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Abstract The use of robotics in executing agricultural tasks has significantly improved productiv-

ity over the years as a result of automation in performing such activities as spray, harvesting, plant-

ing etc. In order to optimize both crop yield and quality while minimizing costs, there will be need

for the application of navigation strategies. These will provide optimal as well as autonomous nav-

igation capability which is built entirely upon field coverage plan thereby making robot navigation

approach a paramount scheme. In this paper, the autonomy of an agricultural mobile robot is

enhanced in a structured environment (greenhouse farm) to locate an optimum route such that

the robot performs a selective and variable spray of pesticides to the plants. To realize this, a robust

vehicle routing problem (VRP) scheme is designed to navigate the robot autonomously while mak-

ing intelligent decisions to fulfil the pesticide demands at each node (infected plants). The improved

non-dominated sorting genetic algorithm (INSGA-III) is adopted to solve this fully integer problem

based on three (3) test cases carried out with 8, 32 and 56 infected plants respectively for validation.

The results obtained show a trade-off solution as the Optimal INSGA-III is significantly lower than

NSGA-III in terms of solution quality. On the other hand, a significant reduction in run times of

between 66% and 76% and 76–93% was obtained for all test case scenarios for population sizes of

100 and 1500 respectively.
� 2021 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

1. Introduction

In agriculture, pesticide application refers to the practical
method wherein pesticides (e.g. herbicides or fungicides) are
dispensed to target crops or other plants. Although the use

of pesticides is necessary in modern agriculture, they are still
toxic and hazardous to general creatures as well as the environ-

ments [1]. Manual method for pesticide application in a green-
house involves an operator moving about while manually and
selectively spraying the target crops by means of a backpack

sprayer [1,2]. Despite the use of protective pesticide equipment,
the human operator is still vulnerable to toxic and hazardous
chemicals that can lead to complications [1]. Hence, it is neces-
sary to make use of an autonomous pesticide sprayer in order

to avoid human exposure to these chemicals. The device could,
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further, ensure that calculated amount of spray is applied to all
plants accordingly which will additionally minimize wastes due
to improved accuracy and precision [1]. Uniform pesticides

application throughout the entire farming field is a common
norm in most farming practices even though pest and diseases
display an uneven spatial distribution [3-5]. However, the cur-

rent development of selective spraying only focuses on the
infected area and only a few literatures have explored the
way to reduce the mobile robot navigation costs whilst

executing the spray task especially in multi-objective applica-
tion [6–9].

Agricultural mobile robots are capable of executing virtu-
ally all navigation actions autonomously, but providing an

optimal and complete field coverage strategies created on this
navigation capability hereby, makes it an active research area
[10-15]. The foremost challenge of field coverage planning is

the non-deterministic polynomial time (NP-Hard) nature of
the problem and therefore, optimal solutions are computation-
ally problematic [16,17]. In general, routing problems have a

peculiar challenge which has compelled the advancement of
algorithms that can deliver practically optimal solutions in a
reasonable time frame [18-21]. The processing power of the

computer has been inadequate in previous decades because
they could not handle the metaheuristic search algorithms that
were developed. This is however, as against the conventional
heuristic methods developed for search of possible solutions.

Therefore, route optimization algorithms for agricultural vehi-
cles are a very functional area of research. Many researchers
have proposed some novel and more efficient approaches of

converting the field coverage problem to a Travelling Salesper-
son Problem or a VRP and, are currently exploring new meta-
heuristics to optimally provide routes solutions more effi-

ciently [22-25]. However, efficient solutions have not been pro-
vided for the VRP problem and consequently, there is a trend
towards providing the optimal routes for agricultural vehicles

(including robots) on agricultural lands through various meta-
heuristic algorithms. More advanced and recent meta-heuristic
algorithms, like Tabu Search algorithm [26-28], Fluid Search
optimization [29], Simulated Annealing [29-31]and, Evolution-

ary Algorithms for example, Genetic Algorithms [32–36] are
proposed to accomplish an in-depth search for probable results
but are more cumbersome in terms of computational complex-

ities [13,37]. The type of problem and the model of the meta-
heuristic algorithm affect both, how long the calculation takes
and the extent of optimization that can be achieved [38]. The

objectives considered in order to meet up with the research
goal are: (1) Transform the robot assignment into a VRP that
permits the minimization of time to complete spray activity in
the greenhouse via the minimization of distance travelled and

the turns made by the robot. (2) Establish solutions to the VRP
transformation that have been developed and (3) Implementa-
tion of the INSGA-III to solve the multi-objective routing

problem for robot navigation inside the greenhouse. The cur-
rent study is conducted to overcome run time problem for
NSGA-III in the robot route finding problem under limited

capacity constrain. The main highlights of the current work
which distinguishes this study from the works in the previous
literatures are:

� Considering variable spray dosage (drain capacity limit)
limited capacity

� Adopting INSGA-III for the optimization and comparing

the performance with NSGA-III.

The INSGA-III has not been previously applied for this

problem and the remaining part of this paper is presented as
follows: Section 2 presents the related works. Section 3 pre-
sents the methodology which covers the navigation plan, the
greenhouse layout and the navigation algorithm. Variable

dosage and the techniques adopted for optimization schemes
were described in Section 3. while the results section is covered
in Section 4 and the conclusion summarises the paper in

Section 5.

2. Related works

Many researchers have worked and proposed different opti-
mization perspectives as relates to the problem of field comple-
tion time, costs, optimal field coverage and many more. For

instance, TS was applied to agricultural VRP in [39-41] to find
the route for multiple agricultural machines to reduce the field
completion time with the objective of maximizing the field

capacity and minimizing the operational time and cost. The
objectives have been reduced to a single objective with the pri-
ority to minimizing the field completion time. The performance
of TS has been accessed and it demonstrates superior perfor-

mances as regards the solution quality in comparison with
the Modified Clarke-Wright Algorithm. However, another
approach to optimal field coverage was proposed in [42] which

is based on ant colony optimization algorithm. The paper
sought for the optimal route for combine harvesters which
facilitated the unloading of stationary facility located outside

the field area or within the field boundary. In a related
approach, a variant of PSO (GLNPSO), was applied in [43]
to solve mechanical harvester routing problem (MHRP) of
sugarcane field processes having accessibility constraints, with

the objective to maximize total sugarcane yield while minimiz-
ing the total distance simultaneously. By way of comparison,
the GLNPSO outperforms the NSGA-II in terms of quality

and underperforms in execution time.
Different variants of the NSGA-II applicable to finding the

optimal routes for both single and fleet of vehicles in general

and agricultural VRP have been reported in [32-36]. However,
they are considered as reliable tools used in solving multi-
objective optimization problem and their solutions are gener-

ally adjudged to be satisfactory in terms of quality. However,
some inconsistencies of the algorithm especially in resolving
multi-objective problems having complex and non-dominated
solutions were reported by Reed et al. in [44]. This led to fur-

ther investigation for improved version of the algorithm
(NSGA-III) to seek for a better and more efficient Pareto opti-
mal solutions as proposed by [45]. Building upon this develop-

ment, Mahmoud et al. implemented the NSGA-III in [4], to
minimize the routing angle the travel and total distance of
an agricultural mobile robot to perform a spray operation in

a greenhouse environment. Despite the NSGA-III consistently
showed a significant improvement regarding the solution qual-
ity and feasibility to solve engineering optimization problems
as well as other benchmark functions, a setback was recorded

in terms of execution time. This is as a consequence to non-
dominated solutions in which increases sharply when the num-
ber of objectives increases. The effect of this is an eventual loss
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of extreme points which indicates the extent of solution diver-
sity [46].

The aim of this research article is to determine an optimal

pathfinding for an agricultural robot to perform a complete
and variable spray operation in the greenhouse. The green-
house considered in this regard has a predefined route where

the robot can have access to each of the plant coordinates. This
includes among many components, ensuring the lowest cost in
terms of the time and distance for the overall spray operation

of the infected plants while also satisfying a constraint condi-
tion such as the robot tank capacity. Although, the standard
VRPs are usually designed to work with robots with capacity
restraints for both pesticide and charging, this investigation

is only restricted to pesticide capacity in order to focus on
the spray activity. The proposed approach is based on an
INSGA-III in which, an elimination mechanism is used to

cut down the selection efforts instead of the usual selection
mechanism to find the optimum solution to the VRP. The
main novelty in this case is the resolution of the path-

planning problem for an autonomous robot that acts in a
greenhouse environment by adopting the variable spray
operation.

3. Methodology

3.1. Mobile robot system

The method for implementing the spraying process involves

the use of a practical agricultural mobile robot having a circu-
lar base with the following parameter [4]. A radius of 0.22 m,
weight of 8.6 kg and 0.28 m height. The model has two main
wheels driven by DC motor of LO-COG GM9434K332 (Ame-

tek, Pennsylvania, USA) description fitted with incremental
encoder and stabilized by a castor wheel. The components
involved in the pesticides spray activity includes the following:

A 0.5 L/min spraying nozzle, pesticide tank with 1 L capacity
fitted with a 70 W water pump having 6 L/min maximum flow-
rate. An Arduino Mega (8-bit ATMega2560 processor) is used

to control the robot motion via the wheel speed while the
motors are driven by IC driver MD10C 10A. Fig. 1 shows
the mobile robot system with a circular base structure.

3.1.1. Time of travel calculation

Assuming the robot to have a constant speed, the time
becomes a linear function of the total distance which therefore

reduces the problem to two objectives. In reality, a constant
speed assumption for robot model is not always a satisfactory
one and therefore, the movement is decomposed in two
actions:

1- The robot corrects the angle and targets the next node.
2- The robot moves to the targeted node with maximum

allowable speed.

In the above methods, the robot always targets a straight-

forward path towards the next node thereby making the speed
to change while it travels. The following function which fits to
data can be used to evaluate the time of travel TL, in a linear
movement as represented in Eq. (1).

TL ¼ ae�bL þ cLþ d ð1Þ

whereL, is the distance traveled and a; b; candd are fit con-
stants. Similarly, linear motion regression approach is used

to obtain the angular speed, x of the robot as shown in Eq. (2):

x ¼ ah ð2Þ
Since the angular speed is a linear function of the angle of

rotation, the rotation speed and the time of rotation are con-

stant for all angles. Then the time of rotation can be repre-
sented as in Eq. (3):

Th ¼ h
x
¼ 1

a
¼ 1

1:128
¼ 0:8865 sec ð3Þ

The so obtained time functions for rotation and linear
movements are then used to obtain the total time of travel
and the angle of rotation for each visit sequence or route. Each

route consists of all the plants to be visited in a specified
sequence and then, the start and end point (depot) which are
connected by roads. The problem therefore, is defined in terms

of finding the optimal route that passes through all plants only
once with minimal time, distance and rotation. The robot
problem for greenhouse, as discussed in the introduction can

be formulated as a VRP characterized by a single vehicle, sin-
gle depot and deterministic variable demand. The formulation
is as follows:

min F
!ðX!Þ ð4Þ

1 � Xi � N ð5Þ
and subject to capacity limitation defined in Eq. (6)

XK
i¼1

di � C ð6Þ

where Xi is an integer, K is the loop size for the vehicle before
revisiting whiled is the demand of each plant. Since the prob-
lem is an integer multi objective optimization, the vector form

Fig. 1 The mobile robot system.
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of the objective functions is used. The objectives are presented

in the vector form as in Eq. (7)

F
!¼

T

H

L

2
64

3
75 ð7Þ

where T is the total time of travel, H is total angle of rotation

and L is total distance travelled.

3.2. Problem formulation

3.2.1. The greenhouse geometry

The geometry of the greenhouse with plants pots arranged in 8
rows is represented in planar view after having been converted

into black and white photo as shown in Fig. 2. The white area
is the allowed region and the black area is the occupied region
(not allowed)

From this figure and based on the robot radius which is
20 cm, occupancy grid is developed using binary occupancy
grid function using robotics toolbox in MATLAB and inflated
by an inflation function by the radius of the robot. It is there-

fore required to obtain a discrete model of the unoccupied
space on the plan of greenhouse. Using a probabilistic road
map function (PRM), the discrete model is developed by

2000 nodes and thereby making the available space discretised
in set of ðx; yÞ values with connecting lines. The next step is to
find the shortest paths between a pair of plants that are

required to be sprayed and the shortest path algorithm in
MATLAB robotic toolbox, which implements the A* method,
is applied. The output is the shortest path between each pair of

plants which are required to be sprayed on the discrete plan of
the greenhouse.

The robot problem can now be redefined to find the min-
imum route which consists of these roads in where the objec-

tive functions are minimized. Since the problem is multi
objective, the solution is represented in the pareto form. To
realize the objective function, it is necessary to understand

the road between two plants and Fig. 3 shows a typical road
between two plants on a discrete plan. However, this consists
of three nodes and connecting straight lines with each road

having lines and angles of path corrections. Then, the total

length and total angle of rotation for the road connecting
two plants are the sum of all the absolute values of the length
and angles.

Since paths are selected from a discretized space, it is
important to choose a path which is as straight as possible.
In fact, the best pass is the path which minimizes the time

and as straight as possible. To measure the straightness of a
path, assume that we are traveling from i to 1 to i, then to
i + 1, from i to 1 to i there is a straight line and from i to

i + 1 is another straight line. There is an angle between these
two lines called ui. The best path is the one in which ui is the
smallest value or in another word, all points lie on a straight
line. In real application this is not possible since:

1- Points are selected from randomly discretized space.
2- There are obstacles which make straight paths

impossible.

3.2.2. Objectives

For each route, which includes the time to refill, the objective
functions are evaluated as:

T ¼
XK�1

i¼1

TLi
þ
XK�1

i¼1

Thi ð8Þ

L ¼
XK�1

i¼1

Li ¼
XK�1

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xiþ1 � xið Þ2 þ yiþ1 � yi

� �2q
ð9Þ

H ¼
XK�1

i¼2

tan�1 yiþ1 � yi
xiþ1 � xi

� tan�1 yi � yi�1

xi � xi�1

ð10Þ

where, T is the total time of traversal,Thi is the time to make a

turn, L is the total distance and H is the routing angle.

3.2.3. Sequence of visit

Visit vector X
!

shows the order in which the robot visits the

plants. This vector needs to be modified to a sequence in which
‘return to refill’ is added. The algorithm to execute the plant
visit order considering the capacity of the robot is given in

Table 1.

Fig. 2 Greenhouse with plants locations [4].
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Where, di is the pesticide demand for a given infected plant,
C is the tank capacity and N is the total number of plants. The

above procedure converts the visit vector X
!

to Seq. which
includes refilling. This is followed by evaluating the objective

functions for each Seq. Using the sequence, roads between
two consecutive plants (i.e. plants and depot), are added to
construct the route and thereafter, the route length, angle,

and time of travel are calculated.

3.2.4. Dosage

Three test cases are presented and the results are evaluated as

follows: The cases considered have different sizes which are 8,
32, and 56 plants. The capacity of the spray tank is 4 L and the
dosage for each plant is selected by uniform random function

from the given set of values: {300,350,400,450,500}ml so that

each plant dosage is a random value selected from the given
set. The values are obtained from on the previous spray obser-

vations in the greenhouse [4].

3.2.5. Plants locations

Since there are 8 rows in the green house, a random selection

of any given number of plants from each row is applied in a
way that same number of plants are selected from each row.
This implies that the robot must travel across the greenhouse

and face all obstacles while the plant locations are chosen
using random number generators of uniform distribution in
MATLAB. To make the numbers unique, randperm function

is used. Table 2 and 3 present the input data for all the cases.

3.3. Proposed NSGA-III based algorithm

Optimization with NSGAIII and INSGA-III versions are
conducted here. The improved version has higher speed but
not without its attendant trade-off. Hence, the performance
of the improved version in terms of time and optimal solu-

tion should be evaluated. On the other hand, the operation
time for NSGA-III becomes high especially when the popula-
tion size is large. The proposed INSGA-III algorithm has an

edge over NSGA-III in the sense that, as the optimization
progresses through successive generations, it will not be nec-
essary to maintain all population sizes at each iteration. In

fact, by a proposed ranking system, population is reduced
along the optimization process which increases the speed of
the method. Despite that NSGA-III is efficient in solving
numerous standard functions and some optimization prob-

lems like the agricultural VRP, the conventional NSGA-III
still has some setbacks. For instance, the number of non-
dominated solutions in combined population might surge

abruptly when the number of objectives increases. Hence, this
increases the execution time of the selection process. More so,
the conventional NSGA-III can lead to loss of farthest

Fig. 3 A path between two plants.

Table 1 Algorithm for plant visit order.

Algorithm 1: plant visit order

1. Set the capacity at maximum, the tank is full at starting

(Depot).

Set Seq. (1) = 0, C = TC. 8 plants in X(i); //Initialize the

sequence and available spray.

2. Visit plant X(i) and spray the plant.

Then the current capacity is C = C�di.

3. IF C < di+1, go to refill

C = TC,

Seq. (j) = X(i)

Seq. (j + 1) = 0 //Add the Depot node number to the

sequence

ELSE Seq. (j) = X (i). //Sequence at current visit is

set only.

4. IF i = N (number of plants to visit)

Seq. (j + 1) = 0 (return to depot). //Add the Depot node

number to the sequence

5. End

Table 2 Data for case 1 (8 plants) optimization problem.

No. St 1 2 3 4 5 6 7 8

Dosage(l) 0 0.45 0.35 0.5 0.4 0.45 0.35 0.3 0.3

X (m) 0.86 9.60 10.33 2.33 10.04 7.56 1.89 3.78 6.55

Y (m) 2.09 4.48 4.48 4.00 2.87 2.53 1.41 1.01 1.01
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points, yet, it indicates the extent of diversity in the solutions
[46]. Moreover, the agricultural VRP here has numerous con-

straints and thus, the INSGA-III will be introduced in to
solve the multi-objective agricultural VRP problem defined
above. The improved algorithm is achieved by introducing

an elimination strategy through a mechanism and the
enhancement of the efficiency of the selection process. There-
fore, the amount of eliminations is greatly reduced when

compared with the conventional algorithm. Fig. 4 is the
INSGA-III operation diagram showing all the major compo-
nents of the algorithm. Further to earlier introduction, the
base optimization algorithm used here, is the NSGA-III

which is modified to accept integer variables. The problem
is fully integer and all the operators including random gener-
ators, mutation and crossover operators are converted to

fully integer ones in such a way that inputs and outputs
are fully integer. The main concern with the problem is that
X must be a unique permutation of numbers between 1 to N.

This implies that, the constraint of uniqueness must be
applied on all operators and random population generator
itself to ensure that all solution points satisfy the uniqueness
of the constraint. In order to perform an optimization for

NSGA-III and INSGA-III, large initial populations are
selected. The justification is that with large population size,
the time difference measurement is more accurate, and it is

an assurance that INSGA-III will not be stuck with a poor
local minimum since the population size reduces with itera-

tion. The comparison is conducted separately for each case
while the setup for comparison of methods are presented as
well.

Step 1: Specify decision variables and numerical ranges in
total path travelled by the agricultural mobile robot, overall
time of transaction and the total rotation (routing) angle

Step 2: Select objective functions to be optimized
Step 3: Initialize algorithm parameters, such as cross rate,

mutation rate, cross index and mutation index. Set population
sizeN , maximum iterations Im and numerical range of state

variables. Sett ¼ 0
Step 4: Generate H well-spread reference points according

to population size

Step 5: Randomly initialize population Pt according to
numerical ranges of decision variables

Step 6: Generate offspring population Qt by genetic

operation using parent population Pt. The size of both Pt

and Qt is N
Step 7: Merge Pt and Qt to obtain a combined population

Rt. Fix individuals that are out of range using constraint

handling method. Adopt Newton-Ralph method to calculate
load flow. Calculate fitness value and CV of each individual
in Rt

Table 3 Data for case 2 (32 plants) and case3 (56) optimization problems.

Case 2 (32 plants) Case 3 (56 plants)

NO Dosage(l) X(m) Y(m) NO Dosage(l) X(m) Y(m) NO D X(m) Y(m)

St 0 0.86 2.09 St 0 0.86 2.09 33 0.35 5.96 2.53

1 0.3 1.45 4.48 1 0.3 9.60 4.48 34 0.3 10.62 2.53

2 0.4 4.95 4.48 2 0.5 3.78 4.48 35 0.3 5.67 2.53

3 0.4 5.53 4.48 3 0.45 3.20 4.48 36 0.5 9.31 1.41

4 0.3 7.85 4.48 4 0.3 8.73 4.48 37 0.3 1.02 1.41

5 0.35 2.18 4.48 5 0.3 5.82 4.48 38 0.3 4.80 1.41

6 0.35 7.71 4.48 6 0.45 5.53 4.48 39 0.35 7.85 1.41

7 0.3 7.13 4.48 7 0.45 10.18 4.48 40 0.4 5.67 1.41

8 0.45 10.91 4.48 8 0.35 2.18 4.48 41 0.35 1.89 1.41

9 0.3 7.56 4.00 9 0.3 4.80 4.48 42 0.4 4.51 1.41

10 0.5 10.18 4.00 10 0.45 10.33 4.48 43 0.5 5.53 1.01

11 0.35 9.31 4.00 11 0.35 8.87 4.48 44 0.45 2.62 1.01

12 0.3 11.06 4.00 12 0.5 5.38 4.48 45 0.35 9.89 1.01

13 0.45 7.71 2.87 13 0.35 5.96 4.48 46 0.4 8.44 1.01

14 0.45 5.38 2.87 14 0.45 4.22 4.48 47 0.5 4.65 1.01

15 0.4 1.75 2.87 15 0.3 8.15 4.00 48 0.3 4.07 1.01

16 0.35 6.84 2.87 16 0.3 2.33 4.00 49 0.35 3.78 1.01

17 0.3 7.85 2.53 17 0.35 8.73 4.00 50 0.35 10.33 1.01

18 0.45 10.62 2.53 18 0.3 6.98 4.00 51 0.35 1.60 1.01

19 0.3 5.96 2.53 19 0.5 11.06 4.00 52 0.4 6.25 1.01

20 0.4 7.56 2.53 20 0.35 1.16 4.00 53 0.45 3.05 1.01

21 0.3 3.93 1.41 21 0.4 6.69 4.00 54 0.3 8.87 1.01

22 0.4 6.55 1.41 22 0.4 4.07 2.87 55 0.3 3.64 1.01

23 0.35 2.76 1.41 23 0.4 2.91 2.87 56 0.45 2.76 1.01

24 0.3 1.31 1.41 24 0.4 6.25 2.87

25 0.45 10.47 1.01 25 0.35 8.87 2.87

26 0.4 6.98 1.01 26 0.5 10.33 2.87

27 0.5 9.89 1.01 27 0.3 1.45 2.87

28 0.45 4.95 1.01 28 0.35 3.20 2.87

29 0.35 10.91 1.01 29 0.4 4.36 2.53

30 0.45 5.09 1.01 30 0.35 6.55 2.53

31 0.45 6.84 1.01 31 0.4 3.20 2.53

32 0.5 3.35 1.01 32 0.4 10.33 2.53
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Step 8: Stratify Rt according to constrain-domination prin-
ciple to obtain layers F1;F2;F3 � � �.

Step 9: Construct St ¼ /; i ¼ 1. Execute
St ¼ St [ Fn; ðn ¼ 1; 2; 3::Þ until the size of St is equal to or
greater than N If the size of St is exactly equal to N,

Ptþ1 ¼ St and turn to Step 11; otherwise, continue to perform
the following steps.

Step 10: Normalize objective values in St and associate

them with reference points. Compute DP and adaptively elim-
inate K ¼ Stj j �N individuals from St, and then Ptþ1 ¼ St.
Preserve boundary points and closer points before elimination.

Step 11: Sett ¼ tþ 1. If t ¼ Im, output the PSs of Ma-OPF

problem; otherwise, repeat Step 6 to 11.
Step 12: Find the best compromise solution (BCS).

4. Results and Discussions.

After applying the NSGAIII algorithm on three cases, pareto
frontiers are obtained for each case. Then the optimal point

is selected based on the distance criterion based on Eq. (11).

bestF ¼ min jFparetoj ð11Þ

In addition to NSGA-III and INSGA-III with large num-
ber of initial population size, two different cases are introduced

as well to determine the significance of the initial population
size. Cases with letter (A) represent NSGA-III solver with ini-
tial population of 100 while cases with letter (B) represent

INSGA-III solver with initial population size of 100. All runs
here are performed on the same computer with same
MATLAB version and the results presented shows a compar-

ison between case A and B in Table 5 as follows.

4.1. Case 1: 8 infected plants

The optimization was performed using the parameters in

Table 2 and Table 3 and the pareto frontier for (A)
NSGA-III and (B) INSGA-III is a 3D plot with both cases
showing same optimal points as shown in Fig. 5 where the

red point signifies the optimal point. In the case of 8 plants,
the population increases to 500 and the run time is high as
expected while results are compared with 100 initial popula-

tion cases in terms of accuracy and time as shown
in Table 4.

Fig. 4 INSGA-lll operation diagram [46]
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All the four sets of solutions attained the same values as case
1, despite the population size andmethod. But the best sequence
might vary due to geometrical symmetry in routes (a route may

be chosen in reverse order as well). Fig. 6 shows how the time
varies between different case scenarios. The run time reduces
drastically while the optimal point is similar for all runs. The
reduction of time for large number of initial populations is sig-

nificant in case of INSGAIII. The results summary obtained
by implementing the INSGAIII are shown as follows:

� Time is reduced by 62.31% at population of 500.
� Time is reduced by 19.62% at population of 100. (compar-
ing A and B).

� Population size does not affect the optimal point for 8 plant
problem.

4.2. Case 2: 32- infected plants

The optimization was performed using the parameters in

Table 2 and Table 3 while the pareto frontier for (A) NSGAIII

and (B) INSGAIII is a 3D plot with NSGAIII showing higher
optimality as shown in Fig. 7 where the red point signifies the

optimal point.
When the number of decision variables increase, the initial

population size also increases. In the case of 32 plants, the pop-

ulation increases to 1000 and the run time is high as expected
while results are compared with 100 initial population cases in
terms of accuracy and time as shown in Table 5.

The optimal values differ for different scenarios as can be
seen, as expected, in the case B which shows the worse perfor-
mance but significantly low time of operation. Furthermore,
the values for scenario A has the minimum best objectives

among all even by comparing with the 1000 initial population
based on NSGA-III. This shows non-existence of a direct
dependency of high initial population with best results and

as well, shows how unpredictable the problem is. To make a

Table 4 Setup and optimal point values for four comparative scenarios. Case 1 (8 plants).

NSGA-III INSGAIII A B

Initial population size 500 500 100 100

Number of variables 8 8 8 8

Number of iterations 400 400 400 400

Run Time (s) 3105.20 1777.53 144.01 115.75

End population size 500 500 100 82

Optimal Total time (s) 781.93 364.73 781.93 781.93

Optimal Total angle (rad) 44.44 72.08 44.66 44.66

Optimal Total distance (m) 29.84 29.08 29.84 29.84

Table 5 Setup and optimal point values for four comparative scenarios. Case 2 (32 plants).

NSGA-III INSGAIII A B

Initial population size 1000 1000 100 100

Number of variables 32 32 32 32

Number of iterations 400 400 400 400

Run Time (s) 12953.35 850.94 314.01 109.45

End population size 1000 79 55 31

Optimal Total time (s) 2445.34 2511.47 2326.98 2976.36

Optimal Total angle (rad) 157.66 152.08 137.19 164.40

Optimal Total distance (m) 79.93 86.53 73.35 99.99

3105.20

1170.41

144.01 115.75

NSGAIII INSGAIIII A-NSGAIII B-INSGAIII

Fig. 6 Run time(s) comparison for different scenarios and 8

plants problem (Case1).

Fig. 5 Comparing pareto for two A-NSGAIII and B-INSGA-

III for 8 plants.
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comparison between the objective functions, the best optimal
is selected and the percentage change belonging to other sce-
narios compared to this point are calculated and plotted for

each scenario as shown in Fig. 8.
In Fig. 8, the optimal objective functions variation in

comparison to the optimal case are shown. The total dis-
tance for the (B) INSGA-III with 100 population size is

136.3% which means that the total distance in this case is
36.3% higher than the optimal case. The total score is a
measure of the distance to origin and is expressed in math-

ematical form as in Eq. (15):

TotalScore¼ 100

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Total Timeð Þ2þ Total Distanceð Þ2þ Total Angleð Þ2

q
ffiffiffi
3

p

ð12Þ
The total score for the poorest case is 128.2% which means

that the poorest run is 28.2% deviated from the best optimal
point and the maximum deviation value is 36.3 percent. The

data in this graph should be interpreted alongside the run time
comparison as presented in Fig. 7 while the reduction in time is
significantly high for scenarios with INSGA-III. In summary,
the improvement in applying INSGA-III on 32 plants problem

holds by considering the following points:

� The run time is reduced by 93.43% at population of 1000

while the total score is less than 10% higher.
� The time is reduced by 65.14% at population of 100 while
the total score is 28.2% higher and maximum deviation

from the optimal is 36.32. (comparing A and B only)
� The increase in population size does not affect the optimal
point for case 2 as shown in Fig. 9.

4.3. Case 3: 56-Infected plants

The optimization was performed using the parameters in
Table 2 and Table 3 with the pareto frontier for (A) NSGA-
III and (B) INSGA-III represented as 3D plot. As shown in

Fig. 10, the NSGAIII shows higher optimality where the red
point signifies the optimal point.

For the case of 56 plants, the initial population increases to

1500 since the number of decision variables is 56 and the com-
parison between all scenarios are as shown in Table 6.

Fig. 7 Comparing pareto for two A-NSGA-III and B-INSGA-

III for 32 plants.

Fig. 8 Comparison of optimal objective functions in different scenarios for case 2 (32 plants).
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Accordingly, the plot of the deviation from the minimum
gives us an insight to the performance of the scenarios. It is
worth mentioning that values on the chart show the values
at plot grid points not the values for each scenario. The values

for each scenario are provided in Table 7. Fig. 11 shows the
comparison between the objective functions, the optimal solu-

tion and the percentage change of other scenarios.
The best optimal is NSGAIII with 1500 population. How-

ever, the deviation from optimal point is not significantly large

for other scenarios. The NSGAIII with 100 population size
gives total score of 100.93 with even lower optimal value for
distance. The INSGAIII shows better accuracy in comparison

to best optimal point with only 10.4% deviation or increase in
total score. To better analyse the performance of INSGAIII,
time of run is compared and plotted for all scenarios as shown
in Fig. 12.

4.4. Summary of findings

In summary, applying INSGAIII on case3 (56 plants) results

in:

� The run time is reduced by 93.67% at population of 1500

while the total score is less than 3% higher.
� The run time is reduced by 76.62% at population of 100
while the total score is 10% higher and maximum deviation

from best optimal is 15.62%. (comparing A and B)
� Increase in population size does not affect the optimal point
significantly for 56 plants.

The best sequences are presented here for all cases in both
NSGAIII and INSGAIII. In Fig. 13, the optimal visit
sequence including refilling is presented for each of the differ-

ent cases and optimization method. All the solutions show the
same sequence but the first one is in reverse order. In Figs. 14
and 15, optimal sequence is presented for different cases as

well. From the results, it can be observed that all the 32 cases
have 4 refills and all the 56 cases have 6 refills for all scenarios.
The ‘ST’ in the figures stand for starting point which is point of
refill.

12953.35

850.94 314.01 109.45

NSGA INSGAIII A-NSGA B-INSGA

Fig. 9 Run time(s) comparison for different scenarios and 32

plants problem (Case2).

Fig. 10 Comparing pareto for two A-NSGA-III and B-INSGA-

III for 56 plants.

Table 6 Setup and optimal point values for four comparative scenarios. Case 3 (56 plants).

NSGA-III INSGAIII A B

Initial population size 1500 1500 100 100

Number of variables 56 56 56 56

Number of iterations 400 400 400 400

Run Time (s) 33191.62 2101.90 889.08 207.88

End population size 1500 27 33 17

Optimal Total time (s) 4112.38 4458.57 4340.60 4735.64

Optimal Total angle (rad) 261.34 263.63 263.82 269.51

Optimal Total distance (m) 194.79 191.41 187.12 219.27

Table 7 Scores and deviations for optimal values for different

scenarios in Case 3 (56 plants).

NSGAIII INSGAIII A B

Total Time 100 108.42 105.55 115.16

Total Angle 100 100.88 100.95 103.12

Total Distance 100 98.27 96.06 112.57

Total Score 100 102.61 100.93 110.40
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5. Conclusion

Path optimization for greenhouse robot application is con-

ducted here using experimentally evaluated time functions,
NSGAIII and INSGAIII approaches. The required dosage
for each plant is considered a variable while the robot capacity
is fixed and refilling is necessary. The solution to the presented

VRP by optimization methods (NSGAIII and INSGAIII) for
three different cases (8 plants, 32 plants and 56 plants) and dif-
ferent initial population sizes are presented here. Run time and

best optimal points are evaluated and compared for different
scenarios. In summary, the main findings are:

� All scenarios provide similar best optimal point for case 1 (8
plants).

� For case 2 (32 plants), INSGAIII shows deviation of 28%

in total score at 100 population size.
� For case 3(56 plants), INSGAIII shows deviation of 10% in
total score at 100 population size.

� The run time is reduced by 93% for large population size

and 66 to 76% in low population size for case 2 and 3.
� In case 1, the run time reduction is 62 and 19%, for large
population size and a population size of 100 respectively

when INSGAIII is applied but the same optimal point is
obtained.

� The larger the number of decision variables, the larger the

time reduction as observed.
� Large population size does not necessarily correlate with
better solution. A population size of 100 seems to be

enough for this problem for all cases. However, for 56
plants (case 3), deviation by 2% is observed in total score
from the optimal point.

Fig. 11 Comparison of optimal objective functions in different scenarios for case 3 (56 plants).

33191.62

2101.90 889.08 207.88

NSGAIII INSGAIII A-NSGAIII B-INSGAIII

Fig. 12 Run time(s) comparison for different scenarios and 56

plants problem (Case3).

Fig. 13 Optimal sequences for case 1.
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Fig. 14 Optimal sequences for case 2.

Fig. 15 Optimal sequences for case 3.
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� Based on the findings, reduction in run time between 20 and

76 % is expected for small problem size even with popula-
tion size of 100, when the INSGA-III is applied. The devi-
ation is 28% (total score) maximum when the improved

version is applied.
� Based on the values, INSGA-III has advantage over the
NSGA-III in terms of performance if the run time is critical
and it does not affect the optimal point significantly.

Finally, the INSGAIII shows a significant time reduction in
solving the problem presented and the improved speed comes

with reduced accuracy in final optimal point. However, the
time difference is large and the final optimal points are rela-
tively close (high accuracy is observed in final optimal point

for INSGAIII if NSGAIII results are considered as reference).
For a larger population and problem size, the reduction in size
becomes more obvious. For application of INSGAIII requir-
ing higher initial population, it will be recommended to bal-

ance up the time-accuracy (optimality of final point).
Although this work considers the pesticide demand in variable
rates, the approach adopted is deterministic as pest infestation

is determined through mapping and use of devices like cam-
eras, satellites, etc. The need to adopt indeterministic pesticide
demand by introducing active demand management approach

is of paramount importance. Moreover, the extension to this
work in the aspect of internet-of-things (IOT) could further
enhance this method into the real-world computing scenario.
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