes true,

To my child Luqmanul Hakim and Fatin Nur Atikah, who have brought a new level of love, patience and understanding into our lives.

ACKNOWLEDGEMENTS

First and above all, I am very grateful to Allah, with his blessing, allow me to complete this project on time.

I would like to take this opportunity to express my deep sense of gratitude and appreciation to my project advisor, Associate Professor Yahaya B. Ramli. His endless help, useful information, support, advice and guidance have made it possible for me to finish the project successfully.

I would also like to express my heartfelt thanks to my project co-advisor Associate Professor Dr. Musa Mailah for the information and motivation to the project. Not to forget Pn. Rosmawati from Structural Engineering Lab, Faculty of Civil Engineering UTM Skudai, En. Asmadi from Bahagian Seismologi, Jabatan Kajicuaca Malaysia for their expert advice. Also thanks to the technicians in the structural lab for their guidance and technical advice. I am also indebted to Kolej Universiti Teknologi Tun Hussein Onn and Jabatan Perkhidmatan Awam, Malaysia for funding my Master study.

Finally, utmost thanks to my parents, my wife Siti Zubaidah and my lovely son and daughter, there are no words that can replace their support, sacrifice and encouragement. Last but not least to my colleagues and friends for the livelihood.

ABSTRACT

Recent industrial progress and computational technology made it possible to construct more complex structures. Vibration of these structures due to seismic strength must be measured and proved to prevent them from damage when they are subjected to earthquake. However, the accuracy of estimating the effect of vibrating structures is limited by the mathematical models, which are normally simplified from the actual complex structures. Due to this problem, a study on the development of shaking table is proposed. The main purpose of this study is to obtain the design specifications for a 1-axis (horizontal) hydraulic shaking table with medium loading, which can function primarily as an earthquake simulator and a dynamic structural testing apparatus. The project employs a three stage electrohydraulic servovalve, actuator system complete with hydraulic system as the power and drive unit. Mathematical model for closed loop control experimentation was presented and used to investigate the influence of various parameters on the overall system. The investigation includes the study on the effect of controller gain setting (for PD and AFC), disturbances and system stability. Time domain analysis using computer simulation was conducted to explain and predict the system's response. Comparison between PD and PD-AFC controllers was done and it was found that latter PD-AFC fulfills the performance and robustness specifications for this project. Other design outcome that limits the change of disturbances on the system was also identified and taken as the framework for real world. This suggests that the next stage in implementation of the designed system can be made for the purpose of an earthquake simulator, since it works very well especially at low frequency level of shaking (0 to 5 Hz).

ABSTRAK

Perkembangan dan kemajuan teknologi terkini dalam bidang industri dan perkomputeran membolehkan struktur bangunan yang lebih kompleks dibina. Getaran struktur bangunan ini terhadap gegaran sismik perlu diukur dan dibuktikan untuk mencegah daripada kerosakan teruk apabila gempa bumi sebenar berlaku. Walaubagaimanapun, untuk struktur yang kompleks, penganggaran kesan getarannya menggunakan model matematik adalah terhad disebabkan beberapa anggapan dalam analisa dinamiknya. Disebabkan masalah ini, telah membawa kepada perkembangan alat lantai gegaran hidraulik. Tujuan utama kajian ini adalah untuk merekabentuk spesifikasi alat lantai gegaran hidraulik 1 paksi (mendatar) pada skala beban yang sederhana. Ianya digunakan untuk tujuan simulator gempa bumi dan untuk menguji pelakuan dinamik sesuatu model atau prototaip struktur. Projek ini menggunakan peringkat ketiga injap servo elektrohidraulik, sistem penggerak lelurus dan sistem hidraulik sebagai unit kuasa dan penggerak. Model matematik untuk ujian kawalan gelung tertutup telah dibincangkan dan digunakan untuk mengkaji kesan beberapa parameter terhadap keseluruhan sistem. Kesan yang dikaji termasuk penetapan pemalar pengawal, kesan pengawal PD dan AFC, kesan gangguan dan kestabilan sistem. Analisa dalam domain masa menggunakan simulasi komputer telah dijalankan untuk mengenalpasti kelakuan sistem. Perbandingan antara pengawal PD dan PD-AFC dikaji dan didapati pengawal PD-AFC memenuhi keperluan spesifikasi sambutan masa dan kelasakannya untuk kajian ini. Parameter lain hasil daripada simulasi yang menghadkan kelakuan sistem daripada kelakuan asalnya juga telah dikenalpasti dan dijadikan asas dalam aplikasi sebenar. Secara keseluruhannya, fasa untuk membangunkan sistem yang telah direkabentuk ini boleh dilakukan untuk tujuan simulasi gempa bumi kerana ianya berfungsi dengan baik terutamanya pada lingkungan frekuensi 0 hingga 5 Hz.

TABLE OF CONTENTS

CHAPTER			TITLE	PAGE
	TITLE PAGE			i
	DEC	LARAT	ION	ii
	DED	ICATIO	DN	iii
	ACK	NOWL	EDGEMENTS	iv
	ABS	ГRACT		V
	TAB	LE OF	CONTENTS	vi
	LIST	OF TA	BLES	xi
	LIST	OF FI	GURES	xii
	LIST OF SYMBOLS/ABBREVIATIONS			xvii
	LIST OF APPENDICES			xxi
1	INTF	RODUC	TION TO SHAKING TABLES	
	1.0	Projec	t Introduction	1
	1.1	Objec	tives of study	2
	1.2	Scope	of study	3
	1.3	Opera	tion of shaking tables	5
	1.4	Types	of Hydraulic Shaking Table	7
		1.4.1	INOVA-Servo hydraulic testing system	7
		1.4.2	ANCO-Model R150-142 Shaking table	9
		1.4.3	NIED-E Defense Facility in Japan	10
	1.4	Projec	t Scheduling	12

2 LITERATURE REVIEWS OF EARTHQUAKES PARAMETER

2.0	Introdu	uction	13
2.1	Magnitude and Intensity of Earthquakes		
2.2	Repres	sentation of Ground Motion	16
2.3	Time I	Domain Analysis of Earthquake	
	Grour	nd Motion	18
2.4	Earthq	uake Estimation using Shaking Table Test	19
2.5	The U	se of Servovalve Actuator in Earthquakes	
	Respo	onse Test	20
	2.5.1	Testing System in Displacement Control	21
2.6	Summ	ary	24
DESI	GN ME	THODOLOGY OF HYDRAULIC	
SHAI	KING 1	TABLE	
3.0	Introdu	uction	25
3.1	Design	n Steps of Hydraulic Circuit	26
3.2	Selecti	ion of Hydraulic Fluids	28
	3.2.1	Effect of Bulk Modulus	28
	3.2.2	Lubricating ability	29
3.3	Actuat	or Design	29
	3.3.1	Calculation of Velocity and	
		Cylinder's Pressure	30
3.4	Condu	ctor Sizing for Flow Rate Requirements	32
	3.4.1	Pressure Rating of Conductors	33
	3.4.2	Steel Tubing Conductor	34
3.5	Pressu	re Relief Valve	35

3

3.6	Pump Performance	36
	3.6.1 Pump Selection	38
3.7	Summary	40
ACTU	UAL DESIGN CALCULATION	
4.0	Introduction	41
4.1	Determination of Dynamic Force Acting	
	on the Actuator	41
4.2	Determination of Minimum Size of	
	Piston Diameter	43
4.3	Selection of Cylinder's Mounting	44
4.4	Determination of Minimum Rod Diameter	45
4.5	Determination of Flow Rate at Different	
	Frequency Rating	47
4.6	Selection of Conductor for Pressure Line	52
4.7	Selection of Flexible Hydraulic Hose	53
4.8	Calculation of Theoretical Pump Power	53
4.9	Selection of Pump	56
4.10	Selection of Motor	58
4.11	Design of Hydraulic Reservoir	59
4.12	Selection of Conductor for Pump Suction Line	61
4.13	Selection of Hydraulic Fluid	62
4.14	Filter Positioning	63
4.15	Cooling System	63
4.16	The Shaking Table and Actuator Structure	65
4.17	Roller Rail System	67
4.18	Final Specifications of the Designed System	67
4.19	Summary	70

4

5	SYST	'EM MODELING OF HYDRAULIC SHAKING TABLE		
	5.0	Introduction	71	
	5.1	Determination of Natural Frequency and		
		Damping Ratio of Hydraulic Servomechanism	72	
	5.2	Actual Modeling of Servovalve Used in the Study	75	
		5.2.1 Servovalve Flow Property	77	
		5.2.2 Parameter Identification	80	
		5.2.3 Servovalve Transfer Function	81	
	5.3	The Proposed Controller Design	83	
		5.3.1 PID Controller	84	
		5.3.2 Active Force Control (AFC) Controller	89	
	5.4	Interconnection of Servovalve Controller	86	
	5.5	Interconnection of Servovalve and		
		Hydraulic Actuator	88	
	5.6	Overall System Dynamics	95	
	5.7	Summary	97	
6	SIMU	LATION		
	6.0	Introduction	98	
	6.1	Simulation of Servovalve	98	
		6.1.1 Performance Specifications	99	
	6.2	Simulation to Step Input Signal	101	
	6.3	Response Behavior with Sine Wave Input	103	
	6.4	Simulation of Servovalve and Actuator	105	
		6.4.1 Performance Specifications	106	
	6.5	Response Test without Any Controller	107	
	6.6	Response of PD-AFC controller to		
		Step Input Signal	109	

	6.7	Respon	nse of PD-AFC Controller to Sine Wave	•	111
	6.8	Robus	tness of PD-AFC to Disturbances		114
		6.8.1	Effect of Shaking Table Loading		114
		6.8.2	Effect of Leakage		117
		6.8.3	Effect of Dry and Viscous Friction		120
		6.8.4	Effect of Hydraulic Fluid Compressibil	lity	122
		6.8.5	Effect of Change in Volume		125
	6.9	Stabili	ty of the System		127
	6.9	Summ	ary		129
7	CONC	CLUSI	DN	131 -	132
REFERENCES			133 -	134	
Appendices A	-M			135 -	165

LIST OF TABLES

TABLE NO.	TITLE	PAGE
1.1	Comparison of hydraulic and electric shaking table	2
2.1	Acceleration-magnitude relationship	16
3.1	Factor of safety selection based on pressure	34
4.1	Maximum flow rate at stroke variations and frequency	
	of 100 Hz.	50
4.2	Shaking table technical specifications	68
5.1	Static servovalve performance	80
5.2	Parameter identification	81
6.1	Data for rise time for MOOG Series 256 servovalve	101
6.2	Gain setting for both controller mode after tuning	109
6.3	Allowable leakage factor at different frequency	
	and amplitude.	119
6.4	Effect of compressibility change.	123
6.5	Volume Change Effect to System's Performance	125

LIST OF FIGURES

FIGURE NO	. TITLE	PAGE
1.1	All electric shaking table	6
1.2	Servo hydraulic shaking table	6
1.3	Manual shaking table	6
1.4	6 Degree of Freedom Shaking System	8
1.5	3 Degree of Freedom Shaking System	8
1.6	1 Degree of Freedom Shaking System	8
1.7	Close up of the 22 Kip actuator with 3 Stage	
	Servo Valve	9
1.8	NIED Earthquake Simulator from Japan	11
2.1	Seismic waves P and S wave	14
2.2	Principal term used in describing earthquakes	
	(a) Geometry (b) transmission	14
2.3	Response Spectra for the 1940 El Centro earthquake	17
2.4	Sample of strong earthquake motion in Time Domain	
	Analysis	19
2.5	Schematic arrangement of actuator controlled system	22
2.6	System modeling for the servo actuator test	22
2.7	Response of the system subjected to a 12.7 cm	
	sine wave input (0 to 10 Hz)	23

3.1	Extending and retracting phase of actuator	30
3.2	Operation of pressure relief valve	36
3.3	Vane pump	39
4.1	Schematic diagram of the actuator and shaking table	42
4.2	Intermediate trunnion mounts.	44
4.3	Summary of the selected cylinder dimension	46
4.4	Spring vibration system	48
4.5	MATLAB programming code	49
4.6	Flow rate vs. frequency at stroke of 2-inch	52
4.7	Selection of double rod double acting cylinder	51
4.8	Hydraulic cycle operating at maximum frequency	
	of 20 Hz.	55
4.9	Internal design features of the hydraulic reservoir	60
4.10	Baffle plate controls the direction of flow in the	
	reservoir.	60
4.11	Proposed layout for the power pack unit	61
4.12	Positioning of filters in the system	64
4.13	Oil to air cooler (cross flow type).	65
4.14	Plate ASTM A36 Dimensions.	66
4.15	Hydraulic circuit for the hydraulic shaking table.	69
5.1	Valve and actuator arrangement	72
5.2	Cutaway view of a 3 stage model 256	
	MOOG Servovalve.	76
5.3	Schematic of main stage spool valve with actuator	
	(a) load flow orifice (b) leakage flow orifice	77
5.4	Flow curve for the MTS 256.25A-02 Servovalve	80
5.5	Schematic diagram of AFC loop in the modeling	85

3 Stage servovalve and actuator with feedback	87
Block diagram model of 3-stage servovalve	88
Equivalent scheme for hydraulic actuator	88
Equivalent scheme servovalve and actuator	89
Influence of loading at the actuator	89
Equivalent scheme including compressibility and	
balance flow.	91
Equivalent scheme including damping factor	92
Feedback loop from actuator	93
Introduction of PID control block	94
The simplified transfer function for the combined system	95
Step response of the overall model	
(a) MATLAB programming (b) Simulink model	96
Model of 256 MOOG Servovalve in Simulink.	100
Rise time plot for MOOG servovalve model 256.25A-02	101
Final fine-tuning of PID controller	
(a) Opening in mm (b) opening in percentage	102
Enlarge view of overshoot.	102
Sine wave output response at 100% opening	
(a) frequency 1 Hz. (b) frequency 5 Hz.	104
Sine wave output response at 10 mm opening	
(a) at frequency 13 Hz (b) at frequency 20 Hz.	104
Simulink model of hydraulic shaking table.	106
(a) Removal of PID block	
(b) The AFC Control switch is turn off	108
Response without any controller.	108
	 3 Stage servovalve and actuator with feedback Block diagram model of 3-stage servovalve Equivalent scheme for hydraulic actuator Equivalent scheme servovalve and actuator Influence of loading at the actuator Equivalent scheme including compressibility and balance flow. Equivalent scheme including damping factor Feedback loop from actuator Introduction of PID control block The simplified transfer function for the combined system Step response of the overall model (a) MATLAB programming (b) Simulink model Model of 256 MOOG Servovalve in Simulink. Rise time plot for MOOG servovalve model 256.25A-02 Final fine-tuning of PID controller (a) Opening in mm (b) opening in percentage Enlarge view of overshoot. Sine wave output response at 100% opening (a) frequency 1 Hz. (b) frequency 5 Hz. Sine wave output response at 10 mm opening (a) at frequency 13 Hz (b) at frequency 20 Hz. Simulink model of hydraulic shaking table. (a) Removal of PID block (b) The AFC Control switch is turn off Response without any controller.

6.10	Responses at 100% opening using step input signal	
	(a) $\beta = 700 \text{ MPa}$ (b) $\beta = 200 \text{ MPa}$	108
6.11	Response after the implementation of controller mode;	
	(a) PD controller only (b) PD-AFC Controller.	110
6.12	Response at low frequency for PD Control mode	
	(a) at frequency 1 Hz. (b) at frequency 5 Hz.	111
6.13	Response at intermediate and high frequency	
	using PD Controller.	
	(a) at frequency 10 Hz (b) at frequency 20 Hz	111
6.14	Response at low frequency using PD-AFC Control	
	(a) frequency 1.5 Hz (b) frequency 5 Hz	112
6.15	Response at intermediate and high frequency using	
	PD-AFC Controller (a) at frequency 10 Hz (b) at frequency 20 Hz.	112
6.16	Response to a random wave signal	
	using PD-AFC Control	113
6.17	(a) The block setting for changing the weight (in kg)	
	(b) Mass block diagram in SIMULINK.	115
6.18	Responses at test model weight 500 kg.	
	(a) frequency 1.5 Hz (b) frequency 20 Hz.	116
6.19	Responses at test model weight 2830 kg	
	(a) frequency 1.5 Hz (b) frequency 20 Hz.	116
6.20	(a) Block for adjusting leakage factor.	
	(b) Model representation for leakage in Simulink	117
6.21	Responses using PD-AFC at frequency 2 Hz.	
	(a) L=2 (b) L=160	118
6.22	Responses using PD-AFC at frequency 10 Hz.	
	(a) L=2 (b) L=20	118

Step response using PD-AFC	
(a) L=30 (b) L=5	118
Leakage control method	120
Response at the onset of dry and viscous friction	
(a) step input test (b)sine wave at $f = 5$ Hz.	121
Response using PD-AFC at constant mass of 4330 kg.	
(a) $\beta = 700 \text{ MN/m}^2$ (b) $\beta = 692 \text{ MN/m}^2$	123
Response of PD-AFC at $\beta = 692 \text{ MN/m}^2$	
(a) mass of 500 kg (b) mass of 4330 kg	123
System response for the load of 4330 kg	
(a) $V=20,000 \text{ mm}^3$ (b) $V=171806 \text{ mm}^3$	126
Routh diagram.	127
Parameter positioning in Routh diagram.	129
	Step response using PD-AFC (a) L=30 (b) L=5 Leakage control method Response at the onset of dry and viscous friction (a) step input test (b)sine wave at f = 5 Hz. Response using PD-AFC at constant mass of 4330 kg. (a) β =700 MN/m ² (b) β =692 MN/m ² Response of PD-AFC at β =692 MN/m ² (a) mass of 500 kg (b) mass of 4330 kg System response for the load of 4330 kg (a) V=20,000 mm ³ (b) V=171806 mm ³ Routh diagram. Parameter positioning in Routh diagram.

LIST OF SYMBOLS / ABBREVIATIONS

β	-	Bulk modulus
V	-	Volume
dP	-	Change in pressure
dV	-	Change in volume
F	-	Force
μ	-	Coefficient of friction
Ν	-	Normal force
$Q_{\scriptscriptstyle E}$	-	Input flow rate into the cylinder's blank end side
V	-	Extending velocity of the cylinder rod.
$q_{\scriptscriptstyle E}$	-	Output flow rate from the cylinder's rod end side
a	-	Cross sectional area of the piston on the rod end side
A	-	Cross sectional area of the piston on the blank end side
D	-	Diameter of piston on the blank end side
d	-	Diameter of piston on the rod end side
<i>p</i> 1	-	Pressure on the blank end side
<i>p</i> 2	-	Pressure on the rod end side
Q_{R}	-	Output flow rate from the cylinder's blank end side
и	-	Extending velocity of the cylinder rod
$q_{\scriptscriptstyle R}$	-	Input flow rate into the cylinder's rod end side
Р	-	Pressure
Q	-	Flow rate
V _{average}	-	Average extending velocity
BP	-	Burst pressure

t	-	Thickness
D_0	-	Outside diameter
D_i	-	Inside diameter
WP	-	Working pressure
FS	-	Factor of safety
S	-	Tensile strength
${\eta}_{\scriptscriptstyle V}$	-	Volumetric efficiency
$\eta_{\scriptscriptstyle m}$	-	Mechanical efficiency
${m \eta}_0$	-	Overall efficiency
Q_T	-	Theoretical flow rate
Т	-	Torque
ω	-	Angular velocity
W _{theory}	-	Theoretical flow rate
W _{actual}	-	Actual power developed by the pump
W	-	Viscous friction factor
В	-	Dry friction
т	-	Total mass
a	-	Acceleration
L	-	Piston rod length
Ι	-	Second moment of area
Ε	-	Young Modulus
K	-	Bending coefficient
f	-	Frequency
λ	-	Wavelength
x	-	Stroke length
t	-	Time
V_D	-	Fluid displacement
Ν	-	Speed rating

C_q, C_d	-	Discharge coefficient
P_{s}	-	Supply pressure
P_{T}	-	Load pressure
ρ	-	Density
бу	-	Additional displacement
X_V	-	Pilot spool displacement
<i>x</i> _{<i>m</i>}	-	Main spool displacement
<i>r</i> , <i>c</i> , <i>e</i>	-	Geometric coefficient
W	-	Valve spool perimeter
K_{V}, K_{VP}	-	Valve flow gain
Т	-	Time constant
V_{i}	-	Voltage error signal
Q_P	-	Pilot stage flow rate
A_m	-	Effective area of main spool valve
K_{d}	-	Derivative gain
K_P	-	Proportional gain
K_i	-	Integral gain
EM	-	Estimated mass
F_a	-	Measured force from sensor
F_{active}	-	Active force
K _a	-	Servovalve controller gain
K_{f}	-	LVDT 1 gain
K_{p}	-	LVDT 2 gain
V_{in}	-	Input voltage command signal
$Q_{\scriptscriptstyle bal}$	-	Compression flow rate
$Q_{\it piston}$	-	Volume oil flow because of piston movement

Q_{total}	-	Total flow rate into actuator
f_r	-	Natural frequency (Hz.)
F_{V}	-	Viscous friction force
L	-	Leakage factor
$Q_{\scriptscriptstyle leak}$	-	Leakage flow rate
G_{c}	-	Overall reduced transfer function
G_a	-	Sensor transfer function
ω_n	-	Natural frequency (rad/sec)
t_s	-	Settling time
t _r	-	Rise time
g	-	Gravity = 9.81 m/s^2

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Gantt chart of work for first and second semester.	135 - 137
В	Modified Mercalli (MM) Scale	138 - 139
С	Linear change of acceleration method	140 - 141
D	Cylinder standard BS 5785, Eaton Actuator and accessories dimension	142 - 145
E	Standard hydraulic hose from Parker dimension and technical data.	146 - 147
F	VMQ Series vane pump performance data and dimensions.	148 - 149
G	D.C Motor from ABB Motors Inc. technical data and dimensions.	150 - 151
Н	Typical properties of selected engineering materials	152
Ι	Properties of rolled-steel shapes	153

J	Assembly drawing for shaking table and	
	actuators structure.	155 - 156
Κ	Aluminium cassette and roller shoes	
	technical data and dimensions.	157 - 158
L	Series 256 servovalves product specifications.	159 - 163
М	MATLAB close loop programming code.	164 - 165

CHAPTER 1

INTRODUCTION TO SHAKING TABLES

1.0 Project Introduction

Shaking table is a machine that can perform realistic simulation of earthquakes or any other dynamic loading imposed to the test model or structures. There are many types of shaking table but it can be classify to its method of vibration actuation by electrically driven, hydraulically driven and manually driven shaking table. Shaking table is related to earthquake since much of its parameter is custom designed to the earthquake's parameter such as acceleration, displacement, frequency and stroke.

However hydraulically driven shaking table have more advantages from other method of actuation. Table 1.1 lists some of the advantages of using hydraulic shaking table.

Hydraulic shaking table	Electric shaking table
1. Can be used for any size of load	1. Limited to small and medium size
	load.
2. Some of the parameter such as stroke,	2. Most of the time, the parameter have
velocity, frequency can be changed	been set cannot be changed.
easily depend on application.	

Table 1.1: Comparison of hydraulic and electric shaking table

1.1 Objectives of Study

The main objectives of this study are:

- 1. To design a medium hydraulically driven shaking table to be used as an earthquake simulator.
- 2. To perform simulation of the designed hydraulic shaking table using techniques of dynamic system analysis especially in time domain method to investigate the linearity characteristics between input signal and the desired output.

1.2 Scope of Study

The scope of this study are:

- 1. Investigate the nature and properties of earthquake and its relation to the parameter to be used in the design of hydraulic shaking table.
- 2. Design a complete hydraulic circuit of a medium scale simple hydraulic shaking table based on selected parameter.
- 3. Derive the dynamic equation of the hydraulic shaking system and develop a mathematical model for the overall system.
- 4. Select a proper practical value for each parameter assigned in the mathematical model.
- 5. Perform computer simulation using MATLAB Simulink on the time domain analysis, feedback system design and to check the stability of the overall system.
- 6. All simulations are performed within the limitation of the selected parameter such as maximum load range, frequency range, shaking axis and maximum acceleration range.

In this project, the works are bounded in the frequency range of 20 Hz, maximum acceleration of 1.5g and maximum load of 4330 kg. Main component of hydraulic circuit and the hydraulic circuit diagrams have been designed and discussed.

Mathematical modeling of this project is being done on the servovalve and hydraulic servomechanism using Laplace Transform. Separate modeling will be

done that is modeling of servovalve and modeling of actuator mechanism. Not only that due to nonlinearities in the servovalve, it is better to do a separate modeling of servovalve so that proper steps can be applied in order to take care of the nonlinearities. Then the modeling will be combined using block diagram and can be programmed in the Simulink.

Simulation part will be done in Semester II and the program that will be used is MATLAB Simulink. In this program the overall block diagram will be programmed in it and input signal will be imposed on the block diagram. Types of input signal to be tested are Step, Sinusoidal and Random input signals. Simulation also being done separately that is simulation of servovalve and combined simulation of servovalve and actuator to investigate the individual response. A proposed controller will be added. Then it will be compared and tested against disturbance effect on the system. Finally, the controller that fulfills the performance and robustness specifications will be selected. In the simulation, some design limitation and outcomes will be investigated in order to compensate for any practical changes that might occur during the actual condition.

This project is important to get the preliminary design of hydraulic shaking table of medium scale that have many benefit to the future work and development of this machine. Future research in this field is interesting since it can develop more realistic design of hydraulic shaking table.

1.3 Operation of Shaking Tables

Shaking table is a mechanical device that is used to test any structures under seismic or other types of dynamic loading such as step load, sinusoidal varying force, or random load. If the shaking table is designed primarily to test civil structure under seismic loading, then it is also called earthquake simulator. Normally test model are developed to understand the effects of different parameters and process that leads to failure of prototype at a real time. If the test model are performed under gravitational field of earth, then it is subjected to the shaking table test, whereas if the model tests are performed under higher gravitational field then it is subjected to centrifugal test. Therefore shaking table test is an experimental approach in order to assure the validity of the theoretical estimation of the response of the structure with the exact dynamic characteristics thus to develop the safety margin of design for the structure.

In the shaking table test, test specimens are placed on the table and it is fixed by mechanical fastener or artificial soil compacted on the table. Then the structure will experience a shaking process at a certain frequency values until a certain time limit set by the operator. The earthquake simulator or shaking table has a wide range of applications such as:

- Models of buildings or structure in a given scale, subjected to actual earthquake.
- Models of power supply or industrial buildings under specific dynamic loading conditions.
- Mechanical equipment and transportation facilities test
- Mechanical testing and development of dampers for power transmission lines.

Shaking table device operates in various means. Some of them use allelectric servo motor driven type as in Figure 1.1, servo hydraulic means of actuation for high mass payloads such as in Figure 1.2 and manually operated shaking table as in Figure 1.3 that use external applied force to shake the table.

Figure 1.1: Electric shaking table [1] Fig

Figure 1.2: Servo hydraulic table [1]

Figure 1.3: Manual shaking table [2]

1.4 Types of hydraulic shaking table

Since most of the shaking table is used as an earthquake simulator purposes, there is some of them been used as an apparatus to test the response or frequency of a structure or a test model. This permits the versatility and wide range of shaking table model. Shaking table is grouped based on its actuator power, frequency range and the maximum load it can handle. Normally it is classified either in small scale, medium scale or a large scale load. Small scale load hydraulic shaking table ranging from 0 to 1000 kg load whereas for medium scale can range from 1000 to 5000 kg and large scale range is greater than 5000 kg load. Section 1.4.1, 1.4.2 and 1.4.3 shows some manufacturer of hydraulic shaking table in the market.

1.4.1 INOVA – Servo hydraulic Testing System

INOVA is one of the leaders in seismic simulations for earthquake and structural research. Their seismic simulator called "Seismic Shaking Table" is used for seismic qualification and seismic simulation in civil engineering and academic research into earthquake. INOVA's seismic shaking tables are designed for earthquake testing of a wide range of test applications. INOVA systems can be used to simulate a variety of seismic tests as well as evaluating many different types of components in vibration and shaking environments. The DOF refers to the number of shaking axis the machine can apply to the test model. Typical configurations are one, two, three and six degrees of freedom (DOF) as in Figure 1.4, 1.5 and 1.6.

Figure 1.4: 6 DOF shaking system [3] Figure 1.5: 3 DOF shaking system [3]

Figure 1.6: 1 DOF shaking system [3]

The six degrees of freedom hydraulic shaking table machine is intended for general-purpose vibration tests. It is classified as a large-scale machine .In this machine, test model can be loaded in one axis or simultaneous axes. Test can be run in constant amplitude, block program or full simulation with combination of more than one wave profiles to be simulated simultaneously.

1.4.2 ANCO-Model R150.142 shaking table

This servo-hydraulic type-shaking table was used by Columbia University. It is a medium scale shaking table facility to conduct experimentation in structural dynamics and particularly to monitor and actively control structures subjected to earthquake ground motion or other force excitations. The table which was custom designed by ANCO Engineers for the Civil and Structural Research Engineering capable of carrying maximum three ton payload on the 5ft x 5 ft table size. The table is able to shake two ton payload with 3g acceleration (three times the acceleration of gravity in horizontal direction). Thus the table is ideally suited to seismic application. The hydraulic actuator can produce a stroke of maximum 10 inch (\pm 5 inch). The actuator has a three-stage servo-valve controlled by an analog inner-loop control system and a digital outer loop control system (acceleration feedback based).

Figure 1.7: Close up of the 22 kip actuator with 3 stage servo valve [1]

Specifications of ANCO-Model R150.142;

1.	Shaking direction	: Uni-axial horizontal motion
2.	Table size	: 5 ft x 5 ft.
3.	Peak to peak displacement	: 10 inches of double amplitude
4.	Peak velocity	: 60 inch / sec.
5.	Peak acceleration	: 3.0g
6.	Maximum test specimen weight	: 2 tonne
7.	Frequency range	: 0 – 100 Hz.
8.	Servo valve	: 3-stage electrohydraulic servovalve

1.4.3 NIED-E Defense Facility in Japan

Recently due to a number of major damage caused by earthquakes and structural buildings failure cases in Japan have led to the start of NIED-E Defense project. National Research Institute for Earth Science and Disaster Prevention (NIED) have three main objectives that are to conduct research and experimentation on the structural building failure test, developing three dimensional motion of the simulated real earthquake from past record earthquake data and build full scale model to predict the real behavior of the damage. NIED use a big scale shaking table facility as in Figure 1.8 to test their ready-made full-scale model. Some of the specifications of the shaking table facilities are;

Shaking table type	:	3D Full scale earthquake testing facility
Payload	:	1200 ton
Shaking table size	:	20m x 15m

Driving type

Shaking direction Maximum acceleration at maximum loading.

Maximum displacement

- : Accumulator charge, Electro-hydraulic Servo control
- : X and Y Horizontal, Z Vertical
- X, Y Horizontal is > 900 cm/s²
 Z-Vertical is >1500 cm/s²
 X, Y Horizontal is ±100 cm
 Z-Vertical is ±50 cm

Figure 1.8: NIED earthquake simulator from Japan [4]

1.4 Project Scheduling

This project will be done within two semesters. Thus, breakdown of work structures must be implemented to make sure all the work being done within its allocated time. In the first Semester, initial literature research work will be done. This is to get a better picture on how to implement the scope of study number one until three. In Semester two, scope of study number four until six was performed. The breakdown of work structures for Semester one and two are attached in the Appendix A.