BAHAGIAN A – Pengesahan Kerjasama*

Adalah disahkar	n bahawa projek penyelidikan t	esis ini telah dilal	ksanakan n	nelalui
kerjasama antara	a	dengan		
Disahkan oleh:				
Tandatangan	:		Tarikh :	
Nama	:			
Jawatan	:			
(Cop rasmi)				
* Jika penyedia	aan tesis/projek melibatkan ker	jasama.		

BAHAGIAN B – Untuk Kegunaan Pejabat Sekolah Pengajian Siswazah

Tesis ini telah diperiksa dan diakui oleh:

Nama dan Alamat Pemeriksa Luar :	Dr. Nurina Anuar
	Department of Chemical & Process
	Engineering,
	Faculty of Engineering
	Universiti Kebangsaan Malaysia, Bangi
Nama dan Alamat Pemeriksa Dalam :	Dr. Ida Idayu Muhamad
	Jabatan Kejuruteraan Bioproses,
	Fakulti Kejuruteraan Kimia & Kejuruteraan
	Sumber Asli,
	Universiti Teknologi Malaysia, Skudai
Nama Penyelia Lain (jika ada) :	
Disahkan oleh Penolong Pendaftar di F	KKKSA:
Tandatangan :	Tarikh :
Nama :	

EFFECT OF SELECTIVE NUTRIENTS IN MEDIUM ON HUMAN SKIN FIBROBLASTS GROWTH AND METABOLISM

TING LEE YU

A thesis submitted in fulfillment of the requirements for the award of the degree of Master of Engineering (Bioprocess)

Faculty of Chemical and Natural Resources Engineering Universiti Teknologi Malaysia

JUNE 2008

To my beloved parents

ACKNOWLEDGEMENTS

First and foremost, praise to the Almighty God who from His mercies and blessings has enabled me to accomplish this thesis.

Next, I wish to express my heartfelt appreciation to my supervisor, P. M. Dr. Fadzilah Adibah Abd. Majid for her continuous guidance, support and encouragement throughout this research. I am also indebted to my co-supervisor, Prof. Dr. Ruszymah Bt. Hj. Idrus for her support and knowledge that she has shared during my research at Tissue Engineering Laboratory at HUKM. Thanks also to Dr. Chua Kien Hui for teaching the cell culture techniques.

To the Perpustakaan Sultanah Zanariah librarians, thank you for helping me to get access to all relevant literatures. I would like to express my profound gratitude to Bioprocess Engineering Department technicians, Pn. Siti Zalita, En. Nur, En. Yaakop, and En. Malek for their help whenever I was in the laboratory.

My fellow postgraduate friends at UTM and HUKM, especially Chen Chen and Lee Suan for giving help in every possible way. I cannot thank enough all my dear friends, especially Jinny, Oi Yee and Suang Pwu for their friendship. Brothers and sisters in Christ for their words of courage and prayers. They have indeed helped me to face the difficulties that I have encountered along the journey.

Last but not least, my deepest gratitude goes to my parents, brothers and sisters for their infinite support during these years. Their love has been my encouragement at all times. My extended thanks goes to my best friend, Terence Tan for his love and patience.

ABSTRACT

A thorough understanding of cell metabolism and physiology is necessary for medium optimization, where cells can improve their yield and increase their efficiency of medium utilization or minimize the formation of toxic by-products. The objectives of the present study are to investigate the effect of culture conditions on the growth of human skin fibroblasts, and to characterize human skin fibroblasts growth and metabolism. Growth profiles of human skin fibroblasts by using various donor skin biopsies, seeding densities (SD), medium volume to cell growth area ratio (VAR), interval between medium changes (IMC), and way medium changes (WMC) were studied. Experiments were also conducted to determine the consumption or production of glucose, glutamine, amino acid, lactate and ammonia by fibroblasts. Human skin fibroblasts were cultured and used after three passages. Cell proliferation was measured using trypan blue exclusion test and 3-(4,5dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay. Glucose, lactate and glutamine were measured using YSI biochemistry analyzer; amino acids were measured by gas chromatography; and ammonia was determined by enzymatic assay. The results show no significant difference on growth of human skin fibroblasts isolated from different donor skin biopsy. Fibroblasts with higher SD (1×10⁴cell/cm² and 2×10^4 cell/cm²) have shorter lag phase and population doubling time, and higher saturation density than the lower SD $(1 \times 10^3 \text{ cell/cm}^2 \text{ and } 2 \times 10^3 \text{ cell/cm}^2)$. Results also shown that fibroblasts cells could grow in VAR between 0.1-1.0ml/cm². Higher cell proliferation was obtained by fully changing the medium at IMC two days. Conditioned medium tested by WCM did not show any proliferative effect on fibroblasts. Percentage of nutrients consumption was 12.6% for glucose and 14.3% for glutamine; and percentage of metabolite production was 305.7% for lactate and 55.8% for ammonia. The overall apparent yield of lactate from glucose, Y'Lac.Glc (mmol mmol⁻¹) and overall apparent yield of ammonia from glutamine, Y'_{Amm.Gln} $(mmol mmol^{-1})$, was calculated to be 2.3 and 0.96 respectively.

ABSTRAK

Pemahaman mendalam mengenai metabolisme dan fisiologi sel adalah perlu untuk pengoptimuman medium, di mana sel boleh meningkatkan penghasilan dan keberkesanan menggunakan medium atau mengurangkan pembentukan hasil sampingan bertoksik. Objektif penyelidikan ini ialah mengkaji kesan kondisi kultur terhadap pertumbuhan fibroblast kulit manusia, dan mencirikan pertumbuhan dan metabolisme fibroblast kulit manusia. Kajian yang dijalankan termasuk mendapatkan profil pertumbuhan fibroblast kulit manusia dengan menggunakan biopsi kulit daripada penderma berlainan, kepekatan pembenihan (SD), nisbah isipadu medium kepada keluasan kawasan untuk sel tumbuh (VAR), jangka masa di antara penukaran medium (IMC), dan cara penukaran medium (WMC). Ujikaji juga dijalankan untuk menentukan penggunaan atau penghasilan glukosa, glutamin, asid amino, laktat dan amonia daripada kultur sel fibroblast. Fibroblast dikultur dan hanya digunakan untuk ujikaji selepas tiga penurunan. Pembiakan sel diukur dengan menggunakan ujian 'trypan blue exclusion' dan ujian '3-(4,5-dimethylthiazolyl-2)-2,5diphenyltetrazolium bromide' (MTT). Glukosa, laktat dan glutamin diukur dengan menggunakan alat penganalisis biokimia YSI, asid amino diukur menggunakan kromatografi gas, dan amonia ditentukan dengan ujian enzim. Keputusan menunjukkan tiada perbezaan pada pertumbuhan fibroblast kulit manusia yang diambil daripada biopsi kulit penderma berlainan. Fibroblast dengan SD tinggi $(1 \times 10^4 \text{ sel/sm}^2 \text{ and } 2 \times 10^4 \text{ sel/sm}^2)$ mempunyai fasa penangguhan dan masa penggandaan populasi yang singkat berbanding dengan SD rendah $(1 \times 10^{3} \text{ sel/sm}^{2} \text{ and}$ 2×10^{3} sel/sm²). Keputusan juga menunjukkan fibroblast boleh tumbuh dalam VAR di antara 0.1-1.0ml/sm². Pembiakan sel yang tinggi diperolehi dengan menukar medium sepenuhnya pada IMC dua hari. Medium kondisi yang diuji dengan WCM tidak menunjukkan sebarang kesan pembiakan pada fibroblast. Peratusan penggunaan nutrisi ialah 12.6% untuk glukosa dan 14.3% untuk glutamin; dan peratusan penghasilan metabolit ialah 305.7% untuk laktat dan 55.8% untuk amonia. Keberhasilan keseluruhan ketara bagi laktat daripada glukosa, Y'Lac.Glc (mmol mmol ¹) dan keberhasilan keseluruhan ketara bagi amonia daripada glutamin, Y'_{Amm.Gln} $(mmol mmol^{-1})$, masing-masing adalah 2.3 and 0.96.

TABLE OF CONTENTS

1

2

TITLE

PAGE

TITI	LE		i
DEC	LARAT	ΓΙΟΝ	ii
DED	ICATIO	DN	iii
ACK	NOWL	EDGEMENTS	iv
ABS	TRACT		v
ABS	TRAK		vi
ТАВ	LE OF	CONTENTS	vii
LIST	T OF TA	ABLES	xi
LIST	r of fi	GURES	xii
LIST	T OF SY	MBOLS/ABBREVIATIONS	xiv
LIST	r of Ap	PPENDICES	xvii
INTI	RODUC	TION	1
1.1	Prefac	ce	1
1.2	Objec	tives	5
1.3	Scope	28	5
LITI	ERATU	RE REVIEW	6
2.1	Skin		6
	2.1.1	Functions of the skin	6
	2.1.2	Structure of the skin	7
		2.1.2.1 Epidermis	8
		2.1.2.2 Dermis	10

2.2	Fibrot	plasts	10
	2.2.1	Fibroblasts in Culture	11
	2.2.2	Fibroblasts Limitation	12
2.3	Cell C	ulture	12
2.4	Cell G	rowth and Maintenance	13
	2.4.1	Inoculation of Cell	13
	2.4.2	Subculture of Cell	14
	2.4.3	The Phases of a Culture	15
2.5	Metab	olism of Cell	16
	2.5.1	Glucose Metabolic Pathway	16
	2.5.2	Amino Acids Metabolic Pathway	22
2.6	Cell M	fetabolism in Culture	24
	2.6.1	Glucose Metabolism in Culture	24
		2.6.1.1 Roles of Glucose	24
		2.6.1.2 Alternatives of Glucose	25
		2.6.1.3 Glucose by Product	25
		2.6.1.4 Glycolysis	26
	2.6.2	Amino Acids Metabolism in Culture	28
		2.6.2.1 Roles of Amino Acids	28
		2.6.2.2 Amino Acids Utilization	28
	2.6.3	Glutamine Metabolism in Culture	29
		2.6.3.1 Roles of Glutamine	29
		2.6.3.2 Glutamine Utilization	30
		2.6.3.3 Glutamine by Products	30
		S AND METHODS	32
3.1	Mater		32
	3.1.1		32
	3.1.2	Skin Source	33
3.2		ulture Method	33
	3.2.1	Cell Isolation	33
	3.2.2	Cell Counting	34
	3.2.3	Cell Maintenance	35
	3.2.4	Cell Splitting	35

3

	3.2.5	Cell Cryopreservation	36
	3.2.6	Cell Recovery	36
3.3	Prolife	eration Analysis	36
3.4	Mediu	ım Analysis	38
	3.4.1	D-Glucose (Dextrose), L-Lactate	38
		(L-Lactic Acid) and L-Glutamine	
	3.4.2	Ammonia	39
	3.4.3	Amino Acids	40
3.5	Detail	ed Experimental Procedures	41
	3.5.1	Fibroblasts Growth	42
		3.5.1.1 MTT Standard Curve	42
		3.5.1.2 Fibroblasts Growth Curve	42
		3.5.1.3 Effect of Inter Individual Variation	42
		on Fibroblasts Growth	
	3.5.2	Fibroblasts Culture Condition	43
		3.5.2.1 Effect of Cell Seeding Density on	43
		Fibroblasts Growth	
		3.5.2.2 Effect of Medium Volume to Cell	44
		Growth Area Ratio on Fibroblasts	
		Growth	
		3.5.2.3 Effect of Interval and Way	45
		Medium Changes on Fibroblasts	
		Growth	
	3.5.3	Fibroblasts Metabolism	46
3.6	Statist	ics	47
RESU	ULTS A	ND DISCUSSIONS	48
4.1	Fibrot	plasts Growth	48
	4.1.1	Fibroblasts Growth Curve	48
	4.1.2	Effect of Inter Individual Variation on	51
		Fibroblasts Growth	
4.2	Fibrol	plasts Culture Condition	53
	4.2.1	Effect of Cell Seeding Density on	53
		Fibroblasts Growth	

4

		4.2.2	Effect of Medium Volume to Cell Growth	55
			Area Ratio on Fibroblasts Growth	
			4.2.2.1 Using 96 well plate	55
			4.2.2.2 Using 24 well plate	57
		4.2.3	Effect of Interval and Way Medium	58
			Changes on Fibroblasts Growth	
			4.2.3.1 Effect of Interval between	58
			Medium Changes	
			4.2.3.2 Effect of Way Medium Changes	60
			on Fibroblasts Growth	
	4.3	Fibrob	lasts Metabolism	63
		4.3.1	Cell Growth and Cell Viability	63
		4.3.2	Glucose and Lactate Metabolism	64
		4.3.3	Glutamine and Ammonia Metabolism	69
		4.3.4	Amino Acid Metabolism	73
5	CONC	CLUSIC	DNS	80
	5.1	Fibrob	lasts Growth	80
	5.2	Fibrob	lasts Culture Condition	81
	5.3	Fibrob	lasts Metabolism	81
	5.4	Recom	mendations	82
REFERENC	ES			83

5

APPENDICES

92

LIST OF TABLES

TABLE NO.	TITLE	PAGE
3.1	Donor characteristics, skin biopsy sites and cells culture conditions	43
3.2	Conversion of cell concentration to cell density using VAR 0.2ml/cm ²	43
3.3	Volume of medium added according to VAR for 96-well plate	44
3.4	Volume of medium added according to VAR for 24-well plate	44
3.5	Schedule to change medium according to the interval between medium changes (2, 3, 4 days or unchanged) and way medium changes (partial change or total change)	46
4.1	Comparison of fibroblasts growth at different seeding density in 24-well plate without medium replacement	55
4.2	Metabolic quotients and yield ratios for glucose and lactate at different stage of culture	66
4.3	Metabolic quotients and yield ratios for glutamine and ammonia at different stage of culture	71
4.4	Amino acids consumption and production of human eyelid and abdomen skin	78

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE

2.1	Structure of the skin	8
2.2	The glycolytic pathway	18
2.3	The citric acid cycle	19
2.4	The pentose phosphate pathway	20
2.5	Glycolysis aerobic and anaerobic	20
2.6	Glycolysis and gluconeogenesis	21
2.7	The catabolism of amino acids	23
2.8	Families of amino acids based on biosynthetic pathways	23
3.1	The design of the overall experimental procedures	41
3.2	Way medium changes	45
4.1	Fibroblasts growth curve	49
4.2	Fibroblasts growth curve analysis	50
4.3	Comparison of fibroblasts growth between three donors	52
4.4	A series of fibroblasts cultures at four different seeding	54
	densities, 1×10^3 , 2×10^3 , 1×10^4 and 2×10^4 cells/cm ²	
4.5	Fibroblasts growth at day 1, 5, 7 and 9 for VAR ranges	56
	from 0.2 to 0.8 ml/cm ² in 96-well plate with growth area	
	0.31cm ² per well	
4.6	Fibroblasts growth at day 7 for VAR ranges from 0.1 to	57
	1.0ml/cm ² in 24-well plate with growth area 2cm ² per well	
4.7	Fibroblasts growth with various IMC	59
4.8	Fibroblasts growth with different way medium changes	61
	at IMC 2 days	

4.9	Fibroblasts growth with different way medium changes	62
	at IMC 3 days	
4.10	Fibroblasts growth with different way medium changes	62
	at IMC 4 days	
4.11	Fibroblasts growth at T-flask 25cm ² by means of cell	63
	density and viability determination	
4.12	Concentration of glucose and lactate in growth medium	65
4.13	Specific glucose and lactate rate at different stage of culture	66
4.14	Concentration of glutamine and ammonia in growth	70
	medium	
4.15	Specific glutamine and ammonia rate at different stage of	71
	culture	
4.16	Concentrations of essential amino acids above 0.15mM in	74
	growth medium	
4.17	Concentrations of essential amino acids below 0.1mM in	74
	growth medium	
4.18	Concentrations of non-essential amino acids in growth	75
	medium	
4.19	Concentrations of ornithine and proline-hydroxyproline in	75
	growth medium	
4.20	Variations of amino acids	76

LIST OF SYMBOLS/ABBREVIATIONS

AAA	-	α-aminoadipic acid
ABA	-	α-aminobutyric acid
acetyl-CoA	-	acetyl-coenzyme A
aILE	-	allo-isoleucine
ALA	-	alanine
Amm	-	ammonia
APA	-	α-aminopimelic acid
ARG	-	arginine
ASN	-	asparagine
ASP	-	aspartic acid/aspartate
ATP	-	adenosine triphosphate
BAIB	-	β-aminoisobutyric acid
C-C	-	cystine
CO_2	-	carbon dioxide
СТН	-	cystathionine
DBSS	-	dissection balanced salt solution
DMEM	-	Dulbelco's modified Eagle's media
DMEM/F12	-	Dulbelco's modified Eagle medium: nutrient mixture F-12
DMSO	-	dimethylsulphoxide
DNA	-	deoxyribonucleic acid
DPBS	-	Dulbelco phosphate-buffered salines
ECM	-	extracellular matrix
EDTA	-	ethylenediaminetetra-acetic acid
EGF	-	epidermal growth factors
EMP	-	Embden-Meyerhof-Parnas pathway,
FBS	-	fetal bovine serum
FID	-	flame ionization detector

GC	-	gas chromatography
Glc	-	glucose
GLDH	-	glutamate dehydrogenase
Gln	-	glutamine
GLU	-	glutamic acid/glutamate
GLY	-	glycine
GPR	-	glycyl-proline
H ₂ O	-	water
H_2O_2	-	hydrogen peroxide
HCl	-	hydrochloric acid
HIS	-	histidine
HLY	-	hydroxylysine
HMP	-	hexose monophosphate pathway
HYP	-	hydroxyproline
ILE	-	isoleucine
IMC	-	interval between medium changes
Lac	-	lactic acid/lactate
LEU	-	leucine
LYS	-	lysine
MEM	-	minimum essential medium Eagle
MET	-	methionine
MTT	-	3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide
Na	-	sodium
NAD^+	-	nicotinamide adenine dinucleotide (oxidized form)
NADH	-	nicotinamide adenine dinucleotide (reduced form)
$NADP^+$	-	nicotinamide adenine dinucleotide phosphate (oxidized form)
NADPH	-	nicotinamide adenine dinucleotide phosphate (reduced form)
NH ₃	-	ammonia
NHM	-	normal cultured human mesothelial
O_2	-	oxygen
OD	-	optical denstiy
ORN	-	ornithine
PD		population doubling
PDGF	-	platelet-derived growth factor

PHE-phenylalaninePHP-proline-hydroxyprolinePRO-prolineq _{Amm} -specific ammonia rateq _{Gle} -specific glucose rateq _{Lac} -specific glutamine rateq _{Lac} -specific lactate rateR ² -coefficient of correlationRNA-relative standard deviationSAR-seeding densitySAR-solid phase extractionSD-solid phase extractionTCA-tricarboxylic acid cycleTGFβ-tricarboxylic acid cycleTHR-tricarboxylic acid cycleTHR-tricarboxylic acid cycleTVA-utrovineTVA-tricarboxylic acid cycleTVR-utrovineTVR-utrovineVAL-valineVAL-utrovineVAR-way medium changesY' _{AmmGln} -apparent yield of ammonia from glutamineY' _{Lac.Gle} -apparent yield of lactate from glutose	PDT	-	population doubling time
PRO-prolineq _{Amm} -specific ammonia rateq _{Gle} -specific glucose rateq _{Lac} -specific glutamine rateq _{Lac} -specific lactate rateR ² -coefficient of correlationRNA-ribonucleic acidRSD-relative standard deviationSAR-secding densitySER-solid phase extractionTCA-tricarboxylic acid cycleTGFβ-tricarboxylic acid cycleTRP-threonineTRP-threonineTVR-tyytophanVAL-valineVAR-valineWMC-way medium changesY'_Amm.Gln-apparent yield of ammonia from glutamine	PHE	-	phenylalanine
qAmm-specific ammonia rateqGle-specific glucose rateqGln-specific glutamine rateqLac-specific lactate rateR ² -coefficient of correlationRNA-ribonucleic acidRSD-relative standard deviationSAR-secding densitySER-solid phase extractionTCA-tricarboxylic acid cycleTGFβ-tricarboxylic acid cycleTRP-threonineTRP-threonineTVR-typtophanVAL-valineVAR-valineWMC-valineY AmmuGin-way medium changesY AmmuGin-apparent yield of ammonia from glutamine	PHP	-	proline-hydroxyproline
qGle-specific glucose rateqGln-specific glutamine rateqLac-specific lactate rateR ² -coefficient of correlationRNA-ribonucleic acidRSD-relative standard deviationSAR-sarcosineSD-seeding densitySER-solid phase extractionTCA-tricarboxylic acid cycleTGFβ-triasforming growth factor betaTPR-thioprolineTRP-tyrosineUV-ultravioletVAR-volume to cell growth area ratioWMC-apparent yield of ammonia from glutamine	PRO	-	proline
q _{Gln} -specific glutamine rateq _{Lac} -specific lactate rateR ² -coefficient of correlationRNA-ribonucleic acidRSD-relative standard deviationSAR-sarcosineSD-seeding densitySER-solid phase extractionTCA-tricarboxylic acid cycleTGFβ-tricarboxylic acid cycleTHR-thioprolineTPR-thioprolineTYR-tyrosineUV-ultravioletVAR-volume to cell growth area ratioWMC-apparent yield of ammonia from glutamine	q_{Amm}	-	specific ammonia rate
qLac-specific lactate rateR2-coefficient of correlationRNA-ribonucleic acidRSD-relative standard deviationSAR-sarcosineSD-seeding densitySER-serineSPE-solid phase extractionTCA-tricarboxylic acid cycleTGFβ-transforming growth factor betaTPR-threonineTPR-thypophanTYR-tyrosineUV-ultravioletVAL-valineVAR-volume to cell growth area ratioWMC-apparent yield of ammonia from glutamine	q _{Glc}	-	specific glucose rate
R2-coefficient of correlationRNA-ribonucleic acidRSD-relative standard deviationSAR-sarcosineSD-seeding densitySER-serineSPE-solid phase extractionTCA-tricarboxylic acid cycleTGFβ-threonineTPR-threonineTRP-thioprolineTRP-tyrosineUV-ultravioletVAL-valineVAR-volume to cell growth area ratioWMC-apparent yield of ammonia from glutamine	q_{Gln}	-	specific glutamine rate
RNA-ribonucleic acidRSD-relative standard deviationSAR-sarcosineSD-seeding densitySER-serineSPE-solid phase extractionTCA-tricarboxylic acid cycleTGFβ-tricarboxylic acid cycleTHR-theonineTPR-thioprolineTRP-tyrosineUV-ultravioletVAL-valineVAR-valineWMC-way medium changesY' Anm,Gin-apparent yield of ammonia from glutamine	q_{Lac}	-	specific lactate rate
RSD-relative standard deviationSAR-sarcosineSD-seeding densitySER-serineSPE-solid phase extractionTCA-tricarboxylic acid cycleTGFβ-tricarboxylic acid cycleTHR-theonineTPR-thioprolineTYR-typtophanUV-ultravioletVAL-valineVAR-valineWMC-way medium changesY'AmmGln-apparent yield of ammonia from glutamine	\mathbb{R}^2	-	coefficient of correlation
SAR-sarcosineSD-seding densitySER-serineSPE-solid phase extractionTCA-tricarboxylic acid cycleTGFβ-transforming growth factor betaTHR-theonineTPR-thioprolineTYR-tryptophanVAL-valineVAL-valineVAR-way medium changesWMC-apparent yield of ammonia from glutamine	RNA	-	ribonucleic acid
SD- ωseeding densitySER- ωserineSPE- ωsolid phase extractionTCA- ωtricarboxylic acid cycleTGFβ- ωtransforming growth factor betaTHR- ωthreonineTPR- ωthioprolineTRP- ωtrytophanTYR- ωtyrosineUV- ωultravioletVAL- ωvalineVAR- ωvolume to cell growth area ratioWMC- ωaparent yield of ammonia from glutamine	RSD	-	relative standard deviation
SER-serineSPE-solid phase extractionTCA-tricarboxylic acid cycleTGFβ-transforming growth factor betaTHR-threonineTPR-thioprolineTRP-tyrosineUV-ultravioletVAL-valineVAR-valineWMC-way medium changesY'Anm,Gin-aparent yield of ammonia from glutamine	SAR	-	sarcosine
SPE-solid phase extractionTCA-tricarboxylic acid cycleTGFβ-transforming growth factor betaTHR-threonineTPR-thioprolineTRP-tryptophanTYR-tyrosineUV-ultravioletVAL-valineVAR-valineWMC-way medium changesY'Amm,Gin-aparent yield of ammonia from glutamine	SD	-	seeding density
TCA-Iticarboxylic acid cycleTGFβ-transforming growth factor betaTHR-threonineTPR-thioprolineTRP-tryptophanTYR-tyrosineUV-ultravioletVAL-valineVAR-volume to cell growth area ratioWMC-apparent yield of ammonia from glutamine	SER	-	serine
TGFβ-transforming growth factor betaTHR-threonineTPR-thioprolineTRP-tryptophanTYR-tyrosineUV-ultravioletVAL-valineVAR-volume to cell growth area ratioWMC-apparent yield of ammonia from glutamine	SPE	-	solid phase extraction
THR-threonineTPR-thioprolineTRP-tryptophanTYR-tyrosineUV-ultravioletVAL-valineVAR-volume to cell growth area ratioWMC-way medium changesY'Amm,Gin-apparent yield of ammonia from glutamine	TCA	-	tricarboxylic acid cycle
TPR-thioprolineTRP-tryptophanTYR-tyrosineUV-ultravioletVAL-valineVAR-volume to cell growth area ratioWMC-way medium changesY'Amm,Gln-apparent yield of ammonia from glutamine	TGFβ	_	transforming growth factor beta
TRP-IryptophanTYR-tyrosineUV-ultravioletVAL-valineVAR-volume to cell growth area ratioWMC-way medium changesY'Amm,Gln-apparent yield of ammonia from glutamine	THR	-	threonine
TYR-tyrosineUV-ultravioletVAL-valineVAR-volume to cell growth area ratioWMC-way medium changesY'Amm,Gln-apparent yield of ammonia from glutamine	TPR	-	thioproline
UV-ultravioletVAL-valineVAR-volume to cell growth area ratioWMC-way medium changesY'Amm,Gln-apparent yield of ammonia from glutamine	TRP	-	tryptophan
VAL-valineVAR-volume to cell growth area ratioWMC-way medium changesY'Amm,Gln-apparent yield of ammonia from glutamine	TYR	-	tyrosine
VAR-volume to cell growth area ratioWMC-way medium changesY'Amm,Gln-apparent yield of ammonia from glutamine	UV	-	ultraviolet
WMC-way medium changesY'Amm,Gln-apparent yield of ammonia from glutamine	VAL	-	valine
Y' _{Amm,Gln} - apparent yield of ammonia from glutamine	VAR	-	volume to cell growth area ratio
	WMC	-	way medium changes
Y' _{Lac,Glc} - apparent yield of lactate from glucose	Y' _{Amm,Gln}	-	apparent yield of ammonia from glutamine
	$Y'_{Lac,Glc}$	-	apparent yield of lactate from glucose

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

A	Nutrients Composition in DMEM/F12 (1:1) Medium	92
В	Fibroblasts Photo in Culture	93
С	MTT Assay Standard Curve for Fibroblasts	94
D	Chromatogram of Standard Amino Acids	95
E	Calibration Curves for Amino Acids	96
F	Calculation of Specific Growth Rate and Population	100
	Doubling Time	
G	Calculation of Metabolic Quotients in Flask Culture	102
Н	Statistic Analysis	103
H-1	Effect of Inter Individual Variation on Fibroblasts Growth	103
H-2	Effect of Cell Seeding Density on Fibroblasts Growth	104
Н-3	Effect of Medium Volume to Cell Growth Area Ratio on	105
	Fibroblasts Growth (Using 96-well plate)	
H-4	Effect of Medium Volume to Cell Growth Area Ratio on	107
	Fibroblasts Growth (Using 24-well plate)	
H-5	Effect of Interval between Medium Changes on	108
	Fibroblasts Growth	
H-6	Effect of Way Medium Changes on Fibroblasts Growth	110
H-7	Fibroblasts Metabolism	111
H-8	Variations of Amino Acids	114

CHAPTER 1

INTRODUCTION

1.1 Preface

Human skin fibroblasts are the major cell type in the dermis for synthesis and reorganization of ECM (extracellular matrix) components during wound repair. In addition, they are capable of secreting factors that regulate the growth and differentiation of other cells (Tuan *et al.*, 1994).

Fibroblasts are a well established system for *in vitro* analysis of cell growth (Yamada *et al.*, 2004), migration, and collagen metabolism (Nawrat *et al.*, 2005). They have been used to study skin aging (Chung *et al.*, 1996; Péterszegi, 2003), wound healing (Morykwas and Mark, 1998), genetic disorder (Paradisi *et al.*, 2005; Jones *et al.*, 2004), disease (Millioni *et al.*, 2008), evaluating cosmetic formulations toxicity (Losio *et al.*, 1999) and chemical cytotoxicity (Hidalgo and Domnguez, 1998; Shrivastava *et al.*, 2005).

In clinical use, fibroblasts are used to produce tissue engineered skin for coverage and healing of wound by burns and ulcers (Saltzman, 2004).

In recent years, the reconstruction of human tissue engineering skin has produced several marketed models, which vary from the simple to the complex system. These skin substitutes composed of autologous epidermal cell sheets (Epicel[®], Laserskin[®]), dermal substrates (Alloderm[®], Dermagraft[®]) and temporary coverings (Transcyte[®]). In addition, human skin equivalents composed of living epidermis and dermis are now available (Apligraf[®], OrCelâ[®]) (Ritter *et al.*, 2005).

One disadvantage of those tissue engineered skin is their relatively high cost. Approximately cost per square cm for the above commercial skin substitutes, ranges from \$6.86 to \$16.52 (Jones *et al.*, 2002). Patients benefit may only be realized by its reduced costs. Factors that contribute to its cost are low proliferation rate, relatively high costs of medium components and the need for high purity biochemicals and water for culturing.

To meet these demands or reduce the cost, medium optimization is an avenue that can be explored. The cells can be manipulated to improve their yield and increase their efficiency of medium utilization or minimize the formation of toxic byproducts. Media used for cell growth are often based on commercially available media, in which the amount of nutrient present is not necessarily balanced with cell requirements and are not necessarily optimal for the cells used (Vriezen *et al.*, 1997).

A deeper understanding of cell metabolism and physiology is necessary to overcome these problems and for further improvements in process performance of cells for the industrial production. Such knowledge will contribute to a better understanding about the state of the cultivation and the metabolic demands of nutrients in culture medium, as well as to initiate the appropriate control actions to increase cell growth and product yields (Cruz *et al.*, 1999).

Cell metabolism is complicated and not fully understood. Metabolism of nutrients varies, depending on the culture environment as well as differences in the cell line (Xie and Wang, 1994). Despite many differences in the nutritional requirements of cell lines, some trends are apparent (Thomas, 1986).

Cells require many essential nutrients, such as glucose, amino acids, vitamins, inorganic salts and serum components in order to survive and grow *in vitro*. The concentrations of glucose, amino acids and vitamins in the culture medium affect the cell growth rate (Xie and Wang, 1994). A typical growth medium of cell culture contains glucose, glutamine, nonessential and essential amino acids, and mineral salts (example: Dulbelco's modified Eagle's media, DMEM) (Shuler and Kargi, 2002).

Glucose is important in cell culture due to it central role as a carbon and energy source. Glucose is converted to pyruvate by glycolysis which is then converted partly to CO_2 and H_2O by the tricarboxylic acid cycle (TCA) cycle to produce energy, partly to lactate, and partly to fatty acids. Through the pentose phosphate pathway, glucose is utilized for biomass synthesis. Cells are also capable of synthesizing glucose from pyruvate by the gluconeogenesis pathway (Shuler and Kargi, 2002).

Glutamine is another important energy and carbon source in cells. Its requirement is far greater than other amino acid. Glutamine enters into the TCA cycle through the process of glutaminolysis to yield carbon skeletons for other amino acids and to yield ATP, CO_2 and H_2O . Part of the glutamine is also deaminated to yield ammonium and glutamate, which is converted to other amino acids for biosynthesis purposes (Shuler and Kargi, 2002). The metabolism of glutamine and glucose is interactive (Zielke *et al.*, 1978).

The release of lactate and ammonia as waste products of metabolism is probably the most important cause of growth limitation in batch cultures. Limitation of soluble oxygen (Kashiwagura *et al.*, 1984), breakdown products of medium

REFERENCES

- Azzarone, B. and Macieirea-Coelho, A. (1982). Heterogeneity of the Kinetics of Proliferation within Human Skin Fibroblastic Cell Populations. *Journal of Cell Science*. 57, 177-87.
- Balin, A. K., Goodman, B. P., Rasmussen, H., and Cristofalo, V. J. (1976). The Effect of Oxygen Tension on the Growth and Metabolism of WI-38 Cells. *Journal of Cellular Physiology*. 89, 235-250.
- Barngover, D., Thomas, J. and Thilly, W. G. (1985). High Density Mammalian Cell Growth in Leibovitz Bicarbonate-Free Media Formula: Effects of Fructose and Galactose in Culture Biochemistry. *Journal of Cell Science*. 78, 173-189.
- Bellon, G., Chaqour, B., Wegrowski, Y., Monboisse, J. C. and Borel, J. P. (1995). Glutamine Increases Collagen Gene Transcription in Cultured Human Fibroblasts. *Biochimica et Biophysica Acta*. 1268, 311-323.
- Bender, D. A. (1975). Amino Acid Metabolism. London: John Wiley & Sons.
- Bissell, D. M., Levine, G. A. and Bissell, M. J. (1978). Glucose Metabolism by Adult Hepatocytes in Primary Culture and by Cell Lines from Rat Liver. *The American Journal of Physiology*. 234, 122-130.
- Boerner, P., Resnick, R. J. and Racker, E. (1985). Stimulation of Glycolysis and Amino Acid Uptake in NRK-49F Cells by Transforming Growth Factor. *Proceedings of the National Academy of Sciences of the United States of America*. 82, 1350-1353.
- Boraldi, F., Annovi, G., Paolinelli-Devincenzi, C., Tiozzo, R. And Quaglino, D. (2008). The Effect of Serum Withdrawal on the Protein Profile of Quiescent Human Dermal Fibroblasts in Primary Cell Culture. *Proteomics*. 8(1), 66-82.

- Bouwstra, J. A., Dubbelaar, F. E. R. and Gooris, G. S. (2000). The Lipid Organisation in the Skin. In Lai, M., Lillford, P. J., Naik, V. M. and Prakash, V. (Eds.). Supramolecular and Colloidal Structures in Biomaterial and Biosubstrates. (pp. 19-32). UK: Imperial College Press and The Royal Society.
- Brand, K., Williams, J. F. and Weidemann, M. J. (1984). Glucose and Glutamine Metabolism in Rat Thymocytes. *The Biochemical Journal*. 221, 3535-3538.
- Burgener, A. and Butler, M. (2006). Medium Development. In Ozturk, S. S. and Hu,
 W. S. (Eds.). *Cell Culture Technology for Pharmaceutical and Cell-Based Therapies*. (pp. 53-54). Boca Raton, FL: Taylor & Francis Group.
- Burn, R. L., Rosenberger, P. G. and Klebe, R. J. (1976). Carbohydrate Preferences of Mammalian Cells. *Journal of Cellular Physiology*. 88, 307-316.
- Butler, M. (Ed.) (2004). Animal Cell Culture and Technology. London and New York: Garland Science/BIOS Scientific Publishers.
- Campbell, M. K. (1995). *Biochemistry*. (2nd ed.). US: Sauders College Publishing.
- Campbell, M. K. and Farrell, S. O. (2003). *Lecture Notebook for Campbell and Farrell's Biochemistry*. (4th ed.). US: Thomson Learning.
- Chung, J. H., Youn, S. H., Kwon, O. S., Eun, H. C., Kim, K. H., Park, K. C., Cho, K.
 H. and Youn, J. I. (1996). Enhanced Proliferation and Collagen Synthesis of Human Dermal Fibroblasts in Chronically Photodamaged Skin. *Photodermatology photoimmunology & photomedicine*. 12(2), 84-89.
- Cruz, H. J., Freitas, C. M., Alves, P. M., Moreira, J. L. and Carrondo, M. J. T. (2000). Effects of Ammonia and Lactate on Growth, Metabolism, and Productivity of BHK Cells. *Enzyme and Microbial Technology*. 27, 43–52.
- Cruz, H. J., Moreira, J. L. and Carrondo, M. J. T. (1999). Metabolic Shifts by Nutrient Manipulation in Continuous Cultures of BHK Cells. *Biotechnology* and Bioengineering. 66(2), 104-113.
- David, H. C. (1993). Essential Histology. Philadelphia: J. B. Lippincott Company.
- Doyle, A. and Griffiths, J. B. (Eds.) (1998). *Cell and Tissue Culture: Laboratory Procedures in Biotechnology*. New York: John Wiley & Sons Ltd.

- Duval, D., Geahel, I., Dufau, A. F. and Hache, J. (1989). Effect of Amino Acids on the Growth and Productivity of Hybridoma Cell Cultures. In Spier, R. E., Griffiths, J. B., Stephenne, J. and Crooy, P. J. (Eds.). Advances in Animal Cell Biology and Technology for Bioprocesses. (pp. 257-259). Great Britain: Butterworths.
- Eagle, H. (1955). Nutrition Needs of Mammalian Cells in Tissue Culture. *Science*. 122, 501-504.
- Eagle, H. (1959). Amino Acid Metabolism in Mammalian Cell Cultures. *Science*. 130, 432-437.
- Eagle, H., Barban, S., Levy, M., and Schuze, H. O. (1958). The Utilization of Carbohydrates by human cell cultures. *Journal of Biological Chemistry*. 233(3), 551-558.
- El-Ghalbzouri, A., Gibbs, S., Lamme, E., Van Blitterswijk, C. A. and Ponec, M. (2002). Effect of Fibroblasts on Epidermal Regeneration. *British Journal of Dermatology*. 147, 230-243.
- Freshney, R. I. (2000). Culture of Animal Cells. (4th ed.). Canada: Wiley-Liss, Inc.
- Goldstein, S. and Trieman, G. (1975). Glucose Consumption by Early and Late-Passage Diploid Human Fibroblasts during Growth and Stationary Phase. *Experientia*. 2, 177-180.
- Goulet, F., Poitras, A., Rouabhia, M., Cusson, D., Germain, L and Auger, F. A. (1996). Stimulation of Human Keratinocytes Proliferation through Growth Factor Exchanges with Dermal Fibroblasts *in vitro*. *Burns*. 22(2), 107-112.
- Ham, R. G., Hammond, S. L. and Miller, L. L. (1977). Critical Adjustment of Cysteine and Glutamine Concentrations for Improved Clonal Growth of WI-38 Cells. *In Vitro*. 13, 1-10.
- Hansen, H. A. and Emborg, C. (1992). Complex Medium Supplements Give Difficulties When Investigating Mammalian Cell Physiology. In Spier, R. E., Griffiths, J. B. and MacDonald, C. (Eds.). Animal Cell Technology: Developments, Processes and Products. (pp. 248-250). Great Britain: Butterworth-Heinemann.
- Hidalgo E. and Domnguez C. (1998). Study of Cytotoxicity Mechanisms of Silver Nitrate in Human Dermal Fibroblasts. *Toxicology Letters*. 98(3), 169-179.
- Jones, I., Currie, L. and Martin, R. (2002). A Guide to Biological Skin Substitutes. *British Journal of Plastic Surgery*. 55, 185-193.

- Jones, P. M., Butt Y. M. and. Bennett, M. J. (2004). Effects of Odd-Numbered Medium-Chain Fatty Acids on the Accumulation of Long-Chain 3-Hydroxy-Fatty Acids in Long-Chain L-3-Hydroxyacyl CoA Dehydrogenase and Mitochondrial Trifunctional Protein Deficient Skin Fibroblasts. *Molecular Genetics and Metabolism.* 81(2), 96-99.
- Kashiwagura, T., Wilson, D. F. and Erecinska, M. (1984). Oxygen Dependent of Cellular Metabolism. *Journal of Cellular Physiology*. 120, 13-18.
- Kaufman, M. and Pinsky, L. (1973). Skin Biopsy Site and Biology of Fibroblast Strains. *Lancet.* ii, 1202-1203.
- Lam, P. K. (1999). Evaluation of Human Skin Substitute for Burn wound Coverage based on Cultured Epidermal Autograft. Doctor Philosophy. The Chinese University of Hong Kong.
- Lamb, J. and Wheatley, D. N. (2000). Single Amino Acid (Arginine) Deprivation Induces G1 Arrest Associated with Inhibition of Cdk4 Expression in Cultured Human Diploid Fibroblasts. *Experimental Cell Research*. 255, 238–249.
- Lechner, J. F., Laveck, M. A., Gerwin, B. I. and Matis, E. A. (1989). Differential Responses to Growth Factors by Normal Human Mesothelial Cultures from Individual Donors. *Journal of Cellular Physiology*. 139, 295-300.
- Lemonnier, F., Gautier, M., Wolfrom, C. and Lemonnier, A. (1980). Metabolic Differences Between Human Skin and Aponeurosis Fibroblasts in Culture. *Journal of Cellular Physiology*. 104, 415-423.
- Litwin, J. (1972). Human Diploid Cell Response to Variations in Relative Amino Acid Concentrations in Eagle Medium. *Experimental Cell Research*. 72(2), 566-568.
- Losio, N., Bertasi, B., D'Abrosca, F., Ferrari, M., Avalle, N., and Fischbach, M. (1999). In Vitro Product Safety Evaluation: A Screening Study on a Series of Finished Cosmetic Products. Alternatives to Laboratory Animals. 27, 351.
- Mammone, T., Gan, D. and Foyouzi-Youssefi, R. (2006). Apoptotic Cell Death Increases with Senescence in Normal Human Dermal Fibroblast Cultures. *Cell Biology International*. 30(11), 903-909.
- Marieb, E. N. (1997). *Essentials of Human Anatomy and Physiology*. (5th ed.). California: Benjamin/Cummings Publishing Company.

- Mayne, L. V., Price, T. N. C., Moorwood, K. and Burke, J. F. (1996). Development of Immortal Human Fibroblast Cell Lines. In Freshney, R. I. and Freshney, M. G. (Eds.). *Culture of Immortalized Cells*. (pp. 77-93). New York: John Wiley & Sons.
- McKay, N. D., Robinson, B., Brodie, R. and Rooke-Allen, N. (1983). Glucose Transport and Metabolism in Cultured Human Skin Fibroblasts. *Biochimica et Biophysica Acta*. 762, 198-204.
- McKee, T. and McKee, J. R. (2003). *Biochemistry: The Molecular Basis of Life*. (3rd ed.). New York: McGraw-Hill.
- Millioni, R., Iori, E., Puricelli, L., Arrigoni, G., Vedovato, M., Trevisan, R. James, P., Tiengo, A. and Tessari, P. (2008). Abnormal Cytoskeletal Protein Expression in Cultured Skin Fibroblasts from Type 1 Diabetes Mellitus Patients with Nephropathy: A Proteomic Approach. *Proteomics-Clinical Applications*. 2(4), 492-503.
- Millis, A. J. T., Hoyle, M. and Field, B. (1977). Human Fibroblast Conditioned Media Contains Growth-Promoting Activities for Low Density Cells. *Journal* of Cellular Physiology. 93(1), 17-24.
- Minuth, W. W., Strehl., R. and Schumacher, K. (2005). *Tissue Engineering Essentials for Daily Laboratory Work.* Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.
- Morykwas, M. J. and Mark, M. W. (1998). Effects of Ultraviolet Light on Fibroblast Fibronectin Production and Lattice Contraction. Wounds 10(4), 111-117.
- Mosmann, T. (1983). Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. *Journal of Immunological Methods*. 65, 55-63.
- Ongkudon, C. M. (2006). Optimization of Recombinant Human Transferrin Expression in Insect Cells Baculovirus System. Master Thesis. Universiti Teknologi Malaysia, Skudai.
- Nawrat, P., Surażyński, A., Karna, E. and Pałka, J. A. (2005). The Effect of Hyaluronic Acid on Interleukin-1-Induced Deregulation of Collagen Metabolism in Cultured Human Skin Fibroblasts. *Pharmacological Research*. 51(5), 473-477.
- Nelson, D. L. and Cox, M. M. (2005). *Principles of Biochemistry*. (4th ed.). New York: Freeman.

- Palsson, B. Ø. and Bhatia, S. N. (2004). *Tissue Engineering*. New Jersey: Pearson Prentice Hall.
- Paradisi, M., McClintock, D., Boguslavsky, R. L., Pedicelli, C., Worman, H. J. and Djabali, K. (2005). Dermal Fibroblasts in Hutchinson-Gilford Progeria Syndrome with the Lamin A G608G Mutation have Dysmorphic Nuclei and are Hypersensitive to Heat Stress. *Cell Biology*. 6, 27.
- Pardridge, W. M. and Casanello-Ert1, D. (1979). Effects of Glutamine Deprivation on Glucose and Amino Acid Metabolism in Tissue Culture. *The American Journal of Physiology*. 236, 234-238.
- Paul, J. (1965). Carbohydrate and Energy Metabolism. In Willmer, E. N. (Ed.). Cells and Tissue Culture. (pp. 239-268). New York: Academic Press.
- Peng, L., Gu, L., Zhang, H., Huang, X., Hertz, E. and Hertz, L. (2007). Glutamine as an Energy Substrate in Cultured Neurons during Glucose Deprivation. *Journal of Neuroscience Research*. 85(15), 3480-3486.
- Péterszegi, G., Isnard, N., Robert, A. M. and Robert, L. (2003). Studies on Skin Aging. Preparation and Properties of Fucose-Rich Oligo- and Polysaccharides.
 Effect on Fibroblast Proliferation and Survival. *Biomedecine & Pharmacotherapy*. 57(5-6), 187-194.
- Racker, E., Resnick, R. J. and Feldman, R. (1985). Glycolysis and Methylaminoisobutyrate Uptake in Rat-1 Cells Transfected with ras or myc Oncogenes. *Proceedings of the National Academy of Sciences of the United States of America*. 82, 3535-3538.
- Reff, M. and Schneider, E. L. (1981). Cell Culture Aging. *Molecular and Cellular Biochemistry*. 36, 169-176.
- Reitzer, L. J., Wice, B. M. and Kennell, D. (1979). Evidence That Glutamine, not Sugar, is the Major Energy Source for Cultured HeLa Cells. *Journal of Biological Chemistry*. 254, 2669-2676.
- Reitzer, L. J., Wice, B. M. and Kennell, D. (1980). The Pentose Cycle: Control and Essential Function in HeLa Cell Nucleic Acid Synthesis. *Journal of Biological Chemistry*. 255, 5616-5626.
- Ritter, A. B., Reisman, S. and Michniak, B. B. (2005). *Biomedical Engineering Principles*. Boca Raton, FL: Taylor & Francis Group.

- Ryan, C. A., Lee, S. Y. and Nadler, H. L. (1972). Effect of Culture Conditions on Enzyme Activities in Cultivated Human Fibroblasts. *Experimental Cell Research*. 71, 388-392.
- Ryan, J. M., Sharf, B. B. and Cristofalo, V. J. (1975). The Influence of Culture Medium Volume on Cell Density and Lifespan of Human Diploid Fibroblasts. *Experimental Cell Research*. 91(2), 389-392.
- Salter, D. W. and Cook, J. S. (1976). Reversible Independent Alterations in Glucose Transport and Metabolism in Cultured Human Cells Deprived of Glucose. *Journal of Cellular Physiology*. 89, 143-156.
- Saltzman, W. M. (2004). *Tissue Engineering: Principles for the Design of Replacement Organ and Tissues*. New York: Oxford University Press.
- Scannell, J. and Morgan, M. J. (1982). The Regulation of Carbohydrate Metabolism in Animal Cells: Isolation of Starch- and Maltose-Utilizing Variants. *Bioscience Reports*. 2, 99-106.
- Schlaeger, E. J. and Schumpp, B. (1989). Studies on Mammalian Cell Growth in Suspension Culture. In Spier, R. E., Griffiths, J. B., Stephenne, J. and Crooy,
 P. J. (Eds.) Advances in Animal Cell Biology and Technology for Bioprocesses.(pp. 386-396). Great Britain: Butterworth.
- Schneider, E. L., Mitsul, Y., Au, K. S. and Shorr, S. S. (1977). Tissue Specific Differences in Cultured Human Diploid Fibroblasts. *Experimental Cell Research*. 108, 1-6.
- Schneider, M., Marison, I. W. and Stockar, U. (1996). The Importance of Ammonia in Mammalian Cell Culture. *Journal of Biotechnology*, 46, 161-185.
- Shrivastava, H. Y., Ravikumar, T., Shanmugasundaram, N., Babu, M. and Nair, B. U. (2005). Cytotoxicity Studies of Chromium (III) Complexes on Human Dermal Fibroblasts. *Free Radical Biology and Medicine*. 38(1), 58-69.
- Shuler, M. L. and Kargi, F. (2002). *Bioprocess Engineering Basic Concepts*. (2nd ed.). Upper Saddle River, N. J.: Prentice Hall PTR.
- Sullivan, S. J., Roberts, R. J. and Spitz, D. R. (1991). Replacement of Media in Cell Culture Alters Oxygen Toxicity: Possible Role of Lipid Aldehydes and Glutathione Transferases in Oxygen Toxicity. *Journal of Cellular Physiology*. 147(3), 427-433.

- Sussman, I., Erecinska, M. and Wilson, D. F. (1980). Regulation of Cellular Energy Metabolism, the Crabtree Effect. *Biochimica et Biophysica Acta*. 591, 209-223.
- Thomas, J. N. (1986). Nutrients, Oxygen, and pH. In Thilly, W. G. (Ed.). *Mammalian Cell Technology*. (pp. 109-130). Stoneham, M. A.: Butterworths.
- Thomas, J. N. (1990). Mammalian Cell Physiology. In Lubiniecki, A. S. (Ed.). Large-Scale Mammalian Cell Culture Technology. (pp. 93-145). New York: Marcel Dekker, Inc.
- Tuan, T. L., Keller, L. C., Sun, D., Nimni, M. E. and Cheung, D. (1994). Dermal Fibroblasts Activate Keratinocyte Outgrowth on Collagen Gels. *Journal of Cell Science*. 107, 2285-2289.
- Turkington, C. A. and Dover, J. S. (1996). Skin Deep: An A-Z of Skin Disorders, Treatments and Health. New York: Facts On File.
- Vriezen, N., Romein, B., Luyben, K. C. A. M. and Dijken, J. P. V. (1997). Effects of Glutamine Supply on Growth and Metabolism of Mammalian Cells in Chemostat Culture. *Biotechnology and Bioengineering*. 54(3), 272-286.
- Warburg, O. (1930). The Metabolism of Tumours. London: Constable.
- Wilmer, L., Sibbitt, J., Mills, R. G., Bigler, C. F., Eaton, R. P., Griffey, R. H. and Vanderjagt, D. L. (1989). Glucose Inhibition of Human Fibroblasts Proliferation and Response to Growth Factors is Prevented by Inhibitors of Aldose Reductase. *Mechanisms of Ageing and Development*. 47(3), 265-279.
- Wolfrom, C., Loriette, C., Polini, G., Delhotal, B., Lemonnier, F. and Gautier, M. (1983). Comparative Effects of Glucose and Fructose on Growth and Morphological Aspects of Cultured Skin Fibroblasts. *Experimental Cell Research.* 149, 535-546.
- Wolfrom, C., Kadhom, N., Polini, G., Poggi, J., Moatti, N. and Gautier, M. (1989). Glutamine Dependency of Human Skin Fibroblasts: Modulation by Hexoses. *Experimental Cell Research*. 183, 303-318.
- Xie, L. and Wang, D. I. C. (1994). Stoichiometric Analysis of Animal Cell Growth and Its Application in Medium Design. *Biotechnology and Bioengineering*. 43(11), 1164-1174.
- Yamada, H., Igarashi, Y., Takasu, Y., Saito, H. and Tsubouchi, K. (2004). Identification of Fibroin-Derived Peptides Enhancing the Proliferation of Cultured Human Skin Ffibroblasts. *Biomaterials*. 25(3), 467-472.

- Yamauchi, K., Komatsu, T., Kulkarni, A. D., Ohmori, Y., Minami, H., Ushiyama, Y., Nakayama, M. and Yamamoto, S. (2002). Glutamine and Arginine Affect Caco-2 Cell Proliferation by Promotion of Nucleotide Synthesis. *Nutrition*. 18, 329.
- Yannas, I. V. (2000). Artificial Skin and Dermal Equivalents. In Bronzino, J. D. (Ed.). *The Biomedical Engineering Handbook*. (2nd ed.). Boca Raton: CRC Press LLC.
- Zeng, A. P. and Bi, J. X. (2006). Cell Culture Kinetics and Modeling. In Ozturk, S. S. and Hu, W. S. (Eds.). Cell Culture Technology for Pharmaceutical and Cell-Based Therapies. (pp. 299-348). Boca Raton, FL: Taylor & Francis Group.
- Zielke, H. R., Ozand, P. T., Tildon, J. T., Sevdalian, D. A. and Cornblath, M. (1976). Growth of Human Diploid Fibroblasts in the Absence of Glucose Utilization. *Proceedings of the National Academy of Sciences of the United States of America*. 73, 4110-4114.
- Zielke, H. R., Sevdalian, D. A., Cornblath, M., Ozand, P. T. and Tildon, J. T. (1978). Reciprocal Regulation of Glucose and Glutamine Utilization by Cultured Human Diploid Fibroblasts. *Journal of Cellular Physiology*. 95, 41-48.
- Zielke, H. R., Sumbilla, C. M. and Ozand, P. T. (1981). Effect of Glucose on Aspartate and Glutamate Synthesis by Human Diploid Fibroblasts. *Journal of Cellular Physiology*.107, 251-254.
- Zielke, H. R., Sumbilla, C. M., Sevdalian, D. A., Hawkins, R. L. and Ozand, P. T. (1980). Lactate: A Major Product of Glutamine Metabolism by Human Diploid Fibroblasts. *Journal of Cellular Physiology*. 104, 433-441.
- Zielke, H. R., Sumbilla, C. M., Zielke, C. L., Tildon, J. T., and Ozand, P. T. (1984a).
 Glutamine Metabolism by Cultured Mammalian Cells. In Haussinger, D. and
 Sies, H. (Eds.). *Glutamine Metabolism in Mammalian Tissues*. (pp. 247-254).
 Berlin: Springer-Verlag.
- Zielke, H. R., Zielke, C. L. and Ozand, P. T. (1984b). Glutamine: A Major Energy Source for Cultured Mammalian Cells. *Federation Proceedings*. 43, 21-125.