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ABSTRACT 

 

 

 

 

 Insect cell-baculovirus system is an excellent artificial system for the 

production of recombinant glycoprotein despite its glycosylation deficiencies.  In this 

study, laboratory scale production of recombinant human transferrin (rhTf) from 

insect cell-BEVS was conducted and chromatographic purification strategies were 

employed to obtain rhTf in high yield and high recovery.  Research was started with 

the amplification of recombinant baculovirus, using low multiplicity of infection 

(MOI).  Virus stock in a 1.2 x 10
9
 pfu/ml infected suspension culture of Spodoptera 

frugiperda (Sf9) at 15 MOI had produced 31µg/ml of rhTf.  To purify the rhTf, 

hydrophobic interaction chromatography, dialysis and ion exchange chromatography 

were performed.  For hydrophobic interaction chromatography, elution strategy, 

flowrate and rhTf loading capacity of phenyl sepharose were optimized. By loading 

38µg rhTf/ml of gel, employing step elution with 50% 1.2M (NH4)2SO4/0.4M 

Na3C6H5O7, pH6 (buffer A) and 25% buffer A and flowrate at 1ml/min, 74.6% of 

rhTf had been recovered from phenyl sepharose. For ion exchange chromatography, 

batch purification in reduced size was used to select suitable anion exchange matrix, 

suitable pH of equilibration buffer and concentration of equilibration buffer. 20mM 

Tris/HCl buffer, pH8.5 and gradient elution with the increase of of 5mM NaCl/CV 

succeeded in giving pure rhTf with 52.5% recovery from Q-sepharose.  The overall 

recovery of pure rhTf was 34% with 200 purification fold.  A brief glycan 

characterization of the recovered pure rhTf was performed for a better understanding 

of the glycosylation feature of this protein expressed using optimized medium from 

BEVS.  The carbohydrate component of the purified rhTf was determined.  The 

purified rhTf was hydrolyzed and the release sugar was labeled with 1-Phenyl-3-

Methyl-5-Pyrazolone (PMP) before analysis with High performance Liquid 

Chromatography (HPLC).  The molar fractions of Man, GlcNAc and Gal of rhTf 

were 3.78, 1.69 and 0.93, respectively. 
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ABSTRAK 

 

 

 

 

 Sistem pengekspresan sel serangga-bakulovirus merupakan sistem pilihan 

yang baik untuk menghasilkan rekombinan glikoprotein meskipun kekurangan 

glikosilasi.  Penghasilan produksi skala makmal mendapat rekombinan human 

transferrin (rhTf) dari sistem sel serangga-bakulovirus dan strategi purifikasi jenis 

kromatografi telah dijalankan untuk mendapatkan rhTf yang tulen dan perolehan 

yang tinggi.  Kajian bermula dengan peningkatan kuantiti rekombinan bakulovirus 

dari gandaan jangkitan (MOI) yang rendah.  Stok virus dalam 1.2 x 10
9
 pfu/ml 

menjangkiti kultur ampaian sel Spodoptera frugiperda (Sf9) dengan 15 MOI telah 

menghasilkan 31µg/ml rhTf.  Dalam proses purifikasi, kromatografi saling tindak 

hidrofobik, dialisis dan kromatografi penukaran ion telah dijalankan.  Bagi 

kromatografi saling tindak hidrofobik, strategi elusi, kelajuan dan kapasiti muatan 

rhTf ke atas phenyl sepharose telah dioptimumkan.  Penggunaan muatan 38µg 

rhTf/ml gel dengan elusi berperingkat menggunakan 50% 1.2M (NH4)2SO4/0.4M 

Na3C6H5O7, pH6 (larutan penimbal A) and 25% larutan penimbal A dan kelajuan 

pada 1ml/min berjaya memperoleh 74.6% rhTf daripada phenyl sepharose.  Bagi 

kromatografi penukaran ion, purifikasi dalam saiz kecil telah digunakan untuk 

memilih matrik penukar ion, pH larutan penimbal pada fasa keseimbangan dan 

kepekatan larutan penimbal pada fasa keseimbangan.  20mM Tris/HCl larutan 

penimbal, pH8.5 and elusi cerun dengan peningkatan 5mM NaCl/CV berjaya 

menghasilkan rhTf tulen dengan 52.5% perolehan daripada Q-sepharose.  Perolehan 

rhTf tulen secara keseluruhan ialah 34% dengan 200 lipat purifikasi.  Pencirian 

glikan secara kasar telah dijalankan ke atas rhTf tulen untuk mendapat pemahaman 

tentang ciri-ciri glikosilasi bagi protein ini yang diekspresikan dengan sistem 

pengekspresan sel serangga-bakulovirus dan media optimum.  Komposisi 

karbohidrat untuk rhTf tulen telah dikenalpasti.  rhTf yang tulen telah dihidrolisis.  

Gula telah dilepaskan, dan dilabelkan dengan 1-Phenyl-3-Methyl-5-Pyrazolone 

(PMP) sebelum dianalisis dengan menggunakan kromatografi cecair prestasi tinggi 

(HPLC).  Nilai fraksi molar Man, GlcNAc and Gal daripada rhTf ialah 3.78, 1.69 and 

0.93. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Preface 

 

 

The biopharmaceutical industry has experienced a significant transformation 

based on the development of recombinant DNA and hybridoma technologies in the 

1970s.  The industry has moved beyond simple replication of human proteins (such 

as insulin or growth hormones) and played a key role in the development of large-

molecule drugs such as any protein, virus, therapeutic serum, vaccine, and blood 

component.  These genetically engineered therapeutic drugs are targeting some of the 

major illnesses such as cancer, cardiovascular, and infectious diseases and they have 

the full potential to tackle a whole array of new diseases effectively and safely. 

 

 

By mid 2003, 148 biopharmaceuticals proteins were approved in the United 

States and Europe compared to 84 in 2000 (Birch and Onakunle, 2005).  The total 

global market for protein drugs was $47.4 billion in 2006 and the market is presumed 

to reach $55.7 billion by the end of 2011 with an average annual growth rate 

(AAGR) of 3.3% (Figure 1.1).  It is expected that current cell culture facilities are 

unlikely to meet expected demand.  The imbalance of supply-demand is  
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expected to get worse in the future, as more biotech therapeutics proteins are 

approved.  20–50% of potential therapeutics could be delayed due to the lack of 

manufacturing capacity (Fernandez et al., 2002).  Hence, the ability in expanding the 

existing capacity and producing a larger variety of products are crucial in order to 

meet future demand.  Drug companies and biotech firms are considering alternative 

manufacturing platforms, besides increasing fermentation capacity (Table 1.1) 

(Elbehri, 2005). 

  

 

 
Figure 1.1: Worldwide sales forecast for protein drugs, 2006 and 2011 (Talukder, 

2007). 

 

 

Generally, recombinant therapeutic protein can be generated and produced in 

various prokaryotic and eukaryotic expression systems.  Until the early 1990s, the 

majority of recombinant proteins were expressed in either microbial or mammalian 

cell culture systems.  The first approved recombinant therapeutic glycoproteins, 

insulin is produced from Escherichia coli.  Today, the manufacturing of 

biotechnology products relies heavily on the use of mammalian cells, chiefly on 

Chinese Hamster Ovary (CHO) cells.  The well-known drugs Avonex (interferon 

beta 1-a, Biogen, Inc) and EPOGEN/EPREX (epoetin alfa, Amgen Inc/ Ortho 

Biotech) are produced in CHO.  Insect, transgenic plant, transgenic animal and yeast 
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cells are also attractive as hosts for the production of recombinant proteins, as they 

represent potentially inexpensive and versatile expression systems.  Optimal 

expression system can be varied, based on different critical parameters of the protein 

of interest.  Selecting an appropriate expression system for the protein of interest will 

affect factors such as time to market, cost of goods, product characteristics, 

regulatory hurdles, and intellectual property (Figure 1.2). 

 

 

Table 1.1: Comparison of pharmaceutical expression system (Elbehri, 2005). 

Expression 
System Advantages Disadvantages Applications 

Cost 
per 
gram 

Bacteria 

Established regulatory 
track; well-understood 
genetics; cheap and 
easy to grow 

Proteins not usually 
secreted; contain 
endotoxins; no 
posttranslational 
modifications 

Insulin (E. coli; Eli 
Lilly); growth 
hormone 
(Genentech); growth 
factor; interferon 

N.R 

Yeast 

Recognized as “safe;” 
long history of use; 
fast; inexpensive; 
posttranslational 
modifications 

Overglycosylation can ruin 
bioactivity; safety; potency; 
clearance; contains 
immunogens/antigens 

Beer fermentation; 
recombinant 
vaccines; hepatitis B 
viral vaccine; human 
insulin 

$50-
100 

Insect cells 

Posttranslational 
modifications; 
properly folded 
proteins; fairly high 
expression levels 

Minimal regulatory track; 
slow growth; expensive 
media; baculovirus 
infection (extra step); 
mammalian virus can infect 
cells 

Relatively new 
medium; Novavax 
produces virus-like 
particles 

N.R 

Mammalian 
cells 
 

Usually fold proteins 
properly; correct 
posttranslation 
modifications; good 
regulatory track 
record; only choice for 
largest proteins 

Expensive media; slow 
growth; may contain 
allergens/ contaminants; 
complicated purification 

Tissue plasminogen 
activator; factor VIII 
(glycoprotein); 
monoclonal 
antibodies 
(Hercepin) 

$500–
5,000 

Transgenic 
animals 
 

Complex protein 
processing; very high 
expression levels; easy 
scale up; low-cost 
production 

Little regulatory 
experience; potential for 
viral contamination; long 
time scales; isolation/GMPs 
on the farm 

Lipase (sheep, 
rabbits; PPL 
Therapeutics); 
growth hormone 
(goats; Genzyme); 
factor VIII (cattle) 

$20–
50 

Transgenic 
plants 
 

Shorter development 
cycles; easy seed 
storage/scaling; good 
expression levels; no 
plant viruses known to 
infect humans  

Potential for new 
contaminants (soil fungi, 
bacteria, pesticides); 
posttranslational 
modifications; contains 
possible allergens  

Cholera vaccine 
(tobacco; 
Chlorogen, Inc.); 
gastric lipase (corn; 
Meristem); hepatitis 
B (potatoes; Boyce 
Thompson) 

$10–
20 

N.R- Not Reported 
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The baculovirus expression vector system (BEVS) has a number of 

significant advantages over other methods of recombinant protein production.  It is 

best known as providing quick access to biologically active proteins and used as a 

research tool (Cox, 2004).  The major advantages of BEVS over bacterial and 

mammalian expression system is the very high expression of recombinant proteins 

which in many cases are antigenically, immunogenically and functionally similar to 

their native counterparts (Goosen, 1993).  Lack of adventitious viral agents that 

could replicate in mammalian cells (John Morrow, 2007), make BEVS a powerful 

manufacturing platform for health care solutions to pandemic, biodefense, and 

emergency scenarios (Cox, 2004).  However, BEVS also has its limitation in 

producing authentic mammalian proteins and glycoproteins.  An absence of complex 

sugars in BEVS-produced proteins may result in poor pharmacological activity in 

vivo due to the rapid clearance from the circulatory system of glycoproteins with 

non-human glycans (Betenbaugh et al., 2004)  
 

 

 

Figure 1.2: Strength and weaknesses of various expression systems (Cox, 2004). 

 

 

The deficiency of BEVS in producing mammalian like-glycoproteins of 

potential therapeutic is a hot topic among researchers in this field.  BEVS had been 

reported to produce sialylated complex type N-glycan through the modification of its 

metabolic engineering pathway (Betenbaugh et al., 2004; Viswanathan et al., 2005; 
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Yun et al., 2005).  Protein Sciences Corporation (PSC) had developed technology for 

large-scale (600 L) production of proteins in insect cells using the BEVS (Cox, 

2004).  Although currently there are no FDA-approved therapeutic proteins 

expressed using BEVS, a number of products are in advanced clinical trials and 

several are about to get acceptance.  Among these, three vaccines that are close to 

market are Provenge™, a prostate cancer immunotherapy from Dendreon 

(www.dendreon.com); Ceravix™, a papilloma virus vaccine from GlaxoSmithKline 

(www.gsk.com); and FluBIOk™ from Protein Sciences, a non-egg based flu vaccine 

(John Marrow, 2007).   

 

 

BEVS have tremendous potential to become the next therapeutic 

manufacturing system.  In this study, recombinant human transferrin was used as a 

model protein.  Transferrin was chosen because of the simplicity of its structure and 

its recent important role in protein engineering.  Non-glycosylated transferrin had 

been used as a scaffold to extend the half life of peptide and proteins.  Various 

chromatographic methods for purification of transferrin have been reported.  Among 

these reports, Ali et al. (1996) and Ailor et al. (2000) had purified rhTf from sf9 and 

Tn cells using phenyl sepharose and Q-Sepharose.  In this study, hydrophobic 

interaction chromatography utilizing phenyl sepharose was used as the capture step 

and IEX chromatography utilizing Q-sepharose was used for further purification of 

rhTf.  To obtain pure rtTf, optimization of both chromatographic techniques had 

been carried out. Basic characterization of the carbohydrate content of the pure rhTf 

had also been carried out to get a better understanding of the glycan.   

 

 

 

 

 

 

 

 

 

 



 114

Superoxide and Hydrogen Peroxide. The Journal of Biological Chemistry. 

259, 13391-13394. 

 

Bauer, H. C., Parent, J. B. and Olden, K. (1985). Role of Carbohydrate in 

Glycoprotein Secretion by Human Hepatoma Cells. Biochemical and 

Biophysical Research Communications. 128, 368-375. 

 

Beare, S. and Steward, W.P. (1996). Plasma Free Iron and Chemotherapy Toxicity. 

The Lancet. 347, 342–343. 

 

Bedard, C., Tom, R. and Kamen, A. (1993). Growth, Nutrient Consumption and End-

Product ccumulation in Sf9 and BTI-EAA Insect Cell Cultures: Insights into 

Growth Limitation and Metabolism. Biotechnology Progress. 9, 615-624. 

 

Belew, M., Yafang, M., Bin, L., Berglöf, J. and Janson, J-C. (1991). Purification of 

Recombinant Hepatitis B Surface Antigen Produced by Transformed Chinese 

Hamster Ovary (CHO) Cell Line Grown in Culture. Bioseparation. 1, 397–

408. 

 

Beljelarskaya, S.N. (2002). A Baculovirus Expression System for Insect Cells. 

Molecular Biology. 36(3), 281–292. 

 

Betenbaugh, M.J, Tomiya, N., Narang, S., Hsu, J.T.A. and Lee, Y.C. (2004). 

Biosynthesis of Human-Type N-Glycans in Heterologous Systems. Current 

Opinion in Structural Biology. 14,601–606. 

 

Birch, J.R. and Onakunle, Y. (2005). Biopharmaceutical Proteins: Opportunities and 

Challenges. In: Mark Smales, C. and James, D.C. Therapeutic Proteins: 

Methods and Protocols. New Jersey: Humana Press.  

 

Bonnerjera, J., Oh, S., Hoare, M. and Dunhill, P. (1986). The Right Step at The Right 

Time. Bio/Technology. 4, 954-958. 



 115

Bradley, S.J., Gosriwatana, I., Srichairantankool, S., Hider, R.C. and Porter, J.B. 

(1997). Non-transferrin-bound Iron Induced by Myeloablative Chemotherapy. 

British Journal of Haematology. 99, 337–343. 

 

Breitbach, K., Jarvis, D.L. (2001). Improved Glycosylation of A Foreign Protein by 

Tn-5B1-4 Cells Engineered to Express Mammalian Glycosyltransferases. 

Biotechnology And Bioengineering. 74(3), 230-239. 

 

Bullen, J.J., Griffiths, E. (1999). Iron and Infection, Molecular, Physiological and 

Clinical Aspects. (2nd Edition). Chichester: John Wiley and Sons. 

 

Burgess, S. (1977). Molecular Weights of Lepidopteran Baculovirus DNAs: 

Derivation by Electron Microscopy. The Journal of General Virology. 37, 

501-510. 

 

Carson, D.D. (1992) Proteoglycans in Development. In: Fukuda, M. (Ed.). Cell 

Surface Carbohydrates and Cell Development. (pp. 257-274). London: CRC 

Press. 

 

Castro, P.M.L., Ison, A.P., Hayte, P.M. and Bull, A.T. (1995). The 

Macroheterogeneity of Recombinant Human Interferon-γ Produced by 

Chinese Hamster Ovary Cells is Affected by The Protein and Lipid Content 

of The Culture Medium. Biotechnology and Applied Biochemistry. 21, 87-

100.   

 

Chauhan, A., Chauhan, V., Brown, W.T. and Cohen, I. (2004). Oxidative Stress in 

Autism: Increased Lipid Peroxidation and Reduced Serum Levels of 

Ceruloplasmin and Transferrin – The Antioxidant Proteins. Life Sciences. 75, 

2539–2549. 

 

Chiou, T.W., Hsieh, Y.C. and Ho, C.S. (2000). High Density Culture of Insect Cells 

using Rational Medium Design and Feeding Strategy. Bioprocess 

Engineering. 22, 483-491. 

 



 116

Choi, O., Tomiya, N., Kim, J.H., Slavicek, J.M., Betenbaugh, M.J. and Lee, Y.C. 

(2003). N-Glycan Structures of Human Transferrin Produced by Lymantria 

dispar (Gypsy moth) Cells using The LdMNPV Expression System. 

Glycobiology. 13(7), 539-548. 

 

Choudhury, D., Thakurta, P.G., Dasgupta, R., Sen, U., Biswas, S., Chakrabarti, C. 

and Dattagupta, J.K. (2002). Purification and Preliminary X-ray Studies on 

Hen Serotransferrin in Apo- and Holo-Forms. Biochemical and Biophysical 

Research Communications. 295,125–128. 

 

Chu, L. and Robinson, D.K. (2001). Industrial Choices for Protein Production by 

Large Scale Cell Culture. Current Opinion in Biotechnology. 12: 180-187 

 

Comings, D.E., Miguel, A.G. and Lesser, H.H. (1979). Nuclear proteins. VI. 

Fractionation of Chromosomal Non-Histone Proteins using Hydrophobic 

Chromatography. Biochimica et Biophysica. Acta. 563, 253–260.  

 

Cox, M.M.J (2004). Chapter 3: Commercial Production in Insect Cells-One 

Company’s Perspective. Bioprocess International. 2(2), 34-38. 

 

Crowther, J.R. (1995). Elisa: Theory and Practice. Totowa, New Jersey: Human 

Press. 

 

Cumming, D.A. (1992). Physiological Relevance of Protein Glycosylation. 

Development in Biological. Standardization. 76, 83-94 

 

Cummings, R.D., Merkle, R.K. and Stults, N.L. (1989). Separation and analysis of 

glycoprotein oligosaccharides. Methods in Cell Biology. 32, 141-183. 

 

Davies, A.H. (1994). Current Methods for Manipulating Baculoviruses. 

Bio/Technology. 12, 47–50. 

 



 114

Superoxide and Hydrogen Peroxide. The Journal of Biological Chemistry. 

259, 13391-13394. 

 

Bauer, H. C., Parent, J. B. and Olden, K. (1985). Role of Carbohydrate in 

Glycoprotein Secretion by Human Hepatoma Cells. Biochemical and 

Biophysical Research Communications. 128, 368-375. 

 

Beare, S. and Steward, W.P. (1996). Plasma Free Iron and Chemotherapy Toxicity. 

The Lancet. 347, 342–343. 

 

Bedard, C., Tom, R. and Kamen, A. (1993). Growth, Nutrient Consumption and End-

Product ccumulation in Sf9 and BTI-EAA Insect Cell Cultures: Insights into 

Growth Limitation and Metabolism. Biotechnology Progress. 9, 615-624. 

 

Belew, M., Yafang, M., Bin, L., Berglöf, J. and Janson, J-C. (1991). Purification of 

Recombinant Hepatitis B Surface Antigen Produced by Transformed Chinese 

Hamster Ovary (CHO) Cell Line Grown in Culture. Bioseparation. 1, 397–

408. 

 

Beljelarskaya, S.N. (2002). A Baculovirus Expression System for Insect Cells. 

Molecular Biology. 36(3), 281–292. 

 

Betenbaugh, M.J, Tomiya, N., Narang, S., Hsu, J.T.A. and Lee, Y.C. (2004). 

Biosynthesis of Human-Type N-Glycans in Heterologous Systems. Current 

Opinion in Structural Biology. 14,601–606. 

 

Birch, J.R. and Onakunle, Y. (2005). Biopharmaceutical Proteins: Opportunities and 

Challenges. In: Mark Smales, C. and James, D.C. Therapeutic Proteins: 

Methods and Protocols. New Jersey: Humana Press.  

 

Bonnerjera, J., Oh, S., Hoare, M. and Dunhill, P. (1986). The Right Step at The Right 

Time. Bio/Technology. 4, 954-958. 



 115

Bradley, S.J., Gosriwatana, I., Srichairantankool, S., Hider, R.C. and Porter, J.B. 

(1997). Non-transferrin-bound Iron Induced by Myeloablative Chemotherapy. 

British Journal of Haematology. 99, 337–343. 

 

Breitbach, K., Jarvis, D.L. (2001). Improved Glycosylation of A Foreign Protein by 

Tn-5B1-4 Cells Engineered to Express Mammalian Glycosyltransferases. 

Biotechnology And Bioengineering. 74(3), 230-239. 

 

Bullen, J.J., Griffiths, E. (1999). Iron and Infection, Molecular, Physiological and 

Clinical Aspects. (2nd Edition). Chichester: John Wiley and Sons. 

 

Burgess, S. (1977). Molecular Weights of Lepidopteran Baculovirus DNAs: 

Derivation by Electron Microscopy. The Journal of General Virology. 37, 

501-510. 

 

Carson, D.D. (1992) Proteoglycans in Development. In: Fukuda, M. (Ed.). Cell 

Surface Carbohydrates and Cell Development. (pp. 257-274). London: CRC 

Press. 

 

Castro, P.M.L., Ison, A.P., Hayte, P.M. and Bull, A.T. (1995). The 

Macroheterogeneity of Recombinant Human Interferon-γ Produced by 

Chinese Hamster Ovary Cells is Affected by The Protein and Lipid Content 

of The Culture Medium. Biotechnology and Applied Biochemistry. 21, 87-

100.   

 

Chauhan, A., Chauhan, V., Brown, W.T. and Cohen, I. (2004). Oxidative Stress in 

Autism: Increased Lipid Peroxidation and Reduced Serum Levels of 

Ceruloplasmin and Transferrin – The Antioxidant Proteins. Life Sciences. 75, 

2539–2549. 

 

Chiou, T.W., Hsieh, Y.C. and Ho, C.S. (2000). High Density Culture of Insect Cells 

using Rational Medium Design and Feeding Strategy. Bioprocess 

Engineering. 22, 483-491. 

 



 116

Choi, O., Tomiya, N., Kim, J.H., Slavicek, J.M., Betenbaugh, M.J. and Lee, Y.C. 

(2003). N-Glycan Structures of Human Transferrin Produced by Lymantria 

dispar (Gypsy moth) Cells using The LdMNPV Expression System. 

Glycobiology. 13(7), 539-548. 

 

Choudhury, D., Thakurta, P.G., Dasgupta, R., Sen, U., Biswas, S., Chakrabarti, C. 

and Dattagupta, J.K. (2002). Purification and Preliminary X-ray Studies on 

Hen Serotransferrin in Apo- and Holo-Forms. Biochemical and Biophysical 

Research Communications. 295,125–128. 

 

Chu, L. and Robinson, D.K. (2001). Industrial Choices for Protein Production by 

Large Scale Cell Culture. Current Opinion in Biotechnology. 12: 180-187 

 

Comings, D.E., Miguel, A.G. and Lesser, H.H. (1979). Nuclear proteins. VI. 

Fractionation of Chromosomal Non-Histone Proteins using Hydrophobic 

Chromatography. Biochimica et Biophysica. Acta. 563, 253–260.  

 

Cox, M.M.J (2004). Chapter 3: Commercial Production in Insect Cells-One 

Company’s Perspective. Bioprocess International. 2(2), 34-38. 

 

Crowther, J.R. (1995). Elisa: Theory and Practice. Totowa, New Jersey: Human 

Press. 

 

Cumming, D.A. (1992). Physiological Relevance of Protein Glycosylation. 

Development in Biological. Standardization. 76, 83-94 

 

Cummings, R.D., Merkle, R.K. and Stults, N.L. (1989). Separation and analysis of 

glycoprotein oligosaccharides. Methods in Cell Biology. 32, 141-183. 

 

Davies, A.H. (1994). Current Methods for Manipulating Baculoviruses. 

Bio/Technology. 12, 47–50. 

 




