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ABSTRACT 

Software Testing, a process comprised of test case generation, execution and 

evaluation, is one of the imperative phases of the development life cycle, with its cost 

approximated to about 50% of the overall development cost. Researchers have 

automated it using models with the utmost focus put on Unified Modeling Language 

(UML) as the up-to-date de facto standard utilized in software modeling. Its diagrams 

include both behavioral and structural. 

Recently, Model-Based Testing (MBT) application using Unified Modelling 

Language (UML) has achieved high ranking from many testers to use UML diagrams 

for test case generation. The benefit of this technique is to achieve early detection of 

faults, bugs, and errors in the design phase. Some UML diagrams have a limitation in 

generating test cases such that UML diagrams do not support looping and iteration 

activities. To avoid this issue, an integrated semi-automated test case generation 

technique has been proposed to generate test cases from UML sequence diagram that 

can support the looping process. The enhanced technique has been applied to the same 

case study as in the original technique. A matrix tool is then applied to the enhanced 

test cases to achieve better coverage. 

  



 

 

ABSTRAK 

Ujian Perisian adalah satu proses yang terdiri daripada penjanaan kes ujian, 

pelaksanaan dan penilaian, ia  merupakan salah satu fasa penting dalam kitaran hayat 

pembangunan(life cycle) dengan kosnya kira-kira 50% daripada kos pembangunan 

keseluruhan. Penyelidik telah menggunakan model paling sesuai dengan memberi 

tumpuan sepenuhnya pada Unified Modeling Language (UML) sebagai piawaian yang 

sebenarnya sehingga digunakan dalam pemodelan perisian. Terdapat dua jenis 

kategori UML terdiri daripada gambarajah UML tingkahlaku(behavioral) dan 

gambarajah UML struktur(structural). 

Selain itu, akhir-akhir ini, aplikasi Pengujian Berbasis Model (MBT) 

menggunakan Bahasa Pemodelan Bersepadu (UML) telah mencapai kedudukan yang 

tinggi daripada beberapa penguji(tester) untuk  menggunakan rajah UML untuk 

penjanaan kes ujian.  

Disamping itu juga, kebaikan dari teknik ini adalah untuk mencapai 

pengesanan awal kesalahan, pepijat, dan kesilapan dalam fasa reka bentuk. Sesetengah 

gambarajah UML mempunyai batasan dalam menjana kes ujian, supaya rajah UML 

boleh  menyokong aktiviti gegelung(looping) dan lelaran(iteration). Untuk 

mengelakkan masalah ini, teknik yang dipertingkatkan telah dicadangkan untuk 

menjana kes ujian dari gambarajah urutan UML yang boleh menyokong proses 

gegelung(looping). Teknik tersebut  telah digunakan untuk kajian kes yang sama 

seperti teknik asal. Kemudian alat matriks terpakai untuk kes ujian yang ditingkatkan 

untuk mengukur kualiti dan ketepatan kes ujian yang dihasilkan. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Introduction 

Nowadays individuals and societies rely on technologies that adopt advanced 

software systems in every aspect of daily life. Software industry has become a rapidly 

changing, large, complex, and rather integrated software system.  

When new technologies take off, modern software become larger and more complex. 

Computer applications have spread into every sphere of life for manipulation of several 

sophisticated applications and most of these applications are very large and complex 

(Syafiqah et al., 2015). 

 

Software testing has become the most important of the Software Development 

Life Cycle (SDLC) phases, because it determines whether the system or its 

components are satisfying the specific requirements or not. Software Development 

Life Cycle is a process followed by software industries to design, implement and test 

the software products. SDLC is the acronym for Software Development Life Cycle. 

SDLC process is followed strictly to ensure quality products are delivered to the 

customers and consumers within the planned budget and time estimates. SDLC has six 

stages, with each phase having its own deliverables which serve as input for the next 

phase as shown in Figure 1.1. 
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Figure 1. 1: Software Development Life Cycle (SDLC). 

Software testing is believed to save up to 50% of time and reduce the cost by 

up to 50% Some researchers have defined software testing as a method, or a sequence 

of processes, of dynamically executing a program with given inputs, to ensure that the 

computer code does exactly that for which it is designed. Various applications are 

turning out to be ever more omnipresent, taking care of an extensive diversity of well 

accepted and safety-critical devices. 

 

Testing is the frequently utilized technique used in authenticating software 

applications, and efficient testing methods may well be supportive for enhancing the 

reliability of such systems. Despite the ease of manual testing in terms of following 

the sequence of operations in the program step by step, it requires a lot of effort and 

time compared to automated testing. This is because automatic testing takes less time 

and less effort (high efficiency). Therefore, the automated testing in our time is most 

desired by the testers to apply in the software systems because it achieves the speed 

factor, which is an important factor to evaluate the efficiency of the program. 

 

Unified Modelling Language provides various model to be applied in 

modelling Object Oriented Systems, such as Use Case Diagram, Class Diagram, 

Sequence Diagram, Activity Diagram, State Chart Diagram, Deployment Diagram. It 

is also used in the modelling of Object-Oriented Systems, and has been applied in the 
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design of tests in various phases such as requirements phase, unit, integration, and 

system. 

Currently, many researchers are proposing innovative ways to reuse design 

models for the test generation process. Although there are many other techniques that 

use different models, this helps to increase the efficiency of the software testing 

process (time and effort reduction). 

1.2 Problem Background 

Testing assumes an indispensable job in ensuring the quality and 

dependability of a product (Jena, Swain, & Mohapatra, 2014). As the trouble and 

extent of frameworks extend can be ascribed to changing client's necessities, extra 

time and exertion are expected to perform sufficient testing. This also complicates 

the system with short period of time and tension due to inconsistencies, inaccuracies 

and ambiguities.  

 

In testing process, there are three areas, which are test case generation, 

execution, and appraisal. Generation of test case is the most troublesome 

development in testing as they choose the achievement of testing in making quality 

products that meet customer's desire. 

 

Researchers have reliably created new techniques to address the difficulties 

of test case generation, intending to reduce testing effort and time. It is better to 

create test case at the design stage, which produces solid software (Jena et al., 2014). 

In view of this, MBT procedure has been introduced to help create value software. 

MBT includes an automatic generation of test case utilizing models from framework 

necessities (Cartaxo, Neto, & Machado, 2007).  

 

Six MBT methods have been introduced by researchers to help create test 

case including Finite State Machine (FSM), Theorem Proving, Constraints Logic 

Programming and Symbolic Execution, Model Checking, Markov Chain, and 

Unified Modelling Language (UML). These days, model-based software 

development utilizing UML notations has attracted the attention of researchers, 
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whereby various researchers have started to separate valuable data from UML 

diagrams to create test case (Sawant & Shah, 2011).  

 

Clearly, UML models assist developers with recognizing software structure 

and to find test data attributed to high-level abstraction models. Likewise, MBT 

methodology in creating test case enables testers to design testing at an early stage in 

SDLC and licenses parallel testing and coding (Kundu & Samanta, 2009). Moreover, 

when test case is delivered early, engineers are able to find abnormalities and 

ambiguities in requirement detail and design documents.  

 

However, UML diagrams have a limitation mentioned by many authors 

(Hoseini & Jalili, 2014; Syafiqah et al., 2015) as it does not support a particular issue 

like looping, iteration activity in the software system. UML Sequence diagram as one 

of the commonly used diagrams to generate test cases has its limitations, as it needs a 

loop combination fragment to describe the looping process, and a combination 

fragment with the par operator is needed to show the parallel execution of the 

operation. Without using fragments, the sequence diagram will not support the 

looping activities such as demonstrated by (Sarma, 2007) in previous work. 

 

 Moreover, manual generation of test cases have limitation such as wasting 

time and effort, which is why nowadays automated test cases generation is highly 

ranked, as it provides an easy and efficient way for software testers to generate test 

cases from UML models (Schieferdecker, 2012). Testing plays an indispensable role 

in ensuring the quality and dependability of a product (Jena et al., 2014). As the 

trouble and extent of frameworks extend ascribed to changing client's necessities, 

extra time and exertion are expected to perform sufficient testing. This also 

complicates the system with short period of time and tension due to inconsistencies, 

inaccuracies and ambiguities. 

As a result, various efforts have been made to automate the process, making it 

faster and more reliable, hence genesis of model-based testing (MBT). Numerous 

researchers have surveyed this field in depth with an intention of finding out exactly 

how the test data (input and output) is generated, executed and later evaluated against 
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any given system. Test data generation has proven the most challenging step that 

determines the correctness of the next phases. 

 

1.3 Problem Statement 

Against the above background, this research will emphasize the problem of 

how to generate test case from UML Sequence diagram to solve the looping limitation 

of considered UML Sequence diagrams in generating test cases using semi-automation 

test case generation method. 

 

To tackle the aforementioned problem, this research addresses the following 

questions: 

i. How can test cases be generated semi-automatically using UML 

Sequence diagram?  

ii. How can test case generation be evaluated using coverage criteria? 

 

1.4 Research aim and objectives 

The aim of this research is to generate test case using UML Sequence diagram 

and to enhance the test cases generation of a given case study. 

By addressing the problem and the questions based thereof, this research is targeted to 

achieve the following objectives: 

i. Enhance test case generation techniques using proposed UML 

sequence diagram technique. 

ii. Generate semi-automatic test cases from UML sequence diagram. 

iii. Evaluate the coverage criteria of the test case generated. 
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1.5 Research Scope 

This section elaborates the scopes of this research. Some of the research scopes are 

addressed in detail in later chapters. 

i. Focuses on one of the black box testing techniques, which is MBT technique, 

where test cases are derived from UML diagrams that are used to model user’s 

requirements. 

ii. UML behavioural model sequence diagram have been implemented on looping 

and iteration cases to compare the effectiveness on generating test case. 

 

1.6 Research contribution 

This work will enhance the generation of test case from UML sequence 

diagram used in existing case study solving looping and iteration problems for 

providing better coverage. The enhanced test case generation technique will provide 

an easy and efficient way for software testers to generate test cases from UML 

sequence diagrams. 

As a result, the knowledge gained from this research will benefit other 

researchers that are looking into exploring software testing area, particularly on test 

case generation using UML sequence diagrams. In addition, the enhanced 

methodology gives more test cases with same complexity in order to produce quality 

test cases and deliver the good software system to the user. 

 

1.7 Research organization 

In order to conduct a thorough study that emphasizes generating test case from 

UML Sequence diagram to solve the looping limitation of considered UML Sequence 

diagrams in generating test case and enhance a given case study as a primary objective, 

the structure of this thesis is comprised of 5 chapters as follows:  

 

Chapter 1 enumerates the study overview and states the research problem, 

questions, objectives, significance, scope as well as the selected approach and design 

of the research.  
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