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ABSTRACT

Neural networks made some of the latest state of the art technologies such as

speech recognition, language translation and stock prediction possible. Among them,

speech recognition is a very popular application which is growing rapidly. It is widely

used in applications such as mobile phones and Amazon smart speakers in order

to enhance user experience. However, neural networks used for speech recognition

require a large amount of computations, especially if it is in always-on state. This made

it infeasible to be implemented in battery-powered edge devices such as wearables,

sensors, and internet-of-things devices, as the battery life will not last long enough

to provide a good user experience. To address this issue, this work enhances the

recurrent neural network (RNN), or specifically, Gated Recurrent Unit (GRU) for the

task of wake-word detection. Awake-word detector is always powered-on, listening to a

specific phrase, the wake-word. Therefore, the power consumption must be low enough

to enable long battery usage – a feature that is sought by many end-consumers. This

work proposes four modifications to the existing GRU architecture. First, the reset gate

is removed as there are researches which implies that it is not needed in application such

as speech recognition. Second, the activation function is changed from the conventional

sigmoid/hyperbolic tangent function to softsign function. Third, weight quantization

is carried out to reduce the memory footprint and speed up calculations. Fourth, fixed

point arithmetic is used instead of floating point format. With the above enhancements

in architecture, memory and power consumption is reduced while keeping the impact

to the accuracy minimal. Furthermore, it is possible to embed this new neural network

model to battery-powered edge devices such as wearables. In summary, this work

explores the possibility of implementing an improved GRU architecture in battery-

powered edge devices to enable low-power usage for speech recognition purpose.
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ABSTRAK

Rangkaian neural memungkinkan beberapa teknologi terkini seperti pengeca-

man pertuturan, penterjemahan bahasa dan ramalan saham. Antara teknologi ini,

pengecaman pertuturan adalah aplikasi yang sangat popular dan berkembang pesat.

Ia digunakan secara meluas dalam aplikasi seperti telefon bimbit dan pembesar suara

pintar Amazon untuk meningkatkan pengalaman pengguna. Walau bagaimanapun,

rangkaian neural yang digunakan untuk pengecaman pertuturan memerlukan pengiraan

yang banyak, terutamanya jika sentiasa berada dalam keadaan aktif. Ini menjadikan

rangkain neural tidak dapat dilaksanakan menggunakan tenaga bateri seperti peranti

yang dipakai pada badan, sensor, dan peranti internet, kerana jangka hayat bateri tidak

dapat bertahan untuk memberikan pengalaman pengguna yang baik. Untuk mengatasi

masalah ini, tesis ini meningkatkan rangkaian neural RNN, atau secara khusus, Gated

Recurrent Unit (GRU) untuk tugas pengesanan kata bangun. Pengesan kata bangun

sentiasa hidup untukmendengar frasa tertentu yakni kata bangun. Oleh itu, penggunaan

kuasa mestilah cukup rendah untuk membolehkan penggunaan bateri yang lama - ciri

yang dimahukan ramai pengguna. Tesis ini mencadangkan empat modifikasi kepada

seni bina GRU yang ada. Pertama, pintu reset dikeluarkan kerana terdapat penyelidikan

yang menunjukkan bahawa ia tidak diperlukan dalam aplikasi seperti pengecaman

pertuturan. Kedua, fungsi pengaktifan diubah dari fungsi sigmoid/tangen hiperbolik

konvensional kepada fungsi softsign. Ketiga, pengkuantuman pemberat dilakukan

untuk mengurangkan jejak memori dan mempercepat pengiraan. Keempat, aritmetik

titik tetap digunakan dan bukannya format titik terapung. Dengan naik taraf seni

bina tersebut, ingatan dan penggunaan kuasa dapat dikurangkan sambil mengurangkan

impak terhadap ketepatan. Selanjutnya, model rangkaian neural baru ini mampu diterap

ke peralatan bertenaga bateri seperti peranti yang dipakai di badan. Ringkasnya,

tesis ini meneroka kemungkinan penerapan senibina GRU yang lebih baik dalam

peranti berkuasa bateri untuk menghasilkan pengecaman pertuturan menggunakan

kuasa rendah.
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CHAPTER 1

INTRODUCTION

1.1 Problem Background

Deep neural networks (DNN) perform well in extracting key information from

unstructured data which typically comes from the real-world environment. DNNs

had been utilized in applications such as speech recognition [1], embedded vision

[2], and health monitoring purpose [3]. DNNs are naturally computationally and

memory intensive, therefore, they are normally implemented on advanced cloud

compute servers. For IoT applications, this introduces several disadvantages. First,

data transmission between edge sensors and the cloud compute servers consumes a lot

of energy [4]. Besides, the latency of data transfer impacts the real time responsiveness

of the edge devices [5]. Third, data privacy is also a concern since data on the cloud

are much more vulnerable as compared to private storage [6]. Furthermore, in order to

perform computation on cloud servers, a stable network connection is required, which

could pose a problem when the DNNs is required to be implemented in secluded areas

where network connectivity or congestion is a problem. All of the above problems can

be addressed by implementing the DNN directly into the edge devices itself, aligning

with the future trend of mobile edge computing [7].

Figure 1.1 The Future of Edge-based Computing
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There are two approaches to implement DNN into the edge devices. The first

approach is to use customized hardware processors such as Apple A11 Bionic Chip and

Nvidia Drive Px2. However, this approach is not suitable for low-powered applications.

DNN has to use as little power as possible if it is to be implemented directly into edge

devices. Edge devices are often restricted by their small size requirements, which

directly influences the size of the battery. Since A11 and Px2 are very powerful, they

consume a lot of energy if they are used in heavy tasks such as DNN. The battery

will be depleted very fast and make it infeasible to implement DNN in them. The

second approach is to use microcontrollers running lightweight software libraries such

as TensorFlow Lite and CMSIS-NN [8]. By using a low power MCU and software

libraries, the problem of power consumption can be solved, but it only provides a limited

amount of memory and computational resources. The low power MCU might not be

able to meet the requirements in order to execute properly. A solution that balances

power consumption and computation resources is by implementing a simplified DNN

structure on a slightly larger processor. In this report, we propose to run the gated

recurrent unit (GRU) on a Cortex A53 on a Raspberry Pi. The small board can be

used virtually anywhere with added benefits such as faster computation, low memory

requirement and low power consumption. It can be observed from Table 1.1 that Cortex

A53 is the cheapest and uses the least power among other existing competitors.

Table 1.1 Price-Power Comparison for Existing Technologies

Google Coral Intel Neural Compute Stick 2 Cortex A53 (RP3)

Price RM 250 RM 350 RM 155
Power 0.5W per TOP 0.375W per TOP 159mW/MHz

TOP - Tera (1012) Operations

1.2 Problem Statement

RNN are computationally and memory intensive which make it impossible to

be implemented in edge devices. The conventional RNN model used are LSTM and

GRU, with GRU consuming lower computation resource. This work aims to improve

GRU to further reduce computation resources so that it can be implemented in edge

device.

2



1.3 Research Questions

By referring to the problem statement above, several research questions arise:

• Does existing GRU architecture have some redundant features that can be

removed to reduce computational power?

• Is it possible to enhance GRU architecture up to the point that it is able to

operate on low power and low cost MCU (edge device)?

• How does this enhanced GRU perform as compared to conventional GRU

model?

1.4 Research Goal

The aim of this project is to address the above challenges and develop a novel RNN

architecture which is able to carry out and low memory computation on low power

ARMMCU – which combines high efficiency signal processing functionality together

with its low power and low-cost features so that it can be embedded directly onto the

edge device without sacrificing too much performance.

1.5 Objective

The objectives are as follows:

• To review existing GRU architecture and identify field of improvements

• To enhance GRU architecture in order to produce a low computation and low

memory consumption architecture.

• To compare accuracy, memory consumption and power consumption for the

proposed architecture against the conventional architecture.

1.6 Scope and Limitation

In this project, the scopes are to:

• Improve the existing GRU network to result in a low memory and higher energy

efficiency network.

3
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