BAHAGIAN A – Pengesahan Kerjasama*

Adalah disahkan bahawa projek penyelidikan tesis ini telah dilaksanakan melalui kerjasama antara ______ dengan _____

Disahkan oleh:			
Tandatangan	:	 Tarikh :	
Nama	:		
Jawatan (Cop rasmi)	:		

* Jika penyediaan tesis/projek melibatkan kerjasama.

BAHAGIAN B – Untuk Kegunaan Pejabat Sekolah Pengajian Siswazah

Tesis ini telah diperiksa dan diakui oleh:

Nama dan Alamat Pemeriksa Luar :	Prof. Dr. Arbakariya Ariff
	Department of Bioprocess Technology,
	Faculty of Biotechnology & Biomolecular
	Sciences, UPM 43400 Serdang, Selangor.
Nama dan Alamat Pemeriksa Dalam:	Prof. Madya Dr. Firdausi Razali
	Department of Bioprocess Engineering,
	Faculty of Chemical & Natural Resources
	Engineering (FKKKSA), UTM, 81310
	UTM, Skudai, Johor.
Nama Penyelia Lain (jika ada) :	
Disahkan oleh Timbalan Pendaftar di S	PS:
Tandatangan :	Tarikh :
Nama :	

CHROMATOGRAPHIC PURIFICATION STRATEGIES FOR RECOMBINANT HUMAN TRANSFERRIN FROM SPODOPTERA FRUGIPERDA

WEE CHEN CHEN

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Bioprocess)

Faculty of Chemical and Natural Resources Engineering Universiti Teknologi Malaysia

JUNE 2008

To my beloved grandparents, parents and brothers

ACKNOWLEDGEMENT

In this long research journey, I receive all kind of guidance and support, technically, financially and also spiritually. Thanks to everyone and the institution for making this work possible. Special thanks are due to my supervisor, PM. Dr Azila Abdul Aziz and co-supervisor, Dr. Badarulhisam Abdul Rahman for the opportunity to be involved in this interesting project, their professional advice and their encouragement in the effort to complete this research. I appreciate the given opportunity to have a closer insight into biomanufacturing industry. Thanks also to Prof. Dr. Michael J. Betenbaugh of Johns Hopkins University, USA for providing recombinant baculoviruses.

I would like to express gratitude to all Bioprocess Department laboratory staff especially Puan Siti Zalita, Encik Muhammad, Encik Malek and Encik Yaakop. I also would like to thank all of the staff of Research Manage Center and Faculty of Chemical and Natural Resources Engineering especially Cik Yun and Pn Naza. They have been very helpful. I am also feel gratitude to have a group of kind labmates and friends. Thanks to Dr. Taher, Wei Ney, Clarence, Hafiz, Kamalesh and Kian Mou for their knowledge sharing. "Fui Ling, Melissa, Lee Yu and Seat Yee, thanks for your company and motivation through out this long run". Not to forget, thanks to all the teachers and lecturers who had taught me all the basic knowledge.

My deepest appreciation would be dedicated to my sweet family members. Their patience, consideration, encouragement, consistent support, recognition and invaluable love make me strong and proud. Thank you.

ABSTRACT

Insect cell-baculovirus system is an excellent artificial system for the production of recombinant glycoprotein despite its glycosylation deficiencies. In this study, laboratory scale production of recombinant human transferrin (rhTf) from insect cell-BEVS was conducted and chromatographic purification strategies were employed to obtain rhTf in high yield and high recovery. Research was started with the amplification of recombinant baculovirus, using low multiplicity of infection (MOI). Virus stock in a 1.2 x 10^9 pfu/ml infected suspension culture of *Spodoptera* frugiperda (Sf9) at 15 MOI had produced 31µg/ml of rhTf. To purify the rhTf, hydrophobic interaction chromatography, dialysis and ion exchange chromatography were performed. For hydrophobic interaction chromatography, elution strategy, flowrate and rhTf loading capacity of phenyl sepharose were optimized. By loading 38µg rhTf/ml of gel, employing step elution with 50% 1.2M (NH₄)₂SO₄/0.4M Na₃C₆H₅O₇, pH6 (buffer A) and 25% buffer A and flowrate at 1ml/min, 74.6% of rhTf had been recovered from phenyl sepharose. For ion exchange chromatography, batch purification in reduced size was used to select suitable anion exchange matrix, suitable pH of equilibration buffer and concentration of equilibration buffer. 20mM Tris/HCl buffer, pH8.5 and gradient elution with the increase of of 5mM NaCl/CV succeeded in giving pure rhTf with 52.5% recovery from Q-sepharose. The overall recovery of pure rhTf was 34% with 200 purification fold. A brief glycan characterization of the recovered pure rhTf was performed for a better understanding of the glycosylation feature of this protein expressed using optimized medium from BEVS. The carbohydrate component of the purified rhTf was determined. The purified rhTf was hydrolyzed and the release sugar was labeled with 1-Phenyl-3-Methyl-5-Pyrazolone (PMP) before analysis with High performance Liquid Chromatography (HPLC). The molar fractions of Man, GlcNAc and Gal of rhTf were 3.78, 1.69 and 0.93, respectively.

ABSTRAK

Sistem pengekspresan sel serangga-bakulovirus merupakan sistem pilihan yang baik untuk menghasilkan rekombinan glikoprotein meskipun kekurangan Penghasilan produksi skala makmal mendapat rekombinan human glikosilasi. transferrin (rhTf) dari sistem sel serangga-bakulovirus dan strategi purifikasi jenis kromatografi telah dijalankan untuk mendapatkan rhTf yang tulen dan perolehan yang tinggi. Kajian bermula dengan peningkatan kuantiti rekombinan bakulovirus dari gandaan jangkitan (MOI) yang rendah. Stok virus dalam 1.2 x 10⁹ pfu/ml menjangkiti kultur ampaian sel Spodoptera frugiperda (Sf9) dengan 15 MOI telah menghasilkan 31µg/ml rhTf. Dalam proses purifikasi, kromatografi saling tindak hidrofobik, dialisis dan kromatografi penukaran ion telah dijalankan. Bagi kromatografi saling tindak hidrofobik, strategi elusi, kelajuan dan kapasiti muatan rhTf ke atas phenyl sepharose telah dioptimumkan. Penggunaan muatan 38µg rhTf/ml gel dengan elusi berperingkat menggunakan 50% 1.2M (NH₄)₂SO₄/0.4M Na₃C₆H₅O₇, pH6 (larutan penimbal A) and 25% larutan penimbal A dan kelajuan pada 1ml/min berjaya memperoleh 74.6% rhTf daripada phenyl sepharose. Bagi kromatografi penukaran ion, purifikasi dalam saiz kecil telah digunakan untuk memilih matrik penukar ion, pH larutan penimbal pada fasa keseimbangan dan kepekatan larutan penimbal pada fasa keseimbangan. 20mM Tris/HCl larutan penimbal, pH8.5 and elusi cerun dengan peningkatan 5mM NaCl/CV berjaya menghasilkan rhTf tulen dengan 52.5% perolehan daripada Q-sepharose. Perolehan rhTf tulen secara keseluruhan ialah 34% dengan 200 lipat purifikasi. Pencirian glikan secara kasar telah dijalankan ke atas rhTf tulen untuk mendapat pemahaman tentang ciri-ciri glikosilasi bagi protein ini yang diekspresikan dengan sistem pengekspresan sel serangga-bakulovirus dan media optimum. Komposisi karbohidrat untuk rhTf tulen telah dikenalpasti. rhTf yang tulen telah dihidrolisis. Gula telah dilepaskan, dan dilabelkan dengan 1-Phenyl-3-Methyl-5-Pyrazolone (PMP) sebelum dianalisis dengan menggunakan kromatografi cecair prestasi tinggi (HPLC). Nilai fraksi molar Man, GlcNAc and Gal daripada rhTf ialah 3.78, 1.69 and 0.93.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE

DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENTS	iv
ABSTRACT	v
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	xii
LIST OF FIGURES	xiii
LIST OF SYMBOLS/ ABBREVIATIONS	xvi

INTRODUCTION				
1.1	Preface	1		
1.2	Objectives	6		
1.2	Scopes of Research	6		

1

2	LITI	ERATU	RE REVIEW	7
	2.1	Recor	nbinant Protein Expression System	7
	2.2	Insect	Cell Baculovirus Expression System	11
		2.2.1	Insect cell	11
		2.2.2	Baculoviruses	11
			2.2.2.1 Invivo and Invitro Replication	13
			2.2.2.2 Recombination	15
	2.3	Glyco	sylation	17
		2.3.1	N-Glycosylation and O-Glycosylation	17
		2.3.2	Glyscosylation Pathway	20
			2.3.2.1 Glycosylation Pathway in Insect Cell	21
		2.3.3	Model Protein- Transferrin	23
			2.3.3.1 Recombinant Human Transferrin	27
	2.4	Analy	rsis Method	28
		2.4.1	Bicinchoninic Acid (BCA) Assay	28
		2.4.2	Enzyme Linked Immunosorbent Assay (ELISA)	29
		2.4.3	Sodium Dodecyl Sulfate -Polyacrylamide Gel	
			Electrophoresis (SDS-PAGE)	31
		2.4.4	Western Blot	32
		2.4.5	Glucose, Lactic Acid and Glutamine Analyzer	33
		2.4.6	Carbohydrate Analysis Using High	
			Performance Liquid Chromatography (HPLC)	34
			2.4.6.1 Hydrolysis	34
			2.4.6.2 1-Phenyl-3-Methyl-5-Pyrazolone (PMP)	
			Derivative of Sugar	34
			2.4.6.3 Reverse Phase-HPLC	35
	2.5	Purifi	cation of Transferrin	36
		2.5.1	Hydrophobic Interaction Chromatography	
			(HIC)	37
			2.5.1.1 Factors Affecting HIC	39
		2.5.2	Ion Exchange Chromatography	43
			2.5.2.1 Factor Affecting IEX	44
		2.5.3	Optimization Method in Process	
			Chromatography	48

2.6	Summary of Literature Review	49
-----	------------------------------	----

3	МАТ	TERIAL	S AND METHODS	51	
	3.1	Materials			
		3.1.1	Cell lines and Recombinant Baculovirus	51	
		3.1.2	Equipments	51	
		3.1.3	Chemicals	52	
	3.2	Spodo	pptera frugiperda (Sf-9) Cells Culture	53	
		3.2.1	Cells Thawing	53	
		3.2.2	Cells Count	54	
		3.2.3	Adapting Serum Contain Culture to Serum Free		
			Culture	55	
		3.2.4	Adapting Monolayer Cells to Suspension		
			Culture	55	
		3.2.5	Maintaining Suspension Culture	56	
		3.2.6	Preparation of Optimized Medium	56	
		3.2.7	Adapting Suspension Culture in SFM900II to		
			Optimized Medium	57	
		3.2.8	Cells Freezing	57	
	3.3	Recombinant Baculovirus			
		3.3.1	Generating Pure Recombinant Virus Stock	58	
		3.3.2	Amplification of Virus Stock	58	
		3.3.3	Optimization of rhTf Expression	59	
		3.3.4	Virus Titration (End-Point Dilution)	59	
	3.4	Recor	nbinant Human Transferrin Detection	60	
		3.4.1	Enzyme Linked Immunosorbent Assay		
			(ELISA)	60	
		3.4.2	Sodium Dodecyl Sulfate -Polyacrylamide Gel		
			Electrophoresis	62	
			3.4.2.1 Silver Staining	63	

ix

		3.4.2.2 Coomassie Blue Staining	63
	3.4.3	Western Blot	64
3.5	Chara	cterization of Nutrient Consumption and	
	Substa	ances Release	65
	3.5.1	Analysis of Glucose, Lactic Acid and	
		Glutamine	65
	3.5.2	Ammonia Test	66
3.6	Protei	n Assay	67
	3.6.1	Bicinchoninic Acid (BCA) Assay	67
3.7	Purifi	cation	68
	3.7.1	Hydropbobic Interaction Chromatography	68
	3.7.2	Dialysis	69
	3.7.3	Initial Screening Step of IEX using Batch	
		Purification in Reduced Volume	70
	3.7.4	Ion Exchange Chromatography	71
3.8	Mono	saccharide Composition Analysis of rhTf by	
	HPLC		72
	3.8.1	Preparation of Apotransferrin, rhTf, Standard	
		Monosccharides	72
	3.8.2	Hydrolysis	73
	3.8.3	Pre-column Derivatization	73
	3.8.4	HPLC Analysis	74

4	RESU	ULTS A	ND DISCUSSION	75
	4.1	Expre	ssion of rhTf	75
		4.1.1	Growth Profile of Infected Virus	75
		4.1.2	Time Course Expression Profile of rhTf	80
	4.2	Purifi	cation	83
		4.2.1	Profile of Sample Elution from Hydrophobic	
			Interaction Chromatography	85

	4.2.2	Optimization of Hydrophobic Interaction	
		Chromatography	86
		4.2.2.1 Optimization of Elution Method	86
		4.2.2.2 Optimization of Elution Flowrate	89
		4.2.2.3 Optimization of rhTf Loading Capacity	92
	4.2.3	Initial Screening Step of IEX Using Batch	
		Purification in Reduced Volume	95
	4.2.4	Anion Exchange Chromatography	98
		4.2.4.1 Maximizing The Selectivity of Anion	
		Exchange Chromatography	98
	4.2.5	Characterization of rhTf Purification	100
4.3	Chara	cterization of The Carbohydrate Composition of	
	rhTf		104

5	CON	CONCLUSIONS		
	5.1	Conclusions	108	
	5.2	Recommendations	110	

REFERENCES	112
APENDICES	137

LIST OF TABLES

TABLE NO.

TITLE

PAGE

1.1	Comparison of pharmaceutical expression system	
	(Elbehri, 2005)	3
2.1	Characterization of selected host systems for protein	
	production from recombinant DNA (Shuler and Kargi, 2002)	10
2.2	Posttranslational processing and yield of the protein product in	
	various expression systems (cited from Luckow and Summers,	
	1988)	10
2.3	Selected private company with the protein engineering	
	platform	26
2.4	Functional groups used on ion exchangers	46
2.5	Capacity data for sepharose fast flow ion exchangers	47
2.6	Characteristics of Q, SP, DEAE and CM Sepharose Fast Flow	47
3.1	Culture volume for different flask size	56
3.2	Specification of YSI calibrator	65
3.3	Applied Condition for different study factors	71
4.1	Summary of the characteristic of small scale production of rhTf	83
4.2	Optimization of step-wise elution method for achieving higher	
	recovery of rhTf	87
4.3	Optimization of elution flowrate	90
4.4	Optimization of rhTf loading capacity	93
4.5	Summary of the characteristic of purification of rhTf	101
4.6	Carbohydrate Composition Analysis of Glycoprotein	107

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

1.1	Worldwide sales forecast for protein drugs, 2006 and 2011			
	(Talukder, 2007)	2		
1.2	Strength and weaknesses of various expression systems			
	(Cox, 2004)	4		
2.1	Electron micrographs and schematic of baculoviruses	12		
2.2	Structural compositions of the two baculovirus phenotypes,			
	budded virus (BV), and the polyhedron derived virus (PDV)	12		
2.3	The baculovirus life cycle in vivo and in vitro	14		
2.4	Construction of baculovirus expression vectors	16		
2.5	Structure of the N-glycosidic bond and O-glycosidic bond			
	found in glycoproteins.	18		
2.6	Structure of the different types of oligosccharidic chains of			
	N-glycoproteins	19		
2.7	Pathway for generation of the dolichol-linked oligosaccharide donor			
	for protein N-glycosylation	21		
2.8	Protein N-glycosylation pathways in insect and mammalian			
	cells	22		
2.9	A ribbon diagram of a diferric rabbit serum transferrin			
	molecule	25		
2.10	Reaction schematic for BCA assay	29		
2.11	Schematic represents the a) Direct Sandwich ELISA; b)			
	Indirect ELISA; c) Sandwich ELISA; d) Competition ELISA	30		

2.12	SDS-PAGE			
2.13	Immobilized enzyme biosensor of YSI			
2.14	Hydrolysis time course of bovine fetuin			
2.15	Derivatization with pyrazolone derivatives	35		
2.16	Different hydrophobic ligands coupled to cross-linked			
	agarose matrices	40		
2.17	The Hofmeister series on the effect of some anions and			
	cations in precipitating proteins	41		
2.18	Relative effects of some salts on the molal surface tension of			
	water	41		
2.19	Effect of pH on protein at different net charge	44		
2.20	Ion exchanger types	45		
3.1	Schematic representative of the procedures employed for			
	virus titer-end point dilution	60		
3.2	Schematic representative of the procedures used in ELISA			
	method	61		
3.3	Schematic representation of the BCA protein assay	67		
3.4	Schematic diagram of the dialysis procedure	70		
3.5	Schematic diagram of the set up of the chromatography			
	equipment.	72		
4.1	Photography of control and infected culture	76		
4.2	Growth Characteristics of sf9 during rhTf virus propagation	78		
4.3	Growth Characteristic of sf9 during rhTf production in			
	optimized suspension culture	79		
4.4	The profile of glucose, glutamine consumption and lactate			
	formation in supernatant post infection	80		
4.5	rhTf production profile in supernatant	81		
4.6	Characterization of the rhTf production profile of infected			
	Sf9, using 9%, Coomassie blue staining, SDS-PAGE	82		
4.7	Characterization of the rhTf production profile of infected			
	Sf9, using Western Blot	82		
4.8	Steps and gradient elutions of rhTf from HIC column	85		
4.9	HIC chromatograms for the optimization of elution method	88		
4.10	HIC chromatograms for the optimization of elution flowrate	91		

4.11	The relationship between recovery percentage and loading		
	capacity	93	
4.12	HIC chromatograms for the optimization of rhTf loading		
	capacity	94	
4.13	SDS-PAGE characterizing the elution profile of rhTf	95	
4.14	Binding capacity of two anion exchange matrix with Tris and		
	phosphate buffer used as equilibration buffer	96	
4.15	Binding capacity of Q-Sepharose with equilibration buffer of		
	different pH	97	
4.16	Binding capacity of Q-Sepharose with different concentration		
	of equilibration buffer	97	
4.17	Anion exchange chromatograms for the optimization of		
	selectivity	99	
4.18	SDS-PAGE characterizing the elution profile of rhTf	100	
4.19	HIC chromatogram characterizing the separation and elution		
	profile of sample	102	
4.20	SDS-PAGE characterizing the separated protein from phenyl		
	sepharose 6 fast flow column	102	
4.21	Anion exchange chromatogram characterizing the separation		
	and elution profile of sample of after HIC and after dialysis	103	
4.22	SDS-PAGE characterizing the separated protein from		
	Q-Sepharose column	103	
4.23	SDS-PAGE characterizing the sample pooled from each		
	purification step	104	
4.24	Chromatogram shows HPLC separation of PMP-labeled		
	transferrin	106	
4.25	Standard calibration graph of monosaccharides	107	

LIST OF SYMBOLS/ ABBREVIATIONS

Percentage
Alpha
Beta
Micro meter
Degree Celsius
Micro gram
Micro gram per milliliter
Microliter.
Micrometer
Micro mol per milliliter
Average annual growth rate
Absorbance for blank
Autographa californica multiple nuclear polyhedrosis virus
Acetonitrile
Autographa californica nuclear polyhedrolysis
Absorbance for sample
Asparagine-X-Serine
Asparagine-X-Threonine
Absorbance for standard
American Tissue Culture Collection
Baculovirus expression vector system
Baby hamster kidney cells
Bombyx mori
Bombyx mori nuclear polyhedrosis virus.

BV	Budded virus
<i>Bm</i> NPV	Bombyx mori nuclear polyhedrosis virus.
BV	Budded virus
BVs	Budded viruses
cDNA	Complementary deoxyribonucleic acid
cells/ml	Cells per milliliter
СНО	Chinese Hamster Ovary
СМ	Carboxymethyl
cm/hr	Centimeter per hour
cm ²	Centimeter square
CMP-NeuAc	Cytidine-5'-monophospho N-acetylneuraminic acid
Cu ¹⁺	Cuprous ion
CuSO ₄ •5H ₂ O	Copper (II) sulfate pentahydrate
CV	Column Volume
DEAE	Diethylaminoethyl
DMSO	Dimethyl sulphoxide
DNA	Deoxyribonucleic Acid
DO	Dissolved oxygen
DPA	Dipicolylamine
e	Electron
E.coli	Escherichia coli
ELISA	Enzyme linked immunorsorbent assay
ER	Endoplasmic recticulum
FBS	Fetal bovine serum
FDA	Food and Drugs Administration
Fe ³⁺	Ferric ion
Fuc	Fucose
g	Gravitational
g/l	Gram per liter
Gal	Galactose
GalNAc	N-Acetylgalactosamine
GDP-mannose	Guanosine diphoshate mannose
GlcN	Glucosamine
GlcNAc	N-Acetylglucosamine

GLDH	Glutamate dehydrogenase
GLP-1	Glucagons-like peptide 1
GLP-1-R	Glucagons-like peptide 1-receptor
GMP	Good manufacturing practice
gp	Glycoprotein
GV	Granuloviruses (GV)
H^{+}	Hydrogen cation
H_2O_2	Hydrogen peroxide
H_3PO_4	Phosphoric acid
HIC	Hydrophobic interaction chromatography
His6	Hexahistidine
HPLC	High performance Liquid Chromatografi
HRP	Horseradish peroxidase
Hrs	Hours
hTf	Human transferrin
IEX	Ion exchange chromatography
IgG	Immunoglobulin G
IMAC	Metal affinity chromatography
k	constant
Kb/kbp	Kilo base pair
kDa	Kilo Dalton
М	Molar
Man	Mannose
Man3–1GlcNAc2	3(Mannose)-2(N-Acetyl Glucosamine)
Man ₃ GlcNAc ₂	3(Mannose)-2(N-Acetylglucosamine)
Man8–GlcNAc2	8(Mannose)-2(N-Acetylglucosamine)
Man ₉ GlcNAc ₂	9(Mannose)-2(N-Acetylglucosamine)
MeOH	Methanol
mg	Milligram
mg/ml	Milligram per milliliter
min	Minutes
ml/min	Milliliter per minutes
mmol/L	milli mol per liter
MOI	Low multiplicity of infection

MPa	Mega Pascal
MW	Molecular weight
MWCO	Molecular Weight Cut Off
Ν	Normal
N.D	Not defined
NaCl	Sodium Chloride
NADP ⁺ /NADPH	Nicotinamide adenine dinucleotide phosphate
Na ₃ C ₆ H ₅ O ₇	Sodium citrate
NaOH	Sodium hydroxide
ng/ml	Nanogram per milliliter
NH ₃	Ammonia
$(NH_4)_2SO_4$	Ammonium Sulphate
Ni ²⁺	Nickel ion
nm	Nano meter
NPV	Nucleopolyhedoviruses
O ₂	Oxygen
OB	Occlusion bodies
ODS	Octadecyl silica
ODV	Occlusion derived virus
OV	Occluded virus
p10	Phage-encoded protein-10
PBS	Phosphate buffered saline
pfu/ml	Plug performing unit per milliliter
pH	Potential hydrogen
pI	Isoelectric point
PIBs	Polyhedral inclusion bodies
pmol	Pico mol
PMP	1-Phenyl-3-Methyl-5-Pyrazolone
QAE	Quaternary Aminoethyl
Q-sepharose	Quaternary ammonium
rhTf	Recombinant human transferrin
RP-HPLC	Reversed phase HPLC
rpm	Rotation per minutes
RT	Retention time

S	Methyl sulphonate
S. cerevisiae	Saccharomyces cerevisiae
SDS	Sodium dodecyl sulfate
SDS-PAGE	Sodium dodecyl sulfate-polyacrylamide gel electrophoresis
SFM	Serum Free Medium
SP	Sulphopropyl
T.ni	Trichoplusia ni
TBS	Tris buffered saline
TCID ₅₀	50 % Tissue Culture Infectious Dose
TCID ₅₀ /ml	50 % Tissue Culture Infectious Dose per milliliter
TEMED	N,N,N',N'-tetramethylethylenediamine
TFA	Trifluoroacetic acid
ТМ	Trademark
TMB	3,3',5,5'-tetramethylbenzidene
TN5B1-4	High 5
TOI	Time of Infection
Tris-HCl	Tromethamine and Hydrochloric Acid
UDP	Uridine-5'-diphophate
UDP-Gal	Uridine-diphosphate galactose
UDP-Glc	Uridine-diphosphate glucose
UDP-GlcNAc	Uridine-diphophate N-acetylglucosamine
V	Volts
W.R	Working reagent

LIST OF APPENDICES

APPENDIX NO.

TITLE

PAGE

A-1	Stock Solution for SDS-PAGE	134
A-2	Working Solution for SDS-PAGE	135
A-3	Separating and Stacking Gel Preparation	136
В	Coomassie Blue Staining	137
С	Preparation of Optimized Medium	138
D	Example of TCID ₅₀ Calculation (spreadsheet)	139
E	Working Solution for ELISA	141
F	Working Solution for Western Blot	143
G	Mobile Phase for Purification	144
Н	Glycan Analysis	145

CHAPTER 1

INTRODUCTION

1.1 Preface

The biopharmaceutical industry has experienced a significant transformation based on the development of recombinant DNA and hybridoma technologies in the 1970s. The industry has moved beyond simple replication of human proteins (such as insulin or growth hormones) and played a key role in the development of largemolecule drugs such as any protein, virus, therapeutic serum, vaccine, and blood component. These genetically engineered therapeutic drugs are targeting some of the major illnesses such as cancer, cardiovascular, and infectious diseases and they have the full potential to tackle a whole array of new diseases effectively and safely.

By mid 2003, 148 biopharmaceuticals proteins were approved in the United States and Europe compared to 84 in 2000 (Birch and Onakunle, 2005). The total global market for protein drugs was \$47.4 billion in 2006 and the market is presumed to reach \$55.7 billion by the end of 2011 with an average annual growth rate (AAGR) of 3.3% (Figure 1.1). It is expected that current cell culture facilities are unlikely to meet expected demand. The imbalance of supply-demand is

expected to get worse in the future, as more biotech therapeutics proteins are approved. 20–50% of potential therapeutics could be delayed due to the lack of manufacturing capacity (Fernandez *et al.*, 2002). Hence, the ability in expanding the existing capacity and producing a larger variety of products are crucial in order to meet future demand. Drug companies and biotech firms are considering alternative manufacturing platforms, besides increasing fermentation capacity (Table 1.1) (Elbehri, 2005).

Figure 1.1: Worldwide sales forecast for protein drugs, 2006 and 2011 (Talukder, 2007).

Generally, recombinant therapeutic protein can be generated and produced in various prokaryotic and eukaryotic expression systems. Until the early 1990s, the majority of recombinant proteins were expressed in either microbial or mammalian cell culture systems. The first approved recombinant therapeutic glycoproteins, insulin is produced from *Escherichia coli*. Today, the manufacturing of biotechnology products relies heavily on the use of mammalian cells, chiefly on Chinese Hamster Ovary (CHO) cells. The well-known drugs Avonex (interferon beta 1-a, Biogen, Inc) and EPOGEN/EPREX (epoetin alfa, Amgen Inc/ Ortho Biotech) are produced in CHO. Insect, transgenic plant, transgenic animal and yeast

cells are also attractive as hosts for the production of recombinant proteins, as they represent potentially inexpensive and versatile expression systems. Optimal expression system can be varied, based on different critical parameters of the protein of interest. Selecting an appropriate expression system for the protein of interest will affect factors such as time to market, cost of goods, product characteristics, regulatory hurdles, and intellectual property (Figure 1.2).

Expression System	Advantages	Disadvantages	Applications	Cost per gram
Bacteria	Established regulatory track; well-understood genetics; cheap and easy to grow	Proteins not usually secreted; contain endotoxins; no posttranslational modifications	Insulin (E. coli; Eli Lilly); growth hormone (Genentech); growth factor; interferon	N.R
Yeast	Recognized as "safe;" long history of use; fast; inexpensive; posttranslational modifications	Overglycosylation can ruin bioactivity; safety; potency; clearance; contains immunogens/antigens	Beer fermentation; recombinant vaccines; hepatitis B viral vaccine; human insulin	\$50- 100
Insect cells	Posttranslational modifications; properly folded proteins; fairly high expression levels	Minimal regulatory track; slow growth; expensive media; baculovirus infection (extra step); mammalian virus can infect cells	Relatively new medium; Novavax produces virus-like particles	N.R
Mammalian cells	Usually fold proteins properly; correct posttranslation modifications; good regulatory track record; only choice for largest proteins	Expensive media; slow growth; may contain allergens/ contaminants; complicated purification	Tissue plasminogen activator; factor VIII (glycoprotein); monoclonal antibodies (Hercepin)	\$500– 5,000
Transgenic animals	Complex protein processing; very high expression levels; easy scale up; low-cost production	Little regulatory experience; potential for viral contamination; long time scales; isolation/GMPs on the farm	Lipase (sheep, rabbits; PPL Therapeutics); growth hormone (goats; Genzyme); factor VIII (cattle)	\$20- 50
Transgenic plants	Shorter development cycles; easy seed storage/scaling; good expression levels; no plant viruses known to infect humans	Potential for new contaminants (soil fungi, bacteria, pesticides); posttranslational modifications; contains possible allergens	Cholera vaccine (tobacco; Chlorogen, Inc.); gastric lipase (corn; Meristem); hepatitis B (potatoes; Boyce Thompson)	\$10- 20

Table 1.1: Comparison of pharmaceutical expression system (Elbehri, 2005).

N.R- Not Reported

The baculovirus expression vector system (BEVS) has a number of significant advantages over other methods of recombinant protein production. It is best known as providing quick access to biologically active proteins and used as a research tool (Cox, 2004). The major advantages of BEVS over bacterial and mammalian expression system is the very high expression of recombinant proteins which in many cases are antigenically, immunogenically and functionally similar to their native counterparts (Goosen, 1993). Lack of adventitious viral agents that could replicate in mammalian cells (John Morrow, 2007), make BEVS a powerful manufacturing platform for health care solutions to pandemic, biodefense, and emergency scenarios (Cox, 2004). However, BEVS also has its limitation in producing authentic mammalian proteins and glycoproteins. An absence of complex sugars in BEVS-produced proteins may result in poor pharmacological activity in vivo due to the rapid clearance from the circulatory system of glycoproteins with non-human glycans (Betenbaugh *et al.*, 2004)

Figure 1.2: Strength and weaknesses of various expression systems (Cox, 2004).

The deficiency of BEVS in producing mammalian like-glycoproteins of potential therapeutic is a hot topic among researchers in this field. BEVS had been reported to produce sialylated complex type N-glycan through the modification of its metabolic engineering pathway (Betenbaugh *et al.*, 2004; Viswanathan *et al.*, 2005;

Yun *et al.*, 2005). Protein Sciences Corporation (PSC) had developed technology for large-scale (600 L) production of proteins in insect cells using the BEVS (Cox, 2004). Although currently there are no FDA-approved therapeutic proteins expressed using BEVS, a number of products are in advanced clinical trials and several are about to get acceptance. Among these, three vaccines that are close to market are ProvengeTM, a prostate cancer immunotherapy from Dendreon (www.dendreon.com); CeravixTM, a papilloma virus vaccine from GlaxoSmithKline (www.gsk.com); and FluBIOkTM from Protein Sciences, a non-egg based flu vaccine (John Marrow, 2007).

BEVS have tremendous potential to become the next therapeutic manufacturing system. In this study, recombinant human transferrin was used as a model protein. Transferrin was chosen because of the simplicity of its structure and its recent important role in protein engineering. Non-glycosylated transferrin had been used as a scaffold to extend the half life of peptide and proteins. Various chromatographic methods for purification of transferrin have been reported. Among these reports, Ali *et al.* (1996) and Ailor *et al.* (2000) had purified rhTf from *sf9* and *Tn* cells using phenyl sepharose and Q-Sepharose. In this study, hydrophobic interaction chromatography utilizing phenyl sepharose was used as the capture step and IEX chromatography utilizing Q-sepharose was used for further purification of rhTf. To obtain pure rtTf, optimization of the carbohydrate content of the pure rhTf had also been carried out to get a better understanding of the glycan.

Superoxide and Hydrogen Peroxide. *The Journal of Biological Chemistry*. 259, 13391-13394.

- Bauer, H. C., Parent, J. B. and Olden, K. (1985). Role of Carbohydrate in Glycoprotein Secretion by Human Hepatoma Cells. *Biochemical and Biophysical Research Communications*. 128, 368-375.
- Beare, S. and Steward, W.P. (1996). Plasma Free Iron and Chemotherapy Toxicity. *The Lancet.* 347, 342–343.
- Bedard, C., Tom, R. and Kamen, A. (1993). Growth, Nutrient Consumption and End-Product ccumulation in Sf9 and BTI-EAA Insect Cell Cultures: Insights into Growth Limitation and Metabolism. *Biotechnology Progress*. 9, 615-624.
- Belew, M., Yafang, M., Bin, L., Berglöf, J. and Janson, J-C. (1991). Purification of Recombinant Hepatitis B Surface Antigen Produced by Transformed Chinese Hamster Ovary (CHO) Cell Line Grown in Culture. *Bioseparation*. 1, 397– 408.
- Beljelarskaya, S.N. (2002). A Baculovirus Expression System for Insect Cells. Molecular Biology. 36(3), 281–292.
- Betenbaugh, M.J, Tomiya, N., Narang, S., Hsu, J.T.A. and Lee, Y.C. (2004). Biosynthesis of Human-Type N-Glycans in Heterologous Systems. *Current Opinion in Structural Biology*. 14,601–606.
- Birch, J.R. and Onakunle, Y. (2005). Biopharmaceutical Proteins: Opportunities and Challenges. In: Mark Smales, C. and James, D.C. *Therapeutic Proteins: Methods and Protocols*. New Jersey: Humana Press.
- Bonnerjera, J., Oh, S., Hoare, M. and Dunhill, P. (1986). The Right Step at The Right Time. Bio/Technology. 4, 954-958.

- Bradley, S.J., Gosriwatana, I., Srichairantankool, S., Hider, R.C. and Porter, J.B. (1997). Non-transferrin-bound Iron Induced by Myeloablative Chemotherapy. *British Journal of Haematology*. 99, 337–343.
- Breitbach, K., Jarvis, D.L. (2001). Improved Glycosylation of A Foreign Protein by *Tn*-5B1-4 Cells Engineered to Express Mammalian Glycosyltransferases. *Biotechnology And Bioengineering*. 74(3), 230-239.
- Bullen, J.J., Griffiths, E. (1999). Iron and Infection, Molecular, Physiological and Clinical Aspects. (2nd Edition). Chichester: John Wiley and Sons.
- Burgess, S. (1977). Molecular Weights of Lepidopteran Baculovirus DNAs: Derivation by Electron Microscopy. *The Journal of General Virology*. 37, 501-510.
- Carson, D.D. (1992) Proteoglycans in Development. In: Fukuda, M. (Ed.). Cell Surface Carbohydrates and Cell Development. (pp. 257-274). London: CRC Press.
- Castro, P.M.L., Ison, A.P., Hayte, P.M. and Bull, A.T. (1995). The Macroheterogeneity of Recombinant Human Interferon-γ Produced by Chinese Hamster Ovary Cells is Affected by The Protein and Lipid Content of The Culture Medium. *Biotechnology and Applied Biochemistry*. 21, 87-100.
- Chauhan, A., Chauhan, V., Brown, W.T. and Cohen, I. (2004). Oxidative Stress in Autism: Increased Lipid Peroxidation and Reduced Serum Levels of Ceruloplasmin and Transferrin – The Antioxidant Proteins. *Life Sciences*. 75, 2539–2549.
- Chiou, T.W., Hsieh, Y.C. and Ho, C.S. (2000). High Density Culture of Insect Cells using Rational Medium Design and Feeding Strategy. *Bioprocess Engineering*. 22, 483-491.

- Choi, O., Tomiya, N., Kim, J.H., Slavicek, J.M., Betenbaugh, M.J. and Lee, Y.C. (2003). N-Glycan Structures of Human Transferrin Produced by *Lymantria dispar* (Gypsy moth) Cells using The *Ld*MNPV Expression System. *Glycobiology*. 13(7), 539-548.
- Choudhury, D., Thakurta, P.G., Dasgupta, R., Sen, U., Biswas, S., Chakrabarti, C. and Dattagupta, J.K. (2002). Purification and Preliminary X-ray Studies on Hen Serotransferrin in Apo- and Holo-Forms. *Biochemical and Biophysical Research Communications*. 295,125–128.
- Chu, L. and Robinson, D.K. (2001). Industrial Choices for Protein Production by Large Scale Cell Culture. *Current Opinion in Biotechnology*. 12: 180-187
- Comings, D.E., Miguel, A.G. and Lesser, H.H. (1979). Nuclear proteins. VI. Fractionation of Chromosomal Non-Histone Proteins using Hydrophobic Chromatography. *Biochimica et Biophysica. Acta.* 563, 253–260.
- Cox, M.M.J (2004). Chapter 3: Commercial Production in Insect Cells-One Company's Perspective. *Bioprocess International*. 2(2), 34-38.
- Crowther, J.R. (1995). *Elisa: Theory and Practice*. Totowa, New Jersey: Human Press.
- Cumming, D.A. (1992). Physiological Relevance of Protein Glycosylation. Development in Biological. Standardization. 76, 83-94
- Cummings, R.D., Merkle, R.K. and Stults, N.L. (1989). Separation and analysis of glycoprotein oligosaccharides. *Methods in Cell Biology*. 32, 141-183.
- Davies, A.H. (1994). Current Methods for Manipulating Baculoviruses. *Bio/Technology*. 12, 47–50.

Superoxide and Hydrogen Peroxide. *The Journal of Biological Chemistry*. 259, 13391-13394.

- Bauer, H. C., Parent, J. B. and Olden, K. (1985). Role of Carbohydrate in Glycoprotein Secretion by Human Hepatoma Cells. *Biochemical and Biophysical Research Communications*. 128, 368-375.
- Beare, S. and Steward, W.P. (1996). Plasma Free Iron and Chemotherapy Toxicity. *The Lancet.* 347, 342–343.
- Bedard, C., Tom, R. and Kamen, A. (1993). Growth, Nutrient Consumption and End-Product ccumulation in Sf9 and BTI-EAA Insect Cell Cultures: Insights into Growth Limitation and Metabolism. *Biotechnology Progress*. 9, 615-624.
- Belew, M., Yafang, M., Bin, L., Berglöf, J. and Janson, J-C. (1991). Purification of Recombinant Hepatitis B Surface Antigen Produced by Transformed Chinese Hamster Ovary (CHO) Cell Line Grown in Culture. *Bioseparation*. 1, 397– 408.
- Beljelarskaya, S.N. (2002). A Baculovirus Expression System for Insect Cells. Molecular Biology. 36(3), 281–292.
- Betenbaugh, M.J, Tomiya, N., Narang, S., Hsu, J.T.A. and Lee, Y.C. (2004). Biosynthesis of Human-Type N-Glycans in Heterologous Systems. *Current Opinion in Structural Biology*. 14,601–606.
- Birch, J.R. and Onakunle, Y. (2005). Biopharmaceutical Proteins: Opportunities and Challenges. In: Mark Smales, C. and James, D.C. *Therapeutic Proteins: Methods and Protocols*. New Jersey: Humana Press.
- Bonnerjera, J., Oh, S., Hoare, M. and Dunhill, P. (1986). The Right Step at The Right Time. Bio/Technology. 4, 954-958.

- Bradley, S.J., Gosriwatana, I., Srichairantankool, S., Hider, R.C. and Porter, J.B. (1997). Non-transferrin-bound Iron Induced by Myeloablative Chemotherapy. *British Journal of Haematology*. 99, 337–343.
- Breitbach, K., Jarvis, D.L. (2001). Improved Glycosylation of A Foreign Protein by *Tn*-5B1-4 Cells Engineered to Express Mammalian Glycosyltransferases. *Biotechnology And Bioengineering*. 74(3), 230-239.
- Bullen, J.J., Griffiths, E. (1999). Iron and Infection, Molecular, Physiological and Clinical Aspects. (2nd Edition). Chichester: John Wiley and Sons.
- Burgess, S. (1977). Molecular Weights of Lepidopteran Baculovirus DNAs: Derivation by Electron Microscopy. *The Journal of General Virology*. 37, 501-510.
- Carson, D.D. (1992) Proteoglycans in Development. In: Fukuda, M. (Ed.). Cell Surface Carbohydrates and Cell Development. (pp. 257-274). London: CRC Press.
- Castro, P.M.L., Ison, A.P., Hayte, P.M. and Bull, A.T. (1995). The Macroheterogeneity of Recombinant Human Interferon-γ Produced by Chinese Hamster Ovary Cells is Affected by The Protein and Lipid Content of The Culture Medium. *Biotechnology and Applied Biochemistry*. 21, 87-100.
- Chauhan, A., Chauhan, V., Brown, W.T. and Cohen, I. (2004). Oxidative Stress in Autism: Increased Lipid Peroxidation and Reduced Serum Levels of Ceruloplasmin and Transferrin – The Antioxidant Proteins. *Life Sciences*. 75, 2539–2549.
- Chiou, T.W., Hsieh, Y.C. and Ho, C.S. (2000). High Density Culture of Insect Cells using Rational Medium Design and Feeding Strategy. *Bioprocess Engineering*. 22, 483-491.

- Choi, O., Tomiya, N., Kim, J.H., Slavicek, J.M., Betenbaugh, M.J. and Lee, Y.C. (2003). N-Glycan Structures of Human Transferrin Produced by *Lymantria dispar* (Gypsy moth) Cells using The *Ld*MNPV Expression System. *Glycobiology*. 13(7), 539-548.
- Choudhury, D., Thakurta, P.G., Dasgupta, R., Sen, U., Biswas, S., Chakrabarti, C. and Dattagupta, J.K. (2002). Purification and Preliminary X-ray Studies on Hen Serotransferrin in Apo- and Holo-Forms. *Biochemical and Biophysical Research Communications*. 295,125–128.
- Chu, L. and Robinson, D.K. (2001). Industrial Choices for Protein Production by Large Scale Cell Culture. *Current Opinion in Biotechnology*. 12: 180-187
- Comings, D.E., Miguel, A.G. and Lesser, H.H. (1979). Nuclear proteins. VI. Fractionation of Chromosomal Non-Histone Proteins using Hydrophobic Chromatography. *Biochimica et Biophysica. Acta.* 563, 253–260.
- Cox, M.M.J (2004). Chapter 3: Commercial Production in Insect Cells-One Company's Perspective. *Bioprocess International*. 2(2), 34-38.
- Crowther, J.R. (1995). *Elisa: Theory and Practice*. Totowa, New Jersey: Human Press.
- Cumming, D.A. (1992). Physiological Relevance of Protein Glycosylation. Development in Biological. Standardization. 76, 83-94
- Cummings, R.D., Merkle, R.K. and Stults, N.L. (1989). Separation and analysis of glycoprotein oligosaccharides. *Methods in Cell Biology*. 32, 141-183.
- Davies, A.H. (1994). Current Methods for Manipulating Baculoviruses. *Bio/Technology*. 12, 47–50.