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ABSTRACT

The injection moulding process in plastic manufacturing parts is widely used 

and the products can be seen anywhere as daily use items. This process includes a big 

scale o f production. This sometimes leads to defects that affect the quality o f the 

products. As a result, the production is inefficient, time-consuming, and costly. 

However, one o f the solutions that have been discovered is the fact that hybridisation 

improves product quality, especially in minimising shrinkage defect at a thick plate 

part by providing the best parameter setting. For an excellent performance o f the 

injection moulding process, it is crucial to have an optimum set o f parameters and this 

study considered melt temperature (oC), mould temperature (oC), cooling time(s), and 

packing pressure (MPa) as a set of parameters. In this study, an improved hybridisation 

technique of Grey Wolf Optimiser Sine Cosine Algorithm (GWOSCA) was developed 

to estimate optimal parameter settings so that the value o f shrinkage at the thick plate 

could be minimised. The improved GWOSCA was made to enhance the searching 

strategy o f GWOSCA by increasing the movement o f direction and speed while 

sharing information among the alpha, beta, and delta to find the optimum value. The 

simulation and improved results from GWOSCSA were compared and validated by 

using experimental work o f percentage error, regression model, and analysis o f 

variance (ANOVA). It showed that the improved GWOSCA could minimise the 

shrinkage at the thick plate by 0.48% at x-axis and 0.35% at y-axis in contrast with the 

simulation result, which was only 0.58% at x-axis and 0.60% at y-axis in this study. 

Eventually, the improved GWOSCA optimisation technique significantly showed that 

it could minimise the values o f shrinkage in the injection moulding process for 

manufacturing fields
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ABSTRAK

Proses suntikan acuan dalam penghasilan bahagian plastik telah digunakan 

secara meluas dan hasilnya boleh dilihat di mana-mana sahaja. Produk dari proses ini 

dijadikan sebagai produk kegunaan harian. Proses ini melibatkan skala penghasilan 

yang besar dan kadangkala menyebabkan kecacatan pada kualiti produk yang 

dihasilkan. Kecacatan ini menjurus kepada ketidakcekapan, pembaziran masa dan kos 

tinggi terhadap proses pengeluaran. Walau bagaimanapun, salah satu masalah yang 

dikenal pasti ialah penggabungan teknik yang mampu meningkatkan kualiti produk 

terutamanya bagi meminimumkan kecacatan pada pengecutan di bahagian plat yang 

tebal dengan memperoleh tetapan parameter yang terbaik. Untuk memperoleh prestasi 

yang terbaik dalam proses ini, mengoptimumkan set parameter adalah amat penting. 

Kajian ini telah mempertimbangkan suhu pencairan (oC), suhu acuan (oC), masa 

penyejukan (s) dan tekanan pembungkusan (MPa) sebagai satu set parameter. Dalam 

kajian ini, satu penambahbaikan teknik gabungan Grey Wolf Optimiser Sine Cosine 

Algorithm (GWOSCA ) dibangunkan untuk meramal set parameter optimum supaya 

nilai pengecutan pada plat tebal boleh dikurangkan. Penambahbaikan pada GWOSCA 

ini dilakukan untuk menambah baik strategi carian dalam GWOSCA dengan 

meningkatkan kadar perkongsian maklumat antara alpha, beta dan delta dalam mencari 

nilai optimum. Hasil simulasi dan penambahbaikan GWOSCA telah dibandingkan dan 

disahkan melalui kerja eksperimen ralat peratusan, model regresi dan analisis varians 

(ANOVA). Hasil kajian menunjukkan bahawa penambahbaikan GWOSCA boleh 

meminimumkan pengecutan di bahagian plat yang tebal dengan 0.48% pada paksi x 

dan 0.35% pada paksi y. Hasil ini berbeza dan lebih baik berbanding dengan hasil 

simulasi yang hanya 0.58% pada paksi x dan 0.60% pada paksi y. Akhir sekali, 

penambahbaikan pengoptimuman GWOSCA menunjukkan kepentingan yang ketara 

di mana ia dapat meminimumkan nilai pengecutan dalam proses pengacuan suntikan 

untuk bidang pembuatan.
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CHAPTER 1

INTRODUCTION

This chapter is an overview of the research conducted in the field of 

manufacturing. The topics discussed are the background of the study, problem 

statement, objectives, scopes, and contribution of the study.

1.1 Introduction

Plastic production in the injection moulding process has been widely used for 

more than 100 years (Hakimian and Sulong, 2012). The reason of the widely used of 

this process is because of its high production for various types of shapes and it is also 

a cost saving production (Lin and Chou 2002; Spina, 2004; Cho et al., 2009). Plus, by 

producing a thin, small and light product leads to a large production of the injection 

moulding process and contributes to the industry of plastic manufacturing. Apparently, 

this process has been used and applied to many neccesities such as computers, daily 

products, medical devices (Oktem, 2012), vehicle accessories, and kids’ toys. In fact, 

plastic has become a well-known material in numerous industries, for example, 

agriculture, foods, aerospace and automotive.

Generally, the injection moulding process is a very complex and unstable cycle 

process (Chiang and Chang, 2007). From the past studies, it is stated that when the 

injection moulding process producing a product, the quality of the product is measured 

by the defects. There are many defects can be found such as warpage, shrinkage, sink 

marks, short shots, residual stress, strength, void, flash, silver streaks, weld line and 

flow marks (Fischer, 2003; Harper, 2006; Osswald and Hernandez-Ortiz, 2006). Any 

defects happen are tend to be expected and can be reduced. By controlling the product 

quality, this process is gaining its own attention because of the promising standard by 

producing a good quality product.
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Shrinkage is a downgrading form in form of size of dimensions of the products 

(Kazmer, 2016). The factor that makes the shrinkage happened are structure of the 

mould, plastic part shape, materials of the plastic and condition of the process (Chen 

and Ding, 2012). This happened when the thermal of the plastic was changed when in 

the moulding process. When the shrinkage at the part becomes excessive, it can lead 

to a warpage. It has been reported that, the quality of the products is low because of an 

improper clamping force, patchy setting, temperature of melting and seal clearance 

mould. In order to achieve maximum quality, the shrinkage need to be eliminated or 

reduced by process control at the initial of the process by parameter setting (Hilmi et 

al.,2012; Kitayama and Natsume, 2014) and a great setup of a set of parameter setting 

need to be made (Shoemaker, 2006; Kazmer, 2016).

Process parameter setting is actually give a huge effect in the injection 

moulding process specifically in product quality (Chien et al., 2004; Ismail and 

Suriandy, 2004; Lin et al.,2008; Oktem et al.,2007; Sadbadi and Ghasemi, 2007; Chen 

et al.,2008; Chen et al.,2009). Besides, it can affect lots of problems at the production 

stage such high in production cost, long lagging time and defects. The injection 

moulding process is an endless production process cycles which the parameters are 

fixed. Because of that, the parameters are needed to be adjusted close to the goal of the 

moulding process by using optimisation techniques.

Before this, a trial and error method in obtaining a set of optimal parameter 

setting was being made by the experts and engineer experience in this field. Still, the 

value of a set of parameter itself is insufficient for a proper value for process 

parameters (Oktem et al., 2005). Moreover, this process is technically repeated and 

need to do it regularly which consume to a high cost and time-consuming (Oktem et 

al., 2005; Dang et al., 2014). The high cost and time consuming process makes this 

method cannot contribute much in enhancing a complex product. It turned out that, the 

researchers came out with solution by finding a low cost method and more time 

effective by implying computational techniques either by simulation or artificial 

intelligence techniques. Hence, to minimise the shrinkage, the optimisation method 

need to be done so that, many manufacturer in this industry will get the benefit and be 

more competent in this field.
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1.2 Problem Background

Based on past studies, many researchers were focusing on optimising shrinkage 

at thin shell plastic parts compared to thick plate parts (Ozcelik and Erzurmulu, 2005; 

Ozcelik and Erzurmulu, 2006; Kurtaran et al., 2005; Shen et al., 2007; Deng and Lam, 

2010; Yin and Hua, 2011; Chen and Kurniawan, 2014). The thick plate part differs 

from the thin plate part especially on its thickness and weight mass. A thick plate part 

is contrary from thin plate part including thickness and weight of the part. Besides, a 

common thickness for injection moulding part is between 0.75 mm to 3 mm for filled 

materials and it depends on the design and functionality of each part (Najihah et al., 

2016). Because of that, this study wants to focus on minimising the shrinkage at the 

thick plate part.

By addressing critical issues like shrinkage, the defect is needed to be 

examined so that the plastic injection moulding process can enhance the shrinkage at 

the moulded parts. The crucial parameter setting that greatly affects the shrinkage must 

be investigated because it plays a big role in ensuring the standard of a certain product 

quality. Many researchers have conducted a study evolving various defects and 

materials, variety set of parameter setting, differential method of optimisations in order 

to overcome the defects and plus, enhancing the product quality. Most of them, need 

an outstanding parameters and optimum setting to find a factor that contribute to a 

certain defect which can be determined through simulation or experimental works. The 

enhancement can be seen when the percentage of the defects are being calculated by 

showing how much the improvement has been made.

Optimisation is a problem of searching the best solutions that can be 

implemented to every real problem (Ghose,T, 2002). Previously, many modern 

optimisation techniques were carried out by past researchers to understand and explore 

an interaction of the process parameters in the injection moulding towards mechanical 

properties of moulded parts and their responses (Mahapatra and Chaturvedi, 2009, Xu 

et al., 2012, Wang et al., 2013). From those studies, they stated that there is a stringent 

interaction between a set of parameters processing and their responses while delivering 

various optimisation techniques (Manjunath and Krishna, 2012). Therefore, many
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researchers have made variety of works in optimising the injection moulding defects, 

for example, Particle Swarm Optimisation (PSO) (Xu et al., 2012), Genetic Algorithm 

(GA) (Wang, 2012;), Artificial Neural Network (ANN) (Manjunath and Krishna, 

2012), Back Propagation ANN (BPANN) (Wang et al., 2013), Radial Basis Function 

(RBF) (Kitayama and Natsume, 2014), Taguchi Method (Curie et al., 2012) 

Glowworm Swarm Optimisation (GSO) (Hazwan et al., 2017), Support Vector 

Machine (SVM) (Tellaeche and Arana, 2013) and many more. The modern technique 

is good at local search and easy to be implemented but the convergence is initially fast 

but slow in the end (Mahapatra and Chaturvedi, 2009). Based on these studies, it was 

observed that the optimisation of shrinkage parameters using GWO algorithm have 

been limitedly considered by past researchers. Therefore, this study considered GWO 

algorithm to estimate the optimal solution for shrinkage performance.

Based on the reviews, each artificial intelligence and numerical simulation has 

the ability to improve the plastic injection moulding design. Even though these 

techniques are proven to be applicable, it is not optimal (Shi et al., 2003). For GWO 

optimisation, it has been used for various real problems and from these result, GWO 

optimisation shows an outstanding performance when compared to other optimisation 

techniques. Some of the real problems that have used GWO optimisation are economic 

dispatch problems of power system (Wong et al., 2014), power system in risk 

prevention of smart grid (Mahdad and Srairi, 2015), using GWO for decision tree 

classifier for gene classification (Vosooghifard and Ebrahimpour, 2015), for 

forecasting natural resources of time series forecasting (Mustaffa and Kahar, 2015), 

photonic crystal filter image (Chaman-Motlagh, 2015; Li et al., 2016) and many more. 

For GWO optimisation, it has many advantages for solving unconstrained and 

constrained problems. Also, it has a high performance at an unknown search space, 

convenience and only needs fewer parameters (Mirjalili et al., 2014). Even though, 

with so many advantages GWO had, still it has the drawbacks which are not fit for 

complex function and trapped at local optima. Because of that, it leads to a refinement 

of GWO optimisation either hybridisation or modification by adjusting its algorithm 

into many shapes of changes to fit and fix the drawbacks so that the desired problems 

can be solved.
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Some part of the main structure of GWO algorithm such as tracking, encircling 

and attacking prey has been adjusted and modified based on the problem. Many 

researchers focusing to enhance GWO algorithm by improving the wolves’ position 

by using probabilistic method (Gupta et al., 2015), Kcentroids (Korayem and Kassem, 

2015), clustering position (Sayed and Hassanien, 2015) and sequence alignment 

(Jayapriya and Arock, 2015). Furthermore, for balancing search agents, pattern search 

technique is proposed by Mahdad and Srairi, 2015, random technique introduced by 

Niu et al., (2016) and the same technique is used by improving it with emission 

technique (Dudani and Chudasama, 2016). Besides, for enhance the wolves when 

encircling the prey, Mirjalili, 2015 used ANN technique and Saremi et al., 2015 used 

Evolutionary Population Dynamic (EPD) to remove the poor search space so that the 

exploration and exploitation of GWO algorithm can be enhanced. Form these studies, 

it can be seen that, the focus of improving the exploration and exploitation GWO 

algorithm is crucial as stated as one of main disadvantages and hence there is lack of 

studies. Based on GWO optimisation weaknesses where it is easy to be trapped in local 

optima and several studies show by combining various optimisation techniques, 

injection moulding problem can be improved (Kapoor and Kumar, 2016). Therefore, 

a hybrid computational technique is recommended to solve the optimisation problem 

and this study proposes a hybrid Grey Wolf Optimiser Sine Cosine Algorithm 

(GWOSCA). However, the hybrid technique is not fully accommodating the drawback 

that GWOSCA algorithm had. Thus, this study attempts to develop an improved hybrid 

of GWOSCA to enhance the flaw of GWOSCA algorithm by improving its algorithm 

and achieve optimum parameters of the shrinkage performance in injection moulding 

process.

1.3 Problem Statement

The key to the process parameter setting that greatly affects the shrinkage must 

be investigated because it plays a big role in ensuring the standard of product quality. 

Shrinkage relationship between process parameter is difficult to understand because it 

is a nonlinear and implicit function (Zhao et al., 2015). Because of that, it needs a 

metamodel-based optimisation method to execute its relationship into the explicit form

5



of low order polynomials. Here, Response Surface Methodology (RSM) technique is 

proposed because of it able to express the relationship of the shrinkage and process 

parameter by the mathematical model which forms of quadratic polynomial with 

acceptable accuracy. Then, further optimisation to obtain the optimum process 

parameter will be deployed.

In obtaining optimum parameters for injection moulding to minimse the 

shrinkage, the main objectives that need to be considered are accurateness of result, 

dependability, and computer efficiency. Plus, with poor setting can lead to an 

insufficient system in accurateness and bothering the time of the execution (Mok and 

Kwang, 2002). Therefore, the present study proposes an improved Grey Wolf 

Optimiser Sine Cosine Algorithm (GWOSCA) to solve weaknesses of the standard 

GWOSCA algorithm and at the same time enhancing better optimum parameter results 

for shrinkage performance. GWOSCA algorithm was reported to have a robust search 

variant for various global optimisation functions (Sing and Singh, 2017). In order to 

benefit a better exploration capability and high speed searching of GWOSCA 

algorithm, the searching behavior of SCA is deployed in GWO algorithm. In this study, 

it focuses on GWO’s problem where the working of its search agents needs a robust 

movement so that the searching skill can move faster with information to find their 

prey (optimise) (Singh and Singh, 2017). Therefore, SCA will help the movement of 

the grey wolf agents in GWOSCA at calculate and update fitness value phase. In the 

meantime, SCA will help GWO in preventing their search agents to not be trapped in 

local optima and will boost the robustness of the GWO, especially when all search 

agents are equally shared and receive information as the process is working 

continuously (in loop).

This study investigates an optimisation problem in injection moulding process 

with single performance. The product quality performance is measured based on 

defects. Shrinkage is one of the crucial product qualities (Fischer, 2003; Harper, 2006; 

Osswald and Hernandez-Ortiz, 2006) that need to be controlled by combining good 

parameters setting during the injection moulding process. After obtaining optimal 

parameters from the prediction model of the optimisation algorithm, a real 

conformation experiment need to be applied. This is to ensure the quality of estimating
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model obtained in this study is accepted to predict a real experiment. The mixture of 

parameters from the optimisation result is used in the injection moulding machine to 

produce new parts. Then, the shrinkage measurement will be determined and 

compared with the result from generated model.

To answer the problem statement, this study comes out with three research 

questions which are:

(a) How to design effective mathematical models for shrinkage performances?

(b) How effective is the proposed improved GWOSCA algorithm in 

approximating optimal process parameters that leads to a better shrinkage 

performance?

(c) How to validate the estimating model by real experiment?

1.4 Objectives

In this study, three main objectives were stated as below in contemplation of 

furthering the study on the shrinkage at the moulded parts produced in the plastic 

injection moulding process:

(a) To develop the mathematical models for injection moulding shrinkage 

performances.

(b) To develop an improved GWOSCA optimisation algorithm for determine 

optimal process parameters of shrinkage performance.

(c) To validate the estimating model solution by conducting real experiment.
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1.5 Scopes

The scopes of this study are as follows:

1. Manufacturing :

(a) Shrinkage is selected as the response in this study.

(b) Autodesk Moldflow Insight (AMI) 2012 software is used for simulation

analysis.

(c) Response Surface Methodology (RSM) is implemented by Design Expert 

Software 7.0 in obtaining the objective function for responses.

(d) Acrylonitrile Butadiene Styrene (ABS) is a material for thick plate part.

(e) 80 Tonne Nissei NEX1000 injection moulding machine was used to conduct 

the experiment.

(f) Part designed is according to ISO 2941-1: 1996(E).

(g) Mould designed for cavity A and B are according to ISO 3167:2002 (E).

(h) Shrinkage measurement for x and y axes are according to ISO 294-2:2001.

(i) Process parameters for shrinkage are mould temperature, melt temperature, 

cooling time and packing pressure.

2. Artificial intelligence:

(a) Improved Grey Wolf Optimiser Sine Cosine Algorithm (GWOSCA) is selected

as the optimisation method and implemented by MATLAB 2014b.

8



1.6 Significance of Research

This study investigates the performance of the proposed improved GWOSCA 

which is to minimise the value of the injection moulding performance which is 

shrinkage. Then, the result of the proposed technique was compared with simulation 

to ensure the effectiveness of the proposed technique in estimating the shrinkage at the 

thick plate part before validated by real experiment. This proposed technique is 

considered as a new perspective in the plastic manufacturing industry research for 

improving the injection moulding performance and optimising the shrinkage and thus 

produce a good quality of product.

1.7 Summary

This chapter has discussed the background of the study, problem statement, 

aims, objectives, scopes, research significance and contributions. The discussions are 

placed in order so that the problem arises in optimizing the shrinkage at the thick plat 

part can be figured out.
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