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ABSTRACT 

 Initiatives to improve public opinion towards technical and vocational 

education and training (TVET) have been increased by the government of Malaysia. 

However, to observe these sentiments with more transparent, analysis on public 

opinion is necessary. This research aims to assess the public sentiment regarding to 

TVET in Malaysia by performing aspect-based sentiment analysis. This study took 

advantage of the data availability from social media where public nowadays tend to 

express their feelings towards any products and services. Twitter appears as one of 

the most common social media platforms in which, countless of users can participate 

and interact at any time. The data from Twitter are unstructured by nature thus 

further mechanism are needed to provide more meaningful information for future 

uses. A series of text pre-processing strategies were implemented in this study to 

improve the process of aspect extraction and classification. Topic modelling 

technique, Latent Dirichlet Allocation (LDA) was used to extract aspect category 

during aspect extraction process. The lexicon-based classifiers; SentiWordNet 

(SWN) and Valence Aware Dictionary and Sentiment Reasoner (VADER) and 

machine learning classifiers; Naïve Bayes (NB) and Support Vector Machine (SVM) 

were used to classify the tweets sentiments. The performance of the classifiers was 

observed based on the results of precision, recall, f-measure, and accuracy. The 

finding revealed that the public sentiment for five (5) identified aspects for TVET in 

Malaysia; Student, Course, Employability, Skill and Accreditation inclined towards 

positive sentiments. SVM shows the highest accuracy among other classifiers with 

an acceptable accuracy of 72%. The results from this study were expected to give 

beneficial insight for TVET stakeholders specially the governing bodies and TVET 

providers to plan for improvisation strategies.  

  



vii 

ABSTRAK 

Pelbagai inisiatif untuk meningkatkan sentimen orang ramai terhadap 

pendidikan dan latihan teknikal dan vokasional (TVET) terlah dilakukan oleh 

kerajaan Malaysia. Walau bagaimanapun, untuk meneliti sentimen terhadap TVET 

dengan lebih telus, analisis terhadap pendapat awam adalah perlu. Kajian ini 

bertujuan untuk menilai sentimen tentang TVET di Malaysia dengan melakukan 

analisis sentimen berasaskan aspek. Kajian ini memanfaatkan ketersediaan data dari 

media sosial di mana orang ramai hari ini cenderung untuk menyatakan perasaan 

mereka terhadap sebarang produk dan perkhidmatan. Twitter adalah salah satu 

platform media sosial di mana ramai pengguna boleh melayari dan berinteraksi 

dengan mengunakannya pada bila-bila masa. Data daripada Twitter adalah tidak 

berstruktur; oleh itu ia memerlukan mekanisme selanjutnya untuk memberikan 

maklumat yang bermakna untuk kegunaan masa depan. Beberapa strategi pra-

pemprosesan teks telah dilaksanakan dalam kajian ini untuk meningkatkan kualiti 

proses pengekstrakan dan klasifikasi aspek. Teknik pemodelan topik, Latent 

Dirichlet Allocation (LDA) digunakan untuk mengekstrak kategori aspek semasa 

proses pengekstrakan aspek. Pengelas berasaskan leksikon; SentiWordNet (SWN) 

dan Kamus Algoritma Valence dan Penjawab Sentimen (VADER) serta pengelas 

pembelajaran mesin; Naïve Bayes (NB) dan Mesin Vektor Sokongan (SVM) telah 

digunakan untuk mengklasifikasikan sentimen pada mesej tweet. Prestasi pengelas 

dinilai berdasarkan hasil ketepatan, dapatan semula, pengukuran-f dan kejituan. 

Penemuan mendedahkan bahawa sentiment orang ramai terhadap lima (5) aspek 

TVET di Malaysia yang dikenalpasti iaitu Pelajar, Kursus, Kebolehpasaran, 

Kemahiran dan Akreditasi cenderung ke arah sentiment positif. Pengelas 

pembelajaran mesin, SVM menunjukkan kejituan tertinggi dalam kalangan pengelas 

lain dengan kejituan sebanyak 72%. Hasil daripada kajian ini diharapkan dapat 

memberi manfaat yang berguna kepada pihak berkepentingan dalam TVET 

khususnya badan-badan pentadbir dan penyedia TVET bagi merancang strategi 

penambahbaikan.    
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CHAPTER 1  

 

 

 

INTRODUCTION 

1.1 Overview 

In Malaysia, technical and vocational education is often under-rated against a 

context of the dominant view that students from technical and vocational education 

are being academically under-achiever. Lam & Hassan (2018) implying the 

explanation for this negative perception is mainly due to the limited available 

awareness and information about TVET, the lack of social acceptance and the fact 

that this stream provides little opportunities for higher education. 

 In 2018, TVET and Industry Commission has been established to tackle the 

issue in order to make TVET as the favourable choice in the future, including to 

ensure the degrees received by TVET graduates are equal to other academic degree 

programmes, alongside with competitive salaries when they enter the workforce. The 

expectations from technical and vocational education stream are not limited to the 

development of academic and technical knowledge among its students but also to 

help them acquire high employability skills. Public opinion and reviews towards 

TVET institution is one of the excellent ways for improving the Malaysia TVET in 

the future. By harvesting these opinions and reviews from social media, enable the 

discovery of relationship between TVET and its stakeholders such as parent and 

prospective students.  

Social media has been widely used by people as a way of sharing their 

hobbies, friends, places they have been and to the extent of their personal preferences 

or interests (Volkova, Han, & Corley, 2016). It has been used in various contexts 

including sharing one’s opinion on specific topics. Sentiments from social media 
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texts can be collected and analysed to improve strategies in business, investment, 

national policy, security and education.  

In the study of text mining and natural language processing (NLP), sentiment 

analysis or opinion mining is gaining wider attention from researchers (Saberi & 

Saad, 2017). It is due to the accessibility towards Internet as well as online and social 

media application that ease the process of opinion sharing, online review, and 

personal blogs. This situation has sparked the interest of stakeholders such as 

customers, organizations, and governments to analyse and explore these opinions. 

1.2 Problem Background 

In Malaysia, TVET seems to be the last resort for less qualified students for 

academic option. Qualification and careers in TVET-based are still poorly perceived 

and recognized by many employers in the workplace due to highly disintegrated 

landscape, with several ministries and agencies issuing certifications. This has led to 

lower confidence among public especially the parents towards the potential of TVET 

for the future of their children.  

Most parent will choose academic stream rather than technical and vocational 

for education and career path since it has gotten more attention and resource from the 

government and employers in the industry. Mohd Zain (2008) supported this by 

agreeing that TVET in Malaysia was always perceived as being the career choice for 

the less educated with the assumption that TVET is a means of training school 

dropouts rather than as an effective policy to train skill workers. 

Technical and vocational education is a popular choice among student in the 

more developed countries such as Germany, Austria, and Taiwan. However, 

according to study by Sulaiman, Salleh, Mohamad, & Sern (2015), there are 

reluctances among the youth in Malaysia to pick technical and vocation education 

stream. This negative perception is largely contributed by the limited knowledge and 

information available about TVET. Furthermore, it has been long enough being 
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lowly recognized by society, and by the impression of that there are lesser 

employment opportunities compared to conventional academic stream.  

Volkova et al. (2016) described social media has been widely used by people 

as a way of sharing their hobbies, friends, places they have been and to the extent of 

what they are interested in. It has been used in various contexts including sharing 

one’s opinion on specific topics. Sentiments from social media texts can be collected 

and analysed to improve strategies in business, investment, national policy, security 

and education. Capturing public opinion on TVET via social media is an approach to 

avoid the risk of false statement and involuntary opinions where it allows automatic 

interpretation of topics. 

By looking at the microblog’s platform, it has been one of the most popular 

social media tools which establishing an open communication medium among 

participants. Linking and interconnecting formal and informal learning contexts of 

different users are among the outcomes of this open exchange.  Twitter is a free 

social networking microblogging service that allows registered members to broadcast 

short posts called tweets. Tweets are 140-character sentences and the users must 

constrain their feelings into this little space. Twitter members can broadcast tweets 

and follow other users’ tweets by using multiple platforms and devices. Sentiment of 

population can be determined by looking at these tweets as they may content 

important information. Different kind of emotions such as positive, negative or 

neutral can be identified by analyzing sentiments on these Twitter message.  

Sentiment analysis (SA) deals with the mining of information related to 

sentiments or opinions from a group of people for a specified topic (Saberi & Saad, 

2017). Among fields that has benefit from SA are including politics, business and 

marketing. In pursuing SA, it is normal to assume that the documents would contain 

opinions. However, in most cases, only objective information and facts are stated in 

these documents. Therefore, identifying the type and nature of sentences is part of 

the most fundamental part of SA. To address this issue, aspect-based sentiment 

analysis can be performed to extract aspects or features from the text and sentiment 

values are assigned to them (Shama & Dhage, 2018). 
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According to study by Zia, Fatima, Ali, Naseem, & Das (2018), sentiment 

classification follows three steps. In the first step, different contents such as reviews, 

feedbacks or comments will be collected from social media web sites. After that, pre-

processing steps will be applied to clean the data that are not necessary for sentiment 

classification. After the pre-processing step, the aspects in user generated text will be 

analyzed in specific approach so that required information can be identified. Then 

sentiment classification is performed by using machine learning mechanisms in order 

to determine the polarity of the text. 

1.3 Problem Statement 

Public perceptions on the TVET in Malaysia were mentioned in the study by   

Ismail & Zainal Abidin (2014), Esa & Kannapiran (2014),  Esa, Razzaq, Masek, & 

Selamat (2009). These studies involved traditional methods of data collection that 

targeted only certain groups of people and using surveys, questionnaires and 

interviews. The limitation of this conventional research method is the answers to the 

set of questions may not content honest opinion since the respondents might felt 

obliged to answer them.   

At the widespread usage of social media, data from these platforms were not 

yet utilized to observe the sentiments towards TVET in Malaysia. Due to this 

circumstance, the main research question was proposed in this dissertation; what are 

the sentiments towards TVET in Malaysia if an aspect-based sentiment analysis is 

performed on tweets related to it? 

Schouten and Frasincar (2016) in their extensive survey on aspect-based 

sentiment analysis has been highlighting three (3) important tasks that need to be 

addressed in performing sentiment analysis at aspect level; aspect identification, 

aspect sentiment classification, and sentiment aggregation. Among the three main 

tasks, the most crucial part is to extract and categorize the aspect especially the 

implicit aspects. Due to the nature of data collected from Twitters which consisted of 

unlabeled mixture of topics, this has led to the research questions as follow: 
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Research question 1: Can the topic modeling methods be used to extract and 

categorize the aspects that influence this sentiment and what is the suitable method?  

Research question 2: What are the polarities of sentiments in the aspects-based 

sentiment analysis towards TVET in Malaysia?  

Research question 3: How reliable is the result of the aspect-based sentiment 

analysis related to TVET in Malaysia? 

1.4 Research Aim 

This research aims to assess the sentiment about TVET in Malaysia by 

performing aspect-based sentiment analysis by using Twitter data. 

1.5 Research Objectives 

The objectives of the research are: 

(a) to study the existing topic model approaches for aspect extraction in aspect-

based sentiment analysis  

(b) to perform aspect-based sentiment analysis on tweets related to TVET in 

Malaysia in by using lexicon-based and machine learning approaches 

(c) to evaluate the result from the aspect-based sentiment analysis by using 

performance metric  

1.6 Research Scope 

This data used for this research was tweets related to 10 public TVET 

providers; Polytechnic, Community College, Industrial Training Institute (ILP), 



6 

Advanced Technical Training Centre (ADTEC), MARA Vocational Institute (IKM), 

Local Youth Awareness Movement (GiatMara), Mara Higher Skill College (KKTM), 

National Youth Skill Institute (IKBN), National Youth Higher Skills Institute 

(IKTBN), and Vocational College (KV). The justification for this is because they are 

among the largest and well-known providers for TVET program in Malaysia 

(Cheong & Lee, 2016) thus increasing the availability of the data.  

A total of 80% of the raw data obtained in this study is in Malay language, 

10% use a mix of Malay and English, while only 10% use English completely. With 

these constraints, the study has initiated the process of translating the non-English 

tweets into standard English manually by using human translators.  

This research focused on aspect level sentiment analysis. The justification for 

choosing this type of sentiment analysis is because aspect-based sentiment analysis 

was able to perform finer-grained analysis and it is important in this research to 

identify what are the aspects that public most opinionated about TVET in Malaysia.  

1.7 Research Significant 

The importance of this study can be seen from two different angles; for the 

researcher and to the TVET stakeholders such as training provider. The process of 

obtaining data in this study is particularly suited to researchers who require data 

uploaded by users voluntarily without compulsion by using existing social media 

platforms. This study can be used as a reference for researchers for the use in the 

future works. 

The use of topic modeling techniques in extracting aspects for this research 

allowed the discovery of the most tweeted topics among Twitter members about 

TVET in Malaysia. It is hopefully will enable the TVET stakeholders to further 

increase the efforts in handling negative sentiments towards them. 
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1.8 Research Organization 

This dissertation consists of six (6) chapters that will discuss about 

performing aspect-based sentiment analysis towards TVET in Malaysia. The outline 

of this dissertation is as follows. 

The first chapter gave an overview of the study including the introduction, 

which had discussed the research overview, research problems, research objectives, 

scope of this research and the research significances.   

Chapter 2 discusses on relevant literatures reviews regarding the research 

topics that were gathered from various resources to understand the research areas. 

Chapter 3 details on methodology of this research. This chapter explains on 

every phases of this research as well as the deliverables for them to achieve the 

objectives.  It also includes the description for the use of data exploration tools on the 

research objects.  

Chapter 4 presents the finding of data preparation and aspect extraction 

phase. In this chapter, the result and discussion regarding the second and thirds phase 

of this research was elaborated. 

Chapter 5 describes on the experimental results of using lexicon-based and 

machine learning classifiers in classifying the polarities of aspect found in the TVET 

dataset.  

Finally, Chapter 6 concludes the dissertation with research finding, 

contribution, limitation and suggestion for future works. 
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