

MODEL-BASED SEMI-AUTOMATED TEST CASE GENERATION APPROACH

USING UML DIAGRAMS

HUSSAM MOHAMED BASHIR MOHAMED ALI

UNIVERSITI TEKNOLOGI MALAYSIA

MODEL-BASED SEMI-AUTOMATED TEST CASE GENERATION APPROACH

USING UML DIAGRAMS

HUSSAM MOHAMED BASHIR MOHAMED ALI

A thesis submitted in fulfilment of the

requirements for the award of the degree of

Master of Computer Science

School of Computing

Faculty of Engineering

Universiti Teknologi Malaysia

Jul2019

DEDICATION

To my beloved parents and siblings, whose spring of love and tenderness shaped my

heart, instilled determination &confidence in me;

they always believed in me, and thus I started to believe

ACKNOWLEDGEMENT

In the Name of Allah SWT, The Most Gracious and The Most Merciful.

First and foremost, all praise to The Almighty, all praise to Allah swt for bestowing

me with knowledge, good health, courage and strength to complete my master study.

Alhamdullilah for His endless blessings throughout my entire research process. My

sincere appreciation to my main supervisor, Associate Professor Dr. Dayang Norhayati

Abang Jawawi for her supervision, guidance, countless hours in sharing understanding

and patience throughout my research journey. I am thankful for her insightful

comments, criticism, and advice during my learning process. I will always look up to

them as my academic role model to achieve my ambitions.

I would also like to express my gratitude to my parents, Mohamed and Mona,

my siblings who mean most to me, for their prayers of day and night, understanding,

moral and financial support to complete my master study. Special thanks also to my

close friends for their kindness, assistance, and support through thick and thin.

ABSTRACT

Software Testing, a process comprised of test case generation, execution and

evaluation, is one of the imperative phases of the development life cycle, with its cost

approximated to about 50% of the overall development cost. Researchers have

automated it using models with the utmost focus put on Unified Modeling Language

(UML) as the up-to-date de facto standard utilized in software modeling. Its diagrams

include both behavioral and structural.

Recently, Model-Based Testing (MBT) application using Unified Modelling

Language (UML) has achieved high ranking from many testers to use UML diagrams

for test case generation. The benefit of this technique is to achieve early detection of

faults, bugs, and errors in the design phase. Some UML diagrams have a limitation in

generating test cases such that UML diagrams do not support looping and iteration

activities. To avoid this issue, an integrated semi-automated test case generation

technique has been proposed to generate test cases from UML sequence diagram that

can support the looping process. The enhanced technique has been applied to the same

case study as in the original technique. A matrix tool is then applied to the enhanced

test cases to achieve better coverage.

ABSTRAK

Ujian Perisian adalah satu proses yang terdiri daripada penjanaan kes ujian,

pelaksanaan dan penilaian, ia merupakan salah satu fasa penting dalam kitaran hayat

pembangunan(life cycle) dengan kosnya kira-kira 50% daripada kos pembangunan

keseluruhan. Penyelidik telah menggunakan model paling sesuai dengan memberi

tumpuan sepenuhnya pada Unified Modeling Language (UML) sebagai piawaian yang

sebenarnya sehingga digunakan dalam pemodelan perisian. Terdapat dua jenis

kategori UML terdiri daripada gambarajah UML tingkahlaku(behavioral) dan

gambarajah UML struktur(structural).

Selain itu, akhir-akhir ini, aplikasi Pengujian Berbasis Model (MBT)

menggunakan Bahasa Pemodelan Bersepadu (UML) telah mencapai kedudukan yang

tinggi daripada beberapa penguji(tester) untuk menggunakan rajah UML untuk

penjanaan kes ujian.

Disamping itu juga, kebaikan dari teknik ini adalah untuk mencapai

pengesanan awal kesalahan, pepijat, dan kesilapan dalam fasa reka bentuk. Sesetengah

gambarajah UML mempunyai batasan dalam menjana kes ujian, supaya rajah UML

boleh menyokong aktiviti gegelung(looping) dan lelaran(iteration). Untuk

mengelakkan masalah ini, teknik yang dipertingkatkan telah dicadangkan untuk

menjana kes ujian dari gambarajah urutan UML yang boleh menyokong proses

gegelung(looping). Teknik tersebut telah digunakan untuk kajian kes yang sama

seperti teknik asal. Kemudian alat matriks terpakai untuk kes ujian yang ditingkatkan

untuk mengukur kualiti dan ketepatan kes ujian yang dihasilkan.

TABLE OF CONTENTS

CHAPTER TITLE PAGE

Table of Contents
CHAPTER 1 INTRODUCTION 19

1.1 Introduction 19

1.2 Problem Background 21

1.3 Problem Statement 23

1.4 Research aim and objectives 23

1.5 Research Scope 24

1.6 Research contribution 24

1.7 Research organization 24

CHAPTER 2 LITERATURE REVIEW 26

2.1 Introduction 26

2.2 Software testing overview 26

2.3 Test case generation 27

2.4 Model based test case generation 29

 2.4.1 MBT Technique for test case generation 30

2.5 MBT Technique using UML Models for Test Case Generation 32

 2.5.1 Sequence diagram 35

 2.5.2 Activity diagram 37

 2.5.3 State chart diagram 39

 2.5.4 Integration of UML diagrams 41

2.6 Discussion 42

2.7 Summary 44

CHAPTER 3 RESEARCH METHODOLOGY 45

3.1 Introduction 45

3.2 Research operational framework 45

 3.2.1 Stage1: Literature Review 46

 3.2.2 Stage2: Problem Definitions and Formulations 46

 3.2.3 Stage3: Enhanced technique on test case generation 47

 3.2.4 Stage4: Summary and future work 47

3.3 Research Design Framework 47

3.4 Test case generation evaluation criteria 48

 3.4.1 Coverage criteria Cyclomatic Complexity 49

3.5 Automatic Teller Machine Pin Authentication (ATMPA) case Study 50

3.6 Summary 50

CHAPTER 4 Analysis and Results 52

4.1 Introduction 52

4.2 Generated test cases from (Sarma, 2007) 52

 4.2.1 Phase 1: Generation of Operation Scenario 54

 4.2.2 Phase 2: Transformation Sequence Diagram into Sequence

Diagram Graph (SDG) 55

 4.2.3 Phase 3: Generation of test cases 56

4.3 Generate test cases from proposed technique 57

 4.3.1 Phase 1: Transform the Sequence Diagram into a Sequence

Dependence Graph 59

 4.3.2 Phase 2: Generation of test cases 60

4.4 Cyclomatic Complexity, V (G) 61

4.5 Comparison 62

4.6 Summary 63

CHAPTER 5 SEMI-AUTOMATIC TEST CASE GENERATION 65

5.1 Introduction 65

5.2 Automation Architecture 65

5.3 Automation Processes 67

 5.3.1 Phase One: design the sequence diagram 67

 5.3.1.1 Sequence diagram notations 69

 5.3.2 Phase Two: generate sequence XML file 71

 5.3.2.1 XML Metadata interchange 71

 5.3.3 Phase Three: parsing Elements, tags and values 74

 5.3.4 Phase Four: Derive the test cases 76

5.4 Comparison 80

5.5 Summary 84

CHAPTER 6 CONCLUSION AND FUTURE WORK 85

6.1 Research Summary and Contributions 85

6.2 Research Limitation 86

6.3 Future Work 87

LIST OF TABLES

TABLE NO. TITLE PAGE

Table 2.1: Test Case Generation Technique in Software Testing 28

Table 2.2: Different Type of Model-Based Testing Techniques. 31

Table 2.3: Sequence Diagram Previous works. 37

Table 2.4: Activity Diagram Previous Works. 38

Table 2.5: State Chart Diagram Previous Works. 41

Table 2.6: Combinational Diagram Previous Works. 41

Table 4.1: Operation Scenarios generated from (Sarma, 2007) Technique. 55

Table 4.2: Test Case Generation from (Sarma, 2007) Technique. 57

Table 4.3: Test case generated from the proposed technique. 60

Table 4.4: Comparison Number of Test Cases Generated. 63

Table 5.1:Extracted elements from sequence.XML 76

Table 5.2: Test cases from the proposed technique. 79

Table 5.3: comparison 83

LIST OF FIGURES

FIGURE NO. TITLE PAGE

Figure 1.1: Software Development Life Cycle (SDLC). 20

Figure 3.1: Methodology Flow Chart of The Research. 46

Figure 3.2: Research Design Framework. 48

Figure 4.1: Sequence Diagram from (Sarma, 2007) Technique. 53

Figure 4.2: Sequence Diagram Graph from (Sarma, 2007) Technique. 55

Figure 4.3: Proposed Sequence Diagram. 58

Figure 4.4: Sequence Dependency Graph from the proposed technique. 59

Figure 4.5: Sequence Dependency Graph from the proposed technique. 61

Figure 5.1: semi-Automation architecture. 66

Figure 5.2: semi-automation processes. 67

Figure 5.3: UML sequence Diagram of ATM PIN Authentication. 68

Figure 5.4: Sequence Diagram.XML. 73

Figure 5.5: Elements of message “CardReader”. 73

Figure 5.6: parser tool. 74

Figure 5.7: parser Algorithm. 75

Figure 5.8: Sequence grap. 78

Figure 5.9: Activity Diagram for Registration Cancellation Use Case from

Conference Management System (CMS). 88

LIST OF ABBREVIATIONS

CC - Cyclomatic Complexity.

MBT - Model Based Test Case Generation.

SW - Software Engineering.

SDLC - Software Development Life Cycle.

SD - Sequence Diagram.

TCG - Test Case Generation.

UML - Unified Modelling Language.

LIST OF APPENDICES

APPENDIX TITLE PAGE

Appendix A semi-automatic test case generation code 95

19

CHAPTER 1

INTRODUCTION

1.1 Introduction

Nowadays individuals and societies rely on technologies that adopt advanced

software systems in every aspect of daily life. Software industry has become a rapidly

changing, large, complex, and rather integrated software system.

When new technologies take off, modern software become larger and more complex.

Computer applications have spread into every sphere of life for manipulation of several

sophisticated applications and most of these applications are very large and complex

(Syafiqah et al., 2015).

Software testing has become the most important of the Software Development

Life Cycle (SDLC) phases, because it determines whether the system or its

components are satisfying the specific requirements or not. Software Development

Life Cycle is a process followed by software industries to design, implement and test

the software products. SDLC is the acronym for Software Development Life Cycle.

SDLC process is followed strictly to ensure quality products are delivered to the

customers and consumers within the planned budget and time estimates. SDLC has six

stages, with each phase having its own deliverables which serve as input for the next

phase as shown in Figure 1.1.

20

Figure 1. 1: Software Development Life Cycle (SDLC).

Software testing is believed to save up to 50% of time and reduce the cost by

up to 50% Some researchers have defined software testing as a method, or a sequence

of processes, of dynamically executing a program with given inputs, to ensure that the

computer code does exactly that for which it is designed. Various applications are

turning out to be ever more omnipresent, taking care of an extensive diversity of well

accepted and safety-critical devices.

Testing is the frequently utilized technique used in authenticating software

applications, and efficient testing methods may well be supportive for enhancing the

reliability of such systems. Despite the ease of manual testing in terms of following

the sequence of operations in the program step by step, it requires a lot of effort and

time compared to automated testing. This is because automatic testing takes less time

and less effort (high efficiency). Therefore, the automated testing in our time is most

desired by the testers to apply in the software systems because it achieves the speed

factor, which is an important factor to evaluate the efficiency of the program.

Unified Modelling Language provides various model to be applied in

modelling Object Oriented Systems, such as Use Case Diagram, Class Diagram,

Sequence Diagram, Activity Diagram, State Chart Diagram, Deployment Diagram. It

is also used in the modelling of Object-Oriented Systems, and has been applied in the

21

design of tests in various phases such as requirements phase, unit, integration, and

system.

Currently, many researchers are proposing innovative ways to reuse design

models for the test generation process. Although there are many other techniques that

use different models, this helps to increase the efficiency of the software testing

process (time and effort reduction).

1.2 Problem Background

Testing assumes an indispensable job in ensuring the quality and

dependability of a product (Jena, Swain, & Mohapatra, 2014). As the trouble and

extent of frameworks extend can be ascribed to changing client's necessities, extra

time and exertion are expected to perform sufficient testing. This also complicates

the system with short period of time and tension due to inconsistencies, inaccuracies

and ambiguities.

In testing process, there are three areas, which are test case generation,

execution, and appraisal. Generation of test case is the most troublesome

development in testing as they choose the achievement of testing in making quality

products that meet customer's desire.

Researchers have reliably created new techniques to address the difficulties

of test case generation, intending to reduce testing effort and time. It is better to

create test case at the design stage, which produces solid software (Jena et al., 2014).

In view of this, MBT procedure has been introduced to help create value software.

MBT includes an automatic generation of test case utilizing models from framework

necessities (Cartaxo, Neto, & Machado, 2007).

Six MBT methods have been introduced by researchers to help create test

case including Finite State Machine (FSM), Theorem Proving, Constraints Logic

Programming and Symbolic Execution, Model Checking, Markov Chain, and

Unified Modelling Language (UML). These days, model-based software

development utilizing UML notations has attracted the attention of researchers,

22

whereby various researchers have started to separate valuable data from UML

diagrams to create test case (Sawant & Shah, 2011).

Clearly, UML models assist developers with recognizing software structure

and to find test data attributed to high-level abstraction models. Likewise, MBT

methodology in creating test case enables testers to design testing at an early stage in

SDLC and licenses parallel testing and coding (Kundu & Samanta, 2009). Moreover,

when test case is delivered early, engineers are able to find abnormalities and

ambiguities in requirement detail and design documents.

However, UML diagrams have a limitation mentioned by many authors

(Hoseini & Jalili, 2014; Syafiqah et al., 2015) as it does not support a particular issue

like looping, iteration activity in the software system. UML Sequence diagram as one

of the commonly used diagrams to generate test cases has its limitations, as it needs a

loop combination fragment to describe the looping process, and a combination

fragment with the par operator is needed to show the parallel execution of the

operation. Without using fragments, the sequence diagram will not support the

looping activities such as demonstrated by (Sarma, 2007) in previous work.

 Moreover, manual generation of test cases have limitation such as wasting

time and effort, which is why nowadays automated test cases generation is highly

ranked, as it provides an easy and efficient way for software testers to generate test

cases from UML models (Schieferdecker, 2012). Testing plays an indispensable role

in ensuring the quality and dependability of a product (Jena et al., 2014). As the

trouble and extent of frameworks extend ascribed to changing client's necessities,

extra time and exertion are expected to perform sufficient testing. This also

complicates the system with short period of time and tension due to inconsistencies,

inaccuracies and ambiguities.

As a result, various efforts have been made to automate the process, making it

faster and more reliable, hence genesis of model-based testing (MBT). Numerous

researchers have surveyed this field in depth with an intention of finding out exactly

how the test data (input and output) is generated, executed and later evaluated against

23

any given system. Test data generation has proven the most challenging step that

determines the correctness of the next phases.

1.3 Problem Statement

Against the above background, this research will emphasize the problem of

how to generate test case from UML Sequence diagram to solve the looping limitation

of considered UML Sequence diagrams in generating test cases using semi-automation

test case generation method.

To tackle the aforementioned problem, this research addresses the following

questions:

i. How can test cases be generated semi-automatically using UML

Sequence diagram?

ii. How can test case generation be evaluated using coverage criteria?

1.4 Research aim and objectives

The aim of this research is to generate test case using UML Sequence diagram

and to enhance the test cases generation of a given case study.

By addressing the problem and the questions based thereof, this research is targeted to

achieve the following objectives:

i. Enhance test case generation techniques using proposed UML

sequence diagram technique.

ii. Generate semi-automatic test cases from UML sequence diagram.

iii. Evaluate the coverage criteria of the test case generated.

24

1.5 Research Scope

This section elaborates the scopes of this research. Some of the research scopes are

addressed in detail in later chapters.

i. Focuses on one of the black box testing techniques, which is MBT technique,

where test cases are derived from UML diagrams that are used to model user’s

requirements.

ii. UML behavioural model sequence diagram have been implemented on looping

and iteration cases to compare the effectiveness on generating test case.

1.6 Research contribution

This work will enhance the generation of test case from UML sequence

diagram used in existing case study solving looping and iteration problems for

providing better coverage. The enhanced test case generation technique will provide

an easy and efficient way for software testers to generate test cases from UML

sequence diagrams.

As a result, the knowledge gained from this research will benefit other

researchers that are looking into exploring software testing area, particularly on test

case generation using UML sequence diagrams. In addition, the enhanced

methodology gives more test cases with same complexity in order to produce quality

test cases and deliver the good software system to the user.

1.7 Research organization

In order to conduct a thorough study that emphasizes generating test case from

UML Sequence diagram to solve the looping limitation of considered UML Sequence

diagrams in generating test case and enhance a given case study as a primary objective,

the structure of this thesis is comprised of 5 chapters as follows:

Chapter 1 enumerates the study overview and states the research problem,

questions, objectives, significance, scope as well as the selected approach and design

of the research.

88

REFERENCES

Ali, M. A., Shaik, K., & Kumar, S. (2014). Test case generation using UML state

diagram and OCL expression. International Journal of Computer Applications,

95(12), 7–11. https://doi.org/10.5120/ijais2016451599

Ard, J., Davidsen, K., & Hurst, T. (2014). Simulation-based embedded agile

development. IEEE Software, 31(2), 97–101.

https://doi.org/10.1109/MS.2014.42

Arora, P. K., & Bhatia, R. (2018). Mobile agent-based regression test case generation

using model and formal specifications. IET Software, 12(1), 30–40.

https://doi.org/10.1049/iet-sen.2016.0203

Boberg, J. (2008). Early fault detection with model-based testing. Erlang’08:

Proceedings of the 2008 SIGPLAN Erlang Workshop, 9–20.

https://doi.org/10.1145/1411273.1411276

Boghdady, Pakinam N., Badr, Nagwa L., Hashem, Mohamed, and Tolba, M. F. T.

(2011). A Proposed Test Case Generation Technique Based on Activity

Diagrams. International Journal of Engineering & Technology, 11(3), 37–57.

Cartaxo, E. G., Neto, F. G. O., & Machado, P. D. L. (2007). Test case generation by

means of UML sequence diagrams and labeled transition systems. Conference

Proceedings - IEEE International Conference on Systems, Man and Cybernetics,

1292–1297. https://doi.org/10.1109/ICSMC.2007.4414060

Chanda, C., Vivek, S., & Parminder, S. S. (2012). Test Case Generation based on

Activity Diagram for Mobile Application. International Journal of Computer

Applications, 57(23), 975–8887. https://doi.org/10.5120/9436-3563

89

Dalai, S. (2011). Test Case Generation For Concurrent Object-Oriented Systems

Using Combinational Uml Models. 3(5), 97–102.

Dhineshkumar, M., & Galeebathullah. (2014). An approach to generate test cases from

sequence diagram. Proceedings - 2014 International Conference on Intelligent

Computing Applications, ICICA 2014, 345–349.

https://doi.org/10.1109/ICICA.2014.77

Elallaoui, M., Nafil, K., & Touahni, R. (2017). Automatic generation of TestNG tests

cases from UML sequence diagrams in Scrum process. Colloquium in

Information Science and Technology, CIST, 65–70.

https://doi.org/10.1109/CIST.2016.7804972

Felderer, M., & Herrmann, A. (2015). Manual test case derivation from UML activity

diagrams and state machines: A controlled experiment. Information and Software

Technology, 61, 1–15. https://doi.org/10.1016/j.infsof.2014.12.005

Gutiérrez, J. J., Escalona, M. J., Mejías, M., & Torres, J. (2006). An approach to

generate test cases from use cases. Proceedings of the 6th International

Conference on Web Engineering - ICWE ’06, 113.

https://doi.org/10.1145/1145581.1145606

Hoseini, B., & Jalili, S. (2014). Automatic Test Path Generation from Sequence

Diagram Using Genetic Algorithm. 2014 7th International Symposium on

Telecommunications, IST 2014, 106–111.

https://doi.org/10.1109/ISTEL.2014.7000678

Jena, A. K., Swain, S. K., & Mohapatra, D. P. (2014). A novel approach for test case

generation from UML activity diagram. Issues and Challenges in Intelligent

Computing Techniques (ICICT), 2014 International Conference On, (April

2016), 621–629.

Khurana, N., Singh Chhillar, R., & Chhillar, U. (2016). A Novel Technique for

Generation and Optimization of Test Cases Using Use Case, Sequence, Activity

90

Diagram and Genetic Algorithm. Journal of Software, 11(3), 242–250.

https://doi.org/10.17706/jsw.11.3.242-250

Kim, H., Kang, S., Baik, J., & Ko, I. (2007). Test cases generation from UML activity

diagrams. Proceedings - SNPD 2007: Eighth ACIS International Conference on

Software Engineering, Artificial Intelligence, Networking, and

Parallel/Distributed Computing, 3, 556–561.

https://doi.org/10.1109/SNPD.2007.525

Kundu, D., & Samanta, D. (2009). A Novel Approach to Generate Test Cases from

UML Activity Diagrams. The Journal of Object Technology, 8(3), 65.

https://doi.org/10.5381/jot.2009.8.3.a1

Li, L., Li, X., He, T., & Xiong, J. (2013). Extenics-based test case generation for UML

activity diagram. Procedia Computer Science, 17, 1186–1193.

https://doi.org/10.1016/j.procs.2013.05.151

Li, V. (2014). T he Research on Test Case Generation Technology ofUML Sequence

Diagram. (Iccse), 1067–1069.

Ma, C., & Provost, J. (2017). A model-based testing framework with reduced set of

test cases for programmable controllers. 13th IEEE Conference on Automation

Science and Engineering (CASE), 944–949.

Maheshwari, V., & Prasanna, M. (2015). Generation of test case using automation in

software systems - A review. Indian Journal of Science and Technology, 8(35).

https://doi.org/10.17485/ijst/2015/v8i35/72881

Meiliana, Septian, I., Alianto, R. S., Daniel, & Gaol, F. L. (2017). Automated Test

Case Generation from UML Activity Diagram and Sequence Diagram using

Depth First Search Algorithm. Procedia Computer Science, 116, 629–637.

https://doi.org/10.1016/j.procs.2017.10.029

Nian-Fa, M. (2015). The Test System Design of Real-Time Embedded Software

System. 2015 Seventh International Conference on Measuring Technology and

91

Mechatronics Automation, 1321–1324.

https://doi.org/10.1109/ICMTMA.2015.323

Peltola, J., Sierla, S., Aarnio, P., & Koskinen, K. (2013). Industrial evaluation of

functional Model-Based Testing for process control applications using CAEX.

2013 IEEE 18th Conference on Emerging Technologies Factory Automation

(ETFA), 62424, 1–8. https://doi.org/10.1109/ETFA.2013.6647997

Qin, Y., & Xu, R. (2008). GSPN-based modeling and analysis for robotized assembly

system. 2008 IEEE International Conference on Robotics and Biomimetics,

ROBIO 2008, 1070–1075. https://doi.org/10.1109/ROBIO.2009.4913149

Sarma, M. (2007). Automatic Test Case Generation from UML Sequence Diagrams.

60–65. https://doi.org/10.1109/ADCOM.2007.68

Sarma, M., & Mall, R. (2007a). Automatic test case generation from UML models.

Proceedings - 10th International Conference on Information Technology, ICIT

2007, 49, 196–201. https://doi.org/10.1109/ICOIT.2007.4418295

Sarma, M., & Mall, R. (2007b). Automatic Test Case Generation from UML Models.

10th International Conference on Information Technology (ICIT 2007), 196–201.

https://doi.org/10.1109/ICIT.2007.26

Sawant, V., & Shah, K. (2011). Construction of test cases from UML models.

Communications in Computer and Information Science, 145 CCIS, 61–68.

https://doi.org/10.1007/978-3-642-20209-4_9

Schieferdecker, I. (2012). Model-based fuzz testing. Proceedings - IEEE 5th

International Conference on Software Testing, Verification and Validation, ICST

2012, 814. https://doi.org/10.1109/ICST.2012.180

Shirole, M., & Kumar, R. (2013). UML behavioral model based test case generation.

ACM SIGSOFT Software Engineering Notes, 38(4), 1.

https://doi.org/10.1145/2492248.2492274

Syafiqah, N., Binti, Z., Rahman, A., Dayang, N. A., Azurati, N., & Salleh, A. (2015).

92

Jurnal Teknologi SELECTING UML MODELS FOR GENERATION OF TEST

CASES : AN EXPERIMENTS OF TECHNIQUE TO GENERATE TEST CASES.

1(1), 1–6.

Wang, C., & Liu, M. T. (1993). Generating Test Cases for. 774–781.

Wang, S. Y., Sun, J. Z., & Zhang, J. (2016). The method of generating web link

security testing scenario based on UML diagram. Proceedings - 15th IEEE

International Conference on Trust, Security and Privacy in Computing and

Communications, 10th IEEE International Conference on Big Data Science and

Engineering and 14th IEEE International Symposium on Parallel and Distributed

Proce, 1831–1838. https://doi.org/10.1109/TrustCom.2016.0281

Wang, X., Jiang, X., & Shi, H. (2015). Prioritization of test scenarios using hybrid

genetic algorithm based on UML activity diagram. Proceedings of the IEEE

International Conference on Software Engineering and Service Sciences,

ICSESS, 2015-Novem, 854–857. https://doi.org/10.1109/ICSESS.2015.7339189

Xing, Y., Gong, Y. Z., Wang, Y. W., & Zhang, X. Z. (2015). The application of

iterative interval arithmetic in path-wise test data generation. Engineering

Applications of Artificial Intelligence, 45, 441–452.

https://doi.org/10.1016/j.engappai.2015.07.021

Zhang, C., Duan, Z., Yu, B., Tian, C., & Ding, M. (2016). A test case generation

approach based on sequence diagram and automata models. Chinese Journal of

Electronics, 25(2), 234–240. https://doi.org/10.1049/cje.2016.03.007

