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ABSTRACT 

 
 
 
 

 Most of the oil and gas jacket platforms in Malaysia have exceeded their design 
life span with various underwater structural irregularities. Through the bow-tie risk 
assessment approach, it is predicted that there  could be potential threats of hazard due 
to the unreliable procedure used to determine the load coefficient (ߙ) value which 
could contribute to the failure in structure caused by extreme wave-in-deck. This issue 
is  attributed to the unreliable procedure used to determine a load coefficient (ߙ) value 
for wave height maximum limit (ܪோௌோ) at ݈݅݉݅݃݊݅ݐ	ܴܴܵ value in limit state equation. 
In practice, a range of 1.7 to 2.0 of load coefficient (ߙ) value of 1.7 is recommended 
for practical application without considering an alternative reliable procedure to 
determine the appropriate values for a specific location and type of structure. In 
addition, the current practice to determine the appropriate load coefficient (ߙ) value is 
by site measurement monitoring which is very costly and inefficient for offshore 
works. The study herein aims to develop a new alternative reliable procedure for load 
coefficient (ߙ) determination, particularly for structural reliability assessment of 
ageing offshore oil and gas jacket platforms. A risk-based assessment (RBA) has been 
widely practised by the industry and it is based on the design code for fixed offshore 
structures that utilize the probabilistic model approach on load model (wave load) and 
load strength (load resistance) of limit state equation. Global Ultimate Strength 
Assessment (GUSA), which has been developed by PETRONAS, is one of the 
methods used in the study to compare the probability of failure (ܱܲܨ) and return 
period (RP) against ISO 19902. The results demonstrate that the most reliable 
procedure of load coefficient (ߙ) range from 1.7 to 2.1 with eight  (8) percent in 
coefficient of variance (COV) for the load model method. The accurate load 
coefficient (ߙ) value was determined by the structure’s experiencing wave loading by 
at least two (2) prescribed return period (RP) at the long-term probability distribution. 
The ratio between the proposed and standard practice of load coefficient (ߙ) was 
determined and evaluated for the platforms studied. In this study, a comparison 
between standard practice and the proposed reliable procedures indicates that the 
standard procedure systematically overestimate the structural probability of failure 
 by up to 74 percent. Meanwhile, the return period (RP) is significantly (ܨܱܲ)
underestimated by the standard practice at five (5) times lower than the proposed 
procedure. Results also indicate that the structure configuration, subsidence effect and 
extreme water level influence the selection of load coefficient (ߙ) value. The results 
generated comply with the standard compliance of value delivery and classification of 
benefits to the platform operator and thus, are beneficial economically in terms of 
resources optimisation and platform’s reassessment. 
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ABSTRAK 

 
 
 
 
 Kebanyakan pelantar jaket di Malaysia telah melebihi had limit reka bentuk, 
termasuk keadaan struktur di bawah air. Dijangkakan dalam pendekatan risiko 
penilaian bow-tie, potensi ancaman bahaya adalah prosedur yang tidak tepat untuk 
menentukan nilai pekali beban (ߙ) yang mengakibatkan kegagalan struktur disebabkan 
oleh paras air yang melampau. Ini berkaitan dengan ketidakpastian kaedah untuk 
menentukan nilai pekali beban pada had ketinggian ombak maksimum (ܪோௌோ) 
ditetapkan untuk kadar ݈݅݉݅ݐ	ܴܴܵ bagi persamaan had. Secara praktikal, beban nilai 
pekali (ߙ) dalam lingkungan 1.7 hingga 2.0 digunakan untuk perairan di Malaysia. 
Walau bagaimanapun, beban nilai pekali (ߙ) 1.7 disyorkan untuk penggunaan 
praktikal tanpa kaedah alternatif bagi menentukan nilai sesuai pada lokasi tertentu dan 
jenis struktur. Di samping itu, secara praktisnya untuk menentukan nilai pekali beban 
 yang sesuai adalah dengan pemerhatian di lapangan yang mana memerlukan kos (ߙ)
yang tinggi dan tidak efisien untuk kerja-kerja luar pesisir. Kajian di sini bertujuan 
untuk membangunkan satu kaedah baru yang efisien bagi menentukan nilai pekali 
beban (ߙ), terutama untuk struktur luar pesisir tetap sedia ada. Penilaian berasaskan 
risiko (RBA) telah diamalkan secara meluas oleh industri dan berdasarkan kod reka 
bentuk untuk struktur luar pesisir tetap, yang menggunakan pendekatan model 
kebarangkalian pada model beban (beban ombak) dan kekuatan beban (rintangan 
beban) pada persamaan keadaan had. Salah satu kaedah penilaian risiko (RBA) yang 
digunakan ialah Penilaian Kekuatan Tertinggi Global (GUSA), yang dibangunkan 
oleh PETRONAS yang akan digunakan sebagai perbandingan antara kebarangkalian 
kegagalan (ܱܲܨ) dan tempoh berulang (RP) berdasarkan ISO 19902. Hasil kajian 
menunjukkan bahawa lingkungan pekali beban yang terbaik (ߙ) adalah antara 1.7 
hingga 2.1 dengan lapan (8) peratus pekali varians (COV) untuk model beban. Nilai 
pekali beban (ߙ) akhir ditentukan dengan sekurang-kurangnya struktur mengalami 
beban ombak sebanyak dua (2) tempoh berulang (RP) yang ditetapkan pada taburan 
kebarangkalian jangka panjang. Nisbah antara pekali beban yang dicadangkan dan 
standard (ߙ) telah ditentukan dan dinilai untuk beberapa pelantar ujian. Dalam kajian 
ini, perbandingan antara pematuhan standard praktis dan prosedur yang boleh 
dipercayai menunjukkan bahawa pematuhan standard secara sistematik dianggarkan 
terlebih pada nilai kebarangkalian kegagalan (ܱܲܨ) sehingga 74 peratus. Sementara 
itu, tempoh berulang di bawah anggaran pada pematuhan standard dengan 5  kali lebih 
rendah daripada prosedur yang dicadangkan. Selain itu, hasil kajian menunjukkan 
bahawa struktur konfigurasi, kesan penenggelaman dan paras air yang melampau 
mempengaruhi pemilihan pekali nilai beban. Keputusan yang dihasilkan adalah di 
bawah pematuhan standard penghasilan nilai dan klasifikasi manfaat kepada operator 
untuk manafaat ekonomi dari segi pengoptimuman sumber daya dan penilaian semula 
pelantar. 
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CHAPTER 1 

 
 
 
 

INTRODUCTION 

 
 
 
 

1.1 Background 

 
 
The oil and gas industry in Malaysia began in the early 1900s and has evolved 

over 115 years. The first onshore oil well, known as Miri Land Field, was discovered 

at Miri Sarawak in December 1910. Offshore exploration began in Sarawak in 1961 

with the discovery of more oil and gas fields including Patricia, Temana and West 

Lutong by Sarawak Shell Berhad. In 1974, Petroleum National Berhad (PETRONAS) 

took over the oil and gas industry on behalf of the Malaysian Government under 

Petroleum Development Act 1974 (Narayanan and Mohd Akram, 2009). In 1976, 

production-sharing contract (PSC) agreement was made between PETRONAS and 

Sarawak Shell Berhad/Sabah Shell Berhad.  

 
 

In recent years, the energy sector, specifically in oil and gas, is facing 

challenges as the resources are declining (Rabah et  al . ,  2017;  Gerhard ,  2015) . 

Moreover ,  the rising development costs and an increase  in  the  demand for oil 

and gas has pressured companies to improve  their recovery of oil and gas resources 

from developed fields and to develop discovery reserves from existing oil and gas 

platforms. T h i s  approach has resulted in significant reduction in development costs, 

resulting in good project economics and the ability to recover more oil and gas 

resources (Goh, 1999). Additionally, youthful economic exuberance has now given 

way to middle-aged restraint, leading to the reduction in the price of oil and rise in the 

field-development  and  operating  costs.  It  should  be  noted  that  leveraging  on the 
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existing facility to process production from a newly discovered field may lead to an 

effective development option. 

 
 
In the late 1990s, reliability engineering has become a common practice in 

the Malaysian oil and gas industry in order to assess the integrity and requalification 

of offshore platform. There are more than one hundred and ninety-one installation 

(191) platforms with fixed-type offshore structures in Malaysia (Twomey, 2010). The 

fixed-type offshore structures, known as f i xed  jacket platforms, are commonly used 

in oil and gas production in the shallow water depths of Malaysia. Currently, the 

offshore operation available is Peninsular Malaysia Operation (PMO), the Sarawak 

Operation (SKO) and the Sabah Operation (SBO). Majority of platform types include 

wellhead, drilling, production, gas compression, living quarters, vents and risers. 

However, the platform structures have exceeded their design life (Shuhud, 2008). 

 
 
 
 
1.1.1 Ageing of Fixed Offshore Structures and Its Challenges 

 
 

Over a 20 year period, a total of one hundred and ninety-one (191) installations 

have been in operation, of which 65% of the platforms have been in operation for 25 

years or more, operating beyond their initial design life of 20 to 25 years. A report in 

2014 indicated that ageing of the existing installation wi l l  increase to  78% in 

another  f ive  years  (Ayob et  al . ,  2014b;  Narayanan and Mohd Akram, 2009) .  

As continuous production i s  required beyond the design life, l i f e  extension of the 

installations is inevitable. Table 1.1 tabulates the installation age distribution of 

offshore platforms in the region of Malaysian waters. 
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Table 1.1: Platform age distribution 

Platform age No of Platform Percentage (%) 

≥ 25 124 65 

20 - 24 25 13 

10 - 19 18 9 

< 10 24 13 

Total 191 100 

Ayub et  al .  (2014b)  

 
 
Offshore fixed jacket platforms are widely used in a majority of offshore 

platforms in Malaysia.  The selection of a fixed jacket platform is based on the shallow 

water depth, design impact, reservoir trajectory, drilling approach and production 

capacity (Bai, 2003). The f ixed  jacket platform such  a s  wellhead platform (WHP) 

or satellite platform is intended for the drilling of production wells in which the design 

is suited for the type of drilling rig, either jack-up or tender-assisted rig. In addition, 

the bigger and integrated fixed jacket platforms normally intended for house living 

quarters and production systems are known as a central processing and production 

(CPP) platforms.  

 
 
A fixed jacket platform is divided into two sections where the first section, i.e. 

the upper part, is known as the topside and the second section, i.e. the bottom part, is 

known as the substructure. The conventional offshore fixed jacket platform for 

offshore consists mainly of a substructure (a vertical section made of tubular steel 

supported by driven piles and anchored directly to the seabed – also known as a jacket) 

with a deck placed on top, providing space for crew living quarters, a drilling rig and 

production facilities.  Figure 1.1 shows the main components of a conventional 

offshore fixed platform. 
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Figure 1.1: Conventional offshore steel fixed platform. 

PETRONAS Carigali (2012) 

 
 

The topside is an important element that houses all the production skids and 

the working deck. The upper part is located above the water level or at mean sea level 

(MSL), while the substructure is located underwater on the seabed with leg piles which 

provide support for the foundation piles, conductors, risers and other appurtenances. 

An axial force is transferred from the structure and topsides into piles at the top of the 

structure. 

Four (4) legged jacket platform with 
skirt piles 
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Major modifications and fatigue concerns have led to significant changes to 

platform loading issues of structural integrity and reliability. Hence, it is necessary to 

perform an evaluation of possible life extension of ageing platforms where structure 

failure is expected when the strength capacity is unable to resist the applied load. 

Additionally, the structural failure can stop production before the limit of platform life 

or decommission (API, 2000). 

 
 

Based on the reservoir capacity and current technology, the existing offshore 

structures in Malaysia are commonly designed for 25 to 30 years design life. However, 

as a result of deeper drilling explorations and techniques, current technological 

advancements enable identification of more reserves by the operator and production- 

sharing contract (PSC). 

 
 

Space limitation and structural integrity of the existing platforms have resulted 

in limitations in the recovery of oil and gas. It is clear that structural integrity is one 

of the major issues for ageing and existing platforms, particularly during major 

modifications and occurrence of fatigue problem among the jacket members. A study 

demonstrated that insufficient strength and an excessive load are the common causes 

of ageing of offshore structure platforms (Ayob et al., 2014b). Insufficient load is 

defined as a source of error in design, fabrication, installation or operation and 

degradation, while excessive load is referred to environment, operation and 

accidental.  

 
 
Evidence has shown that the modifications of offshore structure platforms lead 

to higher loading, which the platform opposes from its original design and capacity  

(Nicholas et al., 2006). Furthermore, several studies have also demonstrated the 

reliability of Malaysian jacket platforms (Nor Azman, 2011; Kurian, et al., 2012) and 

other types of platforms available across the world (Shabakhty, 2004; Rajasankar et 

al., 2003; Onoufriou and Forbes, 2001). The studies attempted to demonstrate the 

fitness for the purpose of the structure and to define the optimum mitigation 

measures. 
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It should be noted that the main goal of studies is to demonstrate the structural 

reliability assessment: a rational method of putting the economics and engineering of 

offshore structures to understand the uncertainties, particularly those connected with 

severe ocean storms (Shell Research, 1993).  

 
 
 

 
1.2 Risk Assessment in Determining a Problem 

 
 

Risk-based assessment (RBA) is a quantitative approach for control barrier in 

bow-tie process of risk assessment. Due to its proactive approach, bow-tie is 

considered as the best control in managing the risk of the top event or the business 

upset event. Bow-tie model is a powerful tool for communicating hazards and their 

control. Moreover, bow-tie is a health, safety, security and environment  (HSSE) tool 

that supports ‘as low as reasonably practicable’ (ALARP). ALARP  is commonly used 

by oil and gas company to evaluate and manage the risk. ALARP is defined as the 

point at which the costs (in time, money and effort) of further risk reduction is grossly 

disproportionate to the risk reduction achieved (Buijsingh, 2013). Furthermore, a safer 

approach to risk management is a method that attempts to prevent or eliminate hazards 

or reduce the magnitude, severity or likelihood of occurrences by careful attention to 

the fundamental design and layout.  

 
 
Top event is the first event of an incident which include near miss and accident. 

Bow-tie is divided into two main sections; on the left side of the top event are threat 

control measures, while on the right side of the top event are recovery measures. First, 

the threat control measures will be identified based on the occurrence of listed threats 

which are originated from the identified hazard. In contrast, the recovery measures will 

be determined as recovery preparedness to reduce and or eliminate consequences of 

the top event.  Figure 1.2 shows bow-tie diagram problem. Definition of each element 

in bow-tie are as follows: 

 
 

i) Hazard is known as anything that has potential to cause harm to people, asset, 

environment and reputation.  
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ii) A threat is an action that can cause the top event to occur or which hazard could 

be released. 

iii) Control barrier is an action to stop the threat from occurring or prevent the 

hazard from being released. 

iv) Top event is the first event of an incident which includes a near miss and 

accident which prevent the hazard from being released. 

v) Recovery barrier is any action taken to reduce the occurrence of consequence 

vi) Consequence is the result of hazard being released, and is related to people, 

asset, environment and reputation. The consequence can lead to minor or major 

damage. 

 
 

As shown in the developed bow-tie diagram for this study (Figure 1.2), changes 

in global weather which can lead to the seabed subsidence due to reservoir compaction 

and variable in metocean data are identified as a hazard. Moreover, wave-in-deck has 

been attributed to air-gap extinction, which has been identified as the top event. Hence, 

based on the principal of bow-tie methodology, it was found that the threat of the 

hazard is an inaccurate procedure to determine the load coefficient (ߙ) value. 

Furthermore, risk-based assessment element as control barrier is applied to determine 

a reliable procedure for load coefficient determination and is validated by conducting 

parametric studies of load coefficient. This is needed to prevent the top event. On the 

other hand, applying recovery barrier, which is a retroactive approach, can only reduce 

the impacts and consequences of a catastrophic event. Figure 1.3 shows an example of 

consequence of structural failure due to extreme environmental overload during 

Hurricane Lily in The Gulf of Mexico. 

 
 
Metocean data is derived from hindcast data which may not represent natural 

climate variability due to the nature of unpredictable weather on some occasions. 

Hindcast data is a prediction process in which a length of periods or duration data are 

measured, especially for long-term data. Furthermore, normal approach hindcast data 

may come from neighbouring area provided both sites satisfy similar condition criteria 

(ISO, 2005). The changes in the increment of metocean data may result in significant 

impact to platform clearance or air gap balance height.  The impact to the offshore 
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structure may be severe in the presence of unexpected rare events of wave, wind, 

current and storm surge.  

 
 

Hazard Threat Control 
Barrier 

Top Event Recovery 
Measure 

Consequences 

 

 

 

 

 

 

     

Figure 1.2: Bow-tie to problem statement 

 
 

Figure 1.3: Hurricane Lily’s impact on fixed platform 

Shell Group of Companies (2013) 
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1.3 Problem Statement  

 
 

There is a growing number of ageing offshore structures in South China Sea 

water. The ageing structures are comprised of various underwater structure anomalies, 

such as joint crack, member flooding, shallow gas, subsidence, fish bombing, etc. 

(Ayob et  a l . ,  2014b) .  Despite the demand to prolong production and their service 

lifetime, issues of the deterioration of structural integrity and probability of platform 

structures to collapse have been reported as the offshore structures are exposed to 

complex and extreme environmental conditions during their lifetime.  

 
 

Wave-in-deck force is one of the main factors linked to structural integrity. 

Wave-in-deck force occurs when inundation of water affected the lowest deck (i.e. 

cellar deck) in which old and newly installed platform structures are affected. The 

wave collapse point level to be above the cellar deck level by giving (-) negative value. 

Many factors contribute to wave-in-deck, such as seabed subsidence and occurrence 

of extreme environmental conditions as shown in Figure 1.4. The above factors are 

caused by inaccurate prediction during initial design resulted from the absence of 

accurate data. Therefore, air-gap is crucial during design stage itself as it allows 

accurate prediction of deck vertical clearance between the highest water surface 

elevation that occurs during extreme metocean conditions and the underside of cellar 

deck level. 

 
 

The wave-in-deck level at the platform is shown in Figure 1.5. The recent 

wave-in-deck level (+/-) for the platform is represented as the difference between cellar 

deck level (critical deck) and extreme water level. ݃݊݅ݐ݅݉݅ܮ	ܴܴܵ is where reserve 

strength ratio (ܴܴܵ) is limited to be referred for ܪோௌோ at cellar deck. Maximum limit 

wave height at reserve strength ratio or normally called as ܪோௌோ. ܪோௌோfrom the result 

of ultimate strength for offshore structure (USFOS) software and ܪ௠௔௫ for any 

prescribed return period (RP). Return period means the expected number of 

characteristic load to occur only once in that year (Srinivasan, 2016). ). It should be 

noted that sufficient air-gap and the impact load is critical in predicting the 

performance of the platform structures under an extreme environment where ܪ௠௔௫  or 

 .ோௌோ is less than or exceed the cellar deckܪ
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Figure 1.4: Elements (hazard) contribute to problem 

Source form public domain 

 
 

Insufficient air gap clearance between the mean sea level (MSL) to the lowest 

deck can cause disastrous effects as shown in Figure 1.6. This is because the wave-in-

deck impact an offshore platform during extreme weather, which leads to damage to 

the topside deck structure and overall or global collapse. 

 
 
Currently, in industry practice, operators invest large amounts of capital for 

equipment deployment and offshore site measurements, which can reach RM100K per 

day for three (3) or more months duration in order to get the accurate data for 

predicting the correct wave height of ܪோௌோ and wave in-deck.  
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Sample 3D view from SACS model 

 

 

Figure 1.5: Illustration of ܪோௌோ, ݈݅݉݅݃݊݅ݐ	ܴܴܵ and wave-in-deck 

Sample 3D view from SACS model 

 
 

 

 

 

 

 

 

 

 

 

Figure 1.6: Actual photos  of wave-in-deck loading scenario 

Shell Group of Companies. (2013) 
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The maximum limit wave height (ܪோௌோ) and ݈݅݉݅݃݊݅ݐ	ܴܴܵ can be measured 

by using limit state equation which is based on the probabilistic model approach.  In 

limit state equation, one (1) of the uncertainty parameters is load coefficient (ߙ) and it 

is referred to as base shear (BS) values measured for different wave height and return 

period (RP) that produce the collapse load (Kurian et al., 2013; DE and E & P, 1995; 

Gerhard et al., 2003).  Currently, the load coefficient values used to determine the 

 of platform structures in Malaysian waters are based on the oil ܴܴܵ	݃݊݅ݐ݈݅݉݅ ோௌோ atܪ

and gas operator standard practice approach. It was demonstrated that in common 

practice, PETRONAS Carigali Sdn Bhd (PCSB) uses a load coefficient value in the 

range of 1.7 to 2.0. Nonetheless, a load coefficient value of 1.7 is recommended by 

Metocean Department of PCSB as a conservative approach that is limited by validity 

in terms of replication in research as the value is only used in industrial practice 

judgement (Goh, 1999). Hence, a reliable load coefficient procedure for a specific 

location and structure is essential to be ascertained, as optimised design and resources 

may contribute to better field economics. 

 
 
 

 
1.4 Aim and Objectives 

 
 

The study aimed to develop a reliable procedure for load coefficient (ߙ) 

determination in structural reliability assessment of ageing offshore platforms installed 

under extreme storm loading. To achieve the main objective as above, the following 

objectives were pursued in this study: 

 
 

i) To assess the recent development and investigate the current industry practice 

in structural reliability analysis procedure for fixed offshore structures  

ii) To develop a reliable procedure for load coefficient determination in structural 

reliability assessment 

iii) To validate the new load coefficient value by conducting parametric studies. 
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1.5 Scope of Study 

 
 

The study will cover the structural reliability analysis for fixed offshore 

structures in the Sabah and Sarawak regions. All platforms and environmental data are 

provided by Sarawak Shell Berhad (SSB). In this study, the structural reliability 

analysis, i.e. Global Ultimate Strength Assessment (GUSA) procedure, was used for 

the structural probability of failure (POF) and ݈݅݉݅݃݊݅ݐ	ܴܴܵ as common practice in 

the industry. All figures, tables, text and diagrams are significantly modified when 

compared to the original. It should be noted that utilisation of ageing platforms is the 

application of this study. 

 
 
This study performed the quantitative risk assessment which is used to 

calculate the structural reliability analysis. The main focus of this study is to obtain the 

values risk estimates, such as reserve strength ratio and base shear and the probability 

distributions of the return period. The method of risk-based assessment for structural 

reliability analysis application in this study is the GUSA.  

 
 

The five (5) platforms to be tested were selected based on the assessments 

focusing on global impact towards the platform due to major environmental loading 

and impact subsidence issue. The model substructure or jacket for fixed offshore 

structures was identified as those using either a tripod, a four and eight-legged structure 

with different water depths, ranging from 25m to 130m from mean sea level (MSL). 

The age of platforms is between 15 – 37 years old.  

 
 
The environmental condition input data is omnidirectional and return period 

applied for the region or area is 100-year from original design and align with standard 

ISO 19902 and API WSD; initial/original design for linear analysis is 100-years. For 

non-linear analysis and for long term distribution response to extreme and abnormal 

metocean parameters, additional of 1000-year and 10000-year are recommended in 

order for the platform to experience certain wave period before collapse. 
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1.6 Significance of Study 

 
 
 Deployment of the instrument equipment and measured at the site offshore 

were those used in the oil and gas industry. As the price of oil and gas has decreased 

it is neither cost-effective or efficient for operator to conduct this approach even 

though it was more accurate procedure based on site monitoring (offshore). Hence, 

application of risk-based assessment has become an instrument for continuous 

improvement and optimization to industry to evaluate result through analysis and 

formulation. In Malaysia waters, the application of Global Ultimate Strength 

Assessment (GUSA) and Risk-Based Design and Assessment (RBDA) will be useful 

to access the integrity and reliability of existing structures.  

 
 
 The load coefficient (ߙ), which is structural reliability analysis, is important to 

determine the collapse point of fixed offshore structures based on reserve strength ratio 

and ܪோௌோ. The current study is expected to introduce and develop a reliable procedure 

for load coefficient determination in structural reliability analysis of ageing offshore 

platforms. The procedure is aimed at improving the range of load coefficient values 

with statistical approach method. Current practice (1.7= ߙ) leads to underestimation 

of the probability of failure and reserve strength ratio values. Additionally, a reliable 

procedure is required to determine load coefficient value from at least two (2) times 

offshore structure experience wave loading as per prescribed return period. 

 
 

The study expected to demonstrate application to limit state equation from the 

probabilistic model (load and resistance) as part of ܪோௌோ, reserve strength ratio and 

maximum wave (ܪ௠௔௫) at region. Verification of maximum wave crest with 

measurement of wave breaking crest limit and an assessment of the wave in deck level 

condition at each field and platform will be performed in specific locations as 

mentioned previously.  

 
 
An accurate load coefficient value leads to higher confidence level on design, 

reduced cost on future site monitoring and recovery measure (if disastrous occurs). 

The study outcomes are expected to assist the operator as part of production- sharing 
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contract (PSC) in decision-making and outline action items as part of their business 

risk management. 

 
 
 
 
1.7 Thesis Outline 

 
 

Chapter 1 discuss the general background of the ageing fixed offshore 

structure with their challenge and major issue condition. In view of risk assessment in 

determining a problem. Detail of problem statement. Continue with aim and objective 

in order to solve the problem. Scope of study and significance of study. The thesis 

outline for each chapter is described.  

 
 
Chapter 2 demonstrates the general background of structural reliability 

analysis including development, criteria (deterministic, semi-probabilistic and 

probabilistic), principles (demand and supply), quantified risk assessment (i.e. bow-

tie)  in conjunction with structural reliability analysis and structural reliability analysis 

procedures for oil and gas industry in Malaysia. GUSA, reserve strength ratio, non-

linear plastic collapse, type of failure mechanism, simplified structural reliability 

analysis (SSRA), standard bias and coefficient of variance (COV), extreme air gap and 

ISO 19902 requirements are also described. In view of load model versus strength 

(resistance) model under Stochastic process and how it is related to limit state equation 

of probabilistic model. The chapter also describes the principle of load coefficient 

value for uncertainty of COV of load model, wave breaking, delivery and classification 

of benefit. 

 
 

Chapter 3 demonstrates the research methodology in detail including research 

flowchart, introduces overall GUSA procedures with numerical example i.e. from step 

1 to step 5 such as analysis and assessment of design global in place for linear analysis, 

conditional assessment, the model analysis in Sesam (GeniE), model result from 

ultimate strength for offshore structure (USFOS) software and simplified structural 

reliability analysis. The selection basis of different type of platform to be tested and a 

detailed explanation of the development of a reliable procedure for load coefficient 
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determination, identification of the load coefficient range, load coefficient values 

selection by proposed of a reliable procedure with numerical example are also 

described. Brief of validation process for new load coefficient. 

 
 

Chapter 4 describes the effect of load coefficient on probability of failure, 

return period, extreme water level and wave in-deck. The chapter also discusses the 

evaluation of the GUSA for the ultimate maximum force of reserve strength ratio and 

base shear, mode of failure for test structures and ultimate maximum force for 

simplified structural reliability analysis. Determination of load coefficient is based on 

a reliable procedure for average plotting graph. In addition, this chapter includes 

validation of proposed load coefficient, ratio comparison for the probability of failure 

and return period and discussion of overall analysis and assessment. A brief 

explanation of the value delivery and classification of benefit for selected platforms 

are also included in this chapter.  

 
 
Chapter 5 concludes with each study objective. A brief description of 

contribution, novelty and implication related to the theoretical, knowledge, practical 

and methodology aspect is presented. Several recommendations for future work are 

also addressed in this chapter under the limitation of findings and recommendation.  
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