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ABSTRACT 

 Changes in crude oil spot prices (COSP) have a significant impact on 

worldwide economy. Therefore, accurate forecasting of COSP is crucial to ensure that 

necessary steps can be planned earlier by the organizations related to crude oil prices. 

However, it is difficult to predict accurately the COSP using basic forecasting models 

because the data are non-stationary and non-linear. Many researchers have empirically 

proven that the integration of forecasting model with data decomposition method 

provides superior forecasting results in comparison to basic forecasting model. 

Nonetheless, most of these hybrid models do not consider the distinction of data 

characteristics after being decomposed which can affect the forecasting result. In this 

research, a model called Modified EWT-LSSVM (MEWT-LSSVM) was developed to 

enhance the forecasting performance of COSP. Empirical wavelet transforms (EWT) 

was utilized experimentally to separate the nonlinear and time varying components of 

COSP to address the non-linear and non-stationary issues of COSP. Fuzzy c-means 

(FCM) clustering was applied to group the decomposed components into several 

clusters to address the data characteristics issue thus providing better quality inputs for 

the forecasting model. Each cluster was then forecasted using least square support 

vector machine (LSSVM), and lastly combined using Inverse EWT to obtain the final 

forecast. The datasets consisted of daily COSP from West Texas Intermediate (WTI) 

and European Brent (Brent). For the effectiveness evaluation of the proposed model, 

the performance of MEWT-LSSVM was compared with EWT-Kmeans-LSSVM, 

EWT-LSSVM, EWT-Autoregressive Integrated Moving Average (ARIMA), LSSVM 

and ARIMA models. The experiments produced encouraging results whereby the 

modified MEWT-LSSVM had 98.87% and 98.86% accuracies for Brent and WTI 

datasets respectively. Furthermore, comparison of performance between the models  

demonstrated that the developed model was the most effective for forecasting COSP 

series to predict accurately oil prices. 
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ABSTRAK 

 Perubahan dalam harga minyak mentah (COSP) memberikan impak yang besar 

kepada ekonomi dunia. Oleh itu, ramalan COSP yang tepat adalah penting untuk 

memastikan langkah-langkah yang diperlukan dapat dirancang lebih awal oleh 

organisasi yang berkaitan dengan harga minyak mentah. Walau bagaimanapun, adalah 

sukar untuk meramalkan COSP dengan tepat menggunakan model ramalan asas 

kerana data ini tidak pegun dan tidak linear. Banyak penyelidik telah membuktikan 

secara empirikal bahawa integrasi model ramalan dengan kaedah penguraian data 

memberikan hasil ramalan yang lebih baik berbanding dengan model ramalan asas. 

Namun begitu, kebanyakan model hibrid ini tidak mengambil kira perbezaan ciri-ciri 

data selepas diurai dan ini boleh menjejaskan hasil ramalan. Dalam kajian ini, model 

yang dipanggil EWT-LSSVM yang diubah suai (MEWT-LSSVM) telah dibangunkan 

untuk meningkatkan prestasi ramalan COSP. Transformasi wavelet empirikal (EWT) 

telah digunakan secara eksperimen untuk menguraikan komponen-komponent COSP 

yang tidak linear dan berbeza mengikut masa untuk menangani isu COSP yang tidak 

linear dan tidak pegun. C-means kabur (FCM) telah digunakan untuk 

mengelompokkan komponen-komponen yang diuraikan kepada beberapa kelompok 

untuk mempertimbangkan isu-isu ciri data dan seterusnya memberi input yang lebih 

berkualiti untuk model ramalan. Setiap kelompok kemudian diramalkan menggunakan 

mesin sokongan vektor kuasa dua terkecil (LSSVM) dan akhirnya digabungkan 

menggunakan EWT songsang untuk mendapatkan ramalan akhir. Dataset ini terdiri 

daripada COSP harian dari Texas Barat Pertengahan (WTI) dan Brent Eropah (Brent). 

Bagi penilaian keberkesanan model yang dicadangkan, prestasi MEWT-LSSVM 

dibandingkan dengan model EWT-Kmeans-LSSVM, EWT-LSSVM, EWT-Purata 

Bergerak Bersepadu Autoregresif (ARIMA), LSSVM dan ARIMA. Eksperimen 

menghasilkan keputusan yang menggalakkan di mana MEWT-LSSVM yang telah 

diubah suai masing-masing mempunyai 98.87% dan 98.86% ketepatan untuk data 

Brent dan WTI. Selain itu, perbandingan prestasi antara model-model menunjukkan 

bahawa model yang dibangunkan adalah yang paling berkesan untuk meramalkan siri 

COSP bagi meramalkan harga minyak dengan tepat.
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

 Fossil fuels are a common type of energy source used in many countries. 88 % 

of the world’s primary energy consumption consisted of fossil fuels and only 23 

countries are self-sufficient in term of fossil fuels production (Ediger, Akar and 

Uğurlu, 2006). Self-sufficient in this context means the country’s fossil fuels 

consumption is equal or less than their domestic fossil fuels production. 

Decomposition of buried dead organisms are responsible for the formation of fossil 

fuels that happens through a natural process. This process of organisms aging and 

resulting fossil fuels is remarkably slow, typically millions of years. Although fossil 

fuels are continuously forming, they are considered as a non-renewable resource 

because obviously, the process is extremely long to be compared with the consumption 

rate that is much faster. One of the oils produced from fossil fuels is crude oil where 

its prices series is utilized as a dataset in this research. The prices of crude oil used in 

this research is in the form of a time series. More explanation about time series is 

presented next. 

 A time series is an ordered series of variables values. Usually, it is recorded at 

evenly spaced points in time (per second, per day, per month) therefore it is also known 

as a sequence of discrete-time data. A line graph is normally used to plot and visualize 

a time series data. Time series data is utilized in various domains that are associated 

with temporal measurements such as statistic, signal processing, mathematical finance, 

weather forecasting and earthquake prediction. Clarification about time series here is 

important because the crude oil prices that are utilized in this research are in the form 

of a time series. When the future values of a time series are predicted based on the 

previously observed values using a designated forecasting model, it is called time 

series forecasting. The next paragraph explains more about time series forecasting. 
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 Forecasting has gained a noticeable increase in its popularity because of its 

ability to assist practitioners in predicting the future movement of a time series data 

thus enabling them to plan their decision makings strategically according to the 

prediction. Usually, a forecasting problem involves the utilization of time series data 

(Montgomery, Jennings and Kulahci, 2015), creating the term time series forecasting. 

Time series forecasting is a process of predicting future trends where the observation 

of the actual outcomes did not occur yet. This process relies solely on the present and 

past data as the basis to predict the future outcomes. Time series forecasting plays a 

crucial role in various domains such as commerce, economics, marketing and 

industrial (Chatfield, 2016). Therefore, countless effort has been concentrated over the 

past decades to the development and enhancement of time series forecasting models. 

 There are two main types of time series forecasting in general that are 

extensively used by researchers when addressing a time series problem. They are 

known as statistical method and artificial intelligence (AI) method. Some common 

examples of statistical models are exponential smoothing, Box-Jenkins model and 

moving average model. These models are known as basic or single forecasting models. 

They assume that the patterns which exist in the past will hold true for the future and 

are usually linear in nature. They have been used broadly in forecasting for decades 

because they can be easily understood and executed with the ability to be analyzed in 

great detail. Nevertheless, in a real world scenario, time series data are often non-linear 

thus demanding the need for AI methods such as artificial neural network (ANN), 

genetic algorithm (GA) and fuzzy logic. An AI method models the human mind in 

problem solving therefore they can be used to find approximate answers for real-world 

problems that contain inaccuracies and uncertainties (GÖKÇE, Belli, EMİNLİ and 

Dincer, 2015). 

 In addition to the single forecasting models explained earlier, many researchers 

have proposed hybrid forecasting models to further increase the forecasting 

performance. One of the popular hybrid forecasting frameworks is the incorporation 

of data decomposition with forecasting model. This framework is widely adapted 

because it can increase the performance of forecasting by breaking down a complicated 

time series into simpler components, forecasting each of them individually and 
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ultimately assembling they back together into final result. An example of data 

decomposition methods is wavelet transform that disintegrate a time series into a linear 

combination of distinct frequencies (Schlüter and Deuschle, 2010). Wavelet transform 

can localize and identify the variations of different frequencies in a time series, 

therefore, it can be exploited to significantly improve the quality of time series 

forecasting. 

 This study focuses on the development of a hybrid forecasting model to 

increase the performance of crude oil spot prices (COSP) forecasting. COSP measure 

the spot prices of various barrels of oil, most frequent of which are either from the 

West Texas Intermediate (WTI) and the European Brent (Brent). As the COSP series 

is usually considered as nonlinear and nonstationary that is affected by many factors 

predicting it accurately is rather challenging. Prediction of COSP is very important 

because an abrupt movements or fluctuations of COSP can disturb the aggregate 

economic activities and have a significant impact on a nation's economy (Yu, Wang 

and Lai, 2008). For instance, hike in COSP will significantly affect the petrol prices 

thus giving side effects on the fundamental goods and services needed by the citizen. 

Thus, it is important to forecast the COSP as accurate as possible so that future 

planning can be made with less error. Therefore, the study on improving the existing 

COSP forecasting models is very important. The next subsection discusses the 

background of the problems for COSP forecasting. 

1.2 Background of the Problems 

 Crude oil is one of the oils produced from fossil fuels. Crude oil is important 

because it is utilized in almost all goods manufacturing at some stages of their 

production and two-thirds of the world’s energies come from crude oil (Azevedo and 

Campos, 2016). Since crude oil is very important to the economy, its prices changes 

can cause a significant impact on worldwide economic activities (Nochai and Nochai, 

2006). On one hand, a sudden increase in crude oil prices will undesirably give bad 

impacts on the economic growth and hasten inflation in oil importing countries (Yu et 

al., 2008). On the other hand, a hard drop will start a severe budgetary deficit issues 
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for oil exporting countries. Therefore, comprehension of the COSP by analyzing its 

prices trends and fluctuations is very crucial. One way to understand the trends and 

fluctuations of COSP is to utilize forecasting models that have been proposed and 

proven by many studies. 

 However, the fluctuations of COSP series are affected by many unexpected 

factors. Some of the factors are disturbance in supply, political interruption over the 

Middle East, imbalance and alterations in the supply and demand and lastly changes 

in the policy of Organization of the Petroleum Exporting Countries (OPEC) 

(Marimoutou, Raggad and Trabelsi, 2009). Fluctuations of COSP are greatly 

influenced by military conflicts, natural disasters, speculations and political events 

(Cheong, 2009). These unforeseen factors make the COSP series non-linear and non-

stationary. As a result of these characteristics contained in COSP series, its forecasting 

has become a challenging task because the series does not follow a predictable 

patterns. 

 In the context of time series, non-linear means a signal that comes from a non-

linear dynamic process (Stepchenko, Chizhov, Aleksejeva and Tolujew, 2017). In 

other words, it is a partial solution of a nonlinear stochastic differential equation. On 

the other hand, non-stationary refers to a stochastic process where its joint probability 

distribution changes with the shift of time. Non-stationary also means the parameters 

of a time series such as the variance, mean and autocorrelation are inconstant over 

time. The association between the previous prices and future prices cannot be fully 

captured even though a complete information from the previous prices is provided 

because the future prices are affected by many factors (Yu et al., 2008). In a time series 

that is non-linear, the changes of the output are not corresponding to the changes of 

the input. Huge differences may occur to the output even though only small changes 

are made to the input. The COSP series is one of the time series data that is non-linear 

and non-stationary, therefore, its parameters that consist of variance, mean and 

autocorrelation are changing over time. 

 Many kinds of forecasting methods have been applied in COSP series 

forecasting. At the most basic level, there are single forecasting models that only 
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utilize one method in performing forecasting. These single forecasting models can be 

divided into statistical models and AI models. One example of statistical models is 

autoregressive integrated moving average (ARIMA). ARIMA method has been used 

extensively in the literature for forecasting purpose because of its popularity. Besides 

statistical models, artificial intelligence (AI) models are also proposed by researchers. 

One of the examples is the support vector machine (SVM) that has been frequently 

used to forecast COSP in recent years. AI forecasting models like SVM is more 

advantageous than traditional statistical models such as ARIMA when dealing with 

non-linear regression estimation problem especially in forecasting COSP series. SVM 

is originally used for classification purpose but its principle can be extended to be used 

in regression and time series prediction. Using the solution provided by SVM, the 

accuracy in forecasting time series can be improved. Nonetheless, it is very time-

consuming to implement complicated computational programming for SVM.  

 To overcome the drawback of SVM, least square SVM (LSSVM) is introduced 

by Suykens and Vandewalle (1999). LSSVM is a modification of SVM regression 

formulation. This method is a simplification of the SVM where the implementation is 

more straightforward. This method has been proven successful in patterns recognition 

and non-linear regression estimation problems so it is a suitable method to be applied 

in forecasting COSP series. A detailed explanation why LSSVM is chosen as the 

forecasting model in the proposed model is shown in the literature review. Even though 

all of these single forecasting models discussed earlier are suitable for forecasting 

COSP series, they are not the best choice to be used because of several limitations. 

 One of the biggest limitations in single forecasting models is that most of them 

can only produce good results when the data series is linear or near linear (Shabri and 

Samsudin, 2014b). The COSP series contains volatility, nonlinearity, and irregularity, 

therefore, using single forecasting methods to predict the future trends of this dataset 

can provide adequate forecasting result but they are surely not very effective. In 

addition, real-world data series will not be entirely linear or non-linear therefore the 

usage of single forecasting model will not be sufficient and impractical because no 

single model can successfully recognize all the patterns contained in the COSP series. 
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 To overcome the limitation in the single forecasting models discussed earlier, 

a better forecasting model called hybrid model has been proposed. There are many 

reasons that can motivate the use of a hybrid model. One of them is the fact that real-

life problems involving time series will not be entirely linear or nonlinear thus a single 

forecasting model will not be enough. These problems can be solved by combining 

single models appropriately. Another reason is universally, no single model can 

successfully recognize all the patterns contained in a dataset. The best way to catch 

most of the patterns is to combine two or more different models. One of the popular 

designs of hybrid forecasting model is the one that combines data decomposition 

method with forecasting method. This design of the hybrid model is widely used 

because it has been proven empirically in many studies to be able to increase the 

performance of forecasting. 

 Recently, a data decomposition method that is based on wavelet transform 

named Empirical Wavelet Transform (EWT) was proposed by Gilles (2013). This 

method recognizes and extracts the distinct intrinsic modes of a time series (Hu, Wang 

and Ma, 2015b). EWT is effective to be used for denoising purpose in forecasting as 

it can reveal the trends and hidden patterns in a time series data. EWT has been utilized 

by many previous researchers to deal with the non-linear and non-stationary 

behaviours of time series data. However, there is no study in the literature that utilized 

EWT as a data decomposition method to address the non-linear and non-stationary 

behaviours of COSP series dataset specifically. Even though the previous studies have 

proven that EWT increases the forecasting performance of wind speed prediction (Hu 

and Wang, 2015a; Hu et al., 2015b; Wang and Hu, 2015), each type of dataset has 

different characteristics so wind speed dataset is surely not similar with COSP dataset. 

Therefore, a comparison is needed to show whether EWT can really improve 

forecasting performance in term of COSP dataset. More reasons why EWT is chosen 

as the data decomposition method are explained in the literature review. 

 In addition, most of the previous hybrid models that used data decomposition 

did not consider the distinction of the data characteristics after being decomposed. 

Previous studies that utilized EWT only consider removing the residual produced from 

decomposition because it contains noisy information and is considered as an 
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uncorrelated white noise (Hu et al., 2015a; Hu et al., 2015b; Wang et al., 2015). 

However, these studies did not take into account the possibility of similar 

characteristics in the decomposed components. These untreated components can bring 

issue in providing meaningful inputs to the forecasting model because unnecessary 

and redundant components are treated separately that can affect the forecasting 

performance. 

 One of the drawbacks of EWT is that improper segmentation might occur when 

a noisy and non-stationary data series is analyzed (Hu, Li, Li and Liu, 2017). As a 

result of this improper segmentation, several decomposed components may indicate 

the same characteristics, resulting in unnecessary redundancy that can cause the issue 

of meaningful inputs discussed earlier. To successfully enhance the forecasting 

performance of the hybrid model using EWT, it is crucial for the decomposed 

components to undergo further treatment or process (Yu, Li and Zhang, 2017). There 

are several studies that address the differences of data characteristics by clustering the 

components that have similar characteristics (Rashid, Samsudin and Shabri, 2016; 

Rashid, Shabri and Samsudin, 2017). However, the data decomposition used in these 

studies is empirical mode decomposition (EMD) not EWT. These studies had 

empirically shown that clustering the decomposed components from the 

implementation of data decomposition can increase the performance of forecasting. 

Therefore, there is a chance that the forecasting performance of a hybrid forecasting 

model using EWT can be improved if a clustering method is used to further treats the 

decomposed components before they undergo forecasting. 

 Clustering is a process of categorizing a set of abstract or physical objects into 

groups of similar objects (Shahi, Atan and SULAIMAN, 2009). The implementation 

of the clustering algorithm can remove the unusual fluctuations and outliers because 

the dataset is packed in representative interval sets (Bulut, Duru and Yoshida, 2012). 

A clustering method named fuzzy c-means (FCM) was firstly introduced by Bezdek 

(1981). Using FCM, the data is divided into fuzzy sets by reducing the sum of square 

error for groups. This clustering method can enhance the quality of data by eliminating 

noises and detecting outliers, therefore, it can be utilized to improve the inputs for 

LSSVM by clustering the components decomposed from EWT into several groups. 
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Only a few existing studies in the literature had implemented FCM in COSP 

forecasting. In addition, no previous works have used FCM as a further treatment on 

the components decomposed from EWT. Therefore, it is necessary to determine if 

FCM has the capability to improve the performance of EWT-LSSVM forecasting 

model. A detailed reason why FCM is chosen is explained in the literature review. 

 In a nutshell, even though many hybrid models have shown great improvement 

in COSP forecasting, many limitations can still be observed and a hybrid model that 

can predict the COSP as accurate as possible is very necessary. Suitable data 

decomposition and clustering methods must be carefully selected before combining 

them with any forecasting model to make sure that good forecasting results can be 

obtained. This is because data decomposition and clustering methods increase the 

complexity of a forecasting model. If a hybrid model with data decomposition and 

clustering methods does not improve forecasting accuracy over its single model 

counterpart, the hybrid model will be a failure and meaningless. So, it is important to 

assess the forecasting performance of the newly proposed hybrid model whether it is 

better than the single models. The next subsection presents the statement of problems 

for this study. 

1.3 Statement of the Problems 

 As mentioned earlier in the background of the problems, LSSVM has been 

proven by many previous studies to be effective in forecasting COSP. It has the 

capability to solve non-linear problems and is simpler compared to its predecessor 

SVM. Nevertheless, many studies have also proven that single forecasting models will 

not be sufficient to capture all the non-linear and non-stationary characteristics in a 

data series. Therefore, a data decomposition method that can identify and capture these 

irregularities and nonlinearities must be utilized to improve the forecasting 

performance of LSSVM. 

 Several studies make use of EWT as the data decomposition method to deal 

with non-linear and non-stationary data series (Hu et al., 2015a; Hu et al., 2015b; Wang 
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et al., 2015). As mentioned earlier in the background of the problem, EWT has been 

proven to be effective in recognizing irregularities and nonlinearities in data series. It 

is also proven that the incorporation of data decomposition method in forecasting 

model can give a better forecasting performance than the single forecasting model so 

EWT can be combined with LSSVM to provide a better forecasting result. The current 

studies that utilized EWT used wind speed as the dataset. Different types of dataset 

have different characteristics so it is crucial to identify whether EWT can improve 

forecasting in term of COSP series dataset specifically. 

 Another issue is that only a few studies have incorporated the clustering 

method to group the decomposed components produced from data decomposition. The 

components decomposed from the data decomposition method including EWT might 

contain similar characteristics between them. This can affect the inputs provided to 

forecasting model because the unnecessary and redundant components are treated 

separately. So, the distinction of the data characteristics after being decomposed 

should be considered so that meaningful inputs can be given to the forecasting model 

thus providing good forecasting result. By using FCM clustering method, the 

components with the same characteristics can be clustered together so that meaningful 

inputs can be provided to the forecasting model. Previous studies that used different 

methods have empirically proven the utilization of clustering method to further treat 

the components from decomposition method can improve the accuracy of forecasting. 

Therefore, FCM can be combined with EWT-LSSVM hybrid model to further improve 

forecasting performance. 

 Lastly, it is crucial to compare the forecasting performance of the newly 

proposed hybrid model with its single models and hybrid models counterpart. Addition 

of data decomposition and clustering methods to a forecasting model can surely 

increase the complexity of implementation. Therefore, a comparison should be done 

to assure the incorporation of data decomposition and clustering methods really 

improve forecasting performance. 

 The main research question this research tries to answer is: 
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“How to design and develop a modified hybrid time 

series forecasting model from EWT, FCM and LSSVM 

methods that can be utilized to improve the forecasting 

performance of crude oil spot prices series?” 

To answer the main research question above, a set of related questions that address the 

discussed problems in detail are shown as follows: 

1) Does EWT improves forecasting performance of single forecasting models 

ARIMA and LSSVM when dealing with non-linear and non-stationary 

characteristics of COSP series? 

 

2) How to propose a modified EWT-LSSVM forecasting model where 

clustering method is introduced to provide meaningful inputs for LSSVM? 

 

3) Does the proposed modified EWT-LSSVM has a better forecasting 

performance than the single forecasting models, hybrid forecasting models 

without clustering method and hybrid model with k-means clustering? 

1.4 Research Goal 

 The aim of this research is to propose a modified EWT-LSSVM (MEWT-

LSSVM) model for COSP forecasting where a clustering method is introduced which 

is expected to produce a forecasting result that is more powerful than the existing 

forecasting models hence contributing to the COSP forecasting literature. 

1.5 Research Objectives 

 To answer the research question above, several objectives are determined. The 

objectives of this research are as follows: 
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1) To compare the forecasting performance of hybrid models EWT-LSSVM 

and EWT-ARIMA with the single models LSSVM and ARIMA when 

dealing with nonstationary and nonlinear characteristics of COSP series. 

2) To propose a modified EWT-LSSVM forecasting model where clustering 

method is introduced to determine the best input for LSSVM. 

3) To evaluate the forecasting performance of the proposed modified EWT-

LSSVM model with LSSVM, ARIMA, EWT-ARIMA, EWT-LSSVM, 

EWT-Kmeans-LSSVM models and existing models in the literature with 

the same dataset. 

1.6 Scopes of Study 

 The scopes of this study are limited to those listed as follows: 

1) This study focused only on COSP specifically from WTI and Brent. Both 

datasets consist of 4228 and 4274 daily observations respectively. 

2) Data decomposition methods that will be utilized in this research is EWT. 

This data decomposition method will be used in the implementation of the 

hybrid forecasting models. 

3) This study will only focus on six forecasting models. They are clustered 

into three groups which are single model group, hybrid model group and 

hybrid model with clustering method group. Single model group consists 

of ARIMA and LSSVM, hybrid model group consists of EWT-ARIMA 

and EWT-LSSVM while hybrid model with clustering method group 

consists of EWT-Kmeans-LSSVM and the proposed model Modified 

EWT – LSSVM. 

4) The performance evaluation metrics that are utilized to evaluate the 

forecasting accuracy and forecasting error of these models are mean 

absolute error (MAE), mean absolute percentage error (MAPE), root mean 

square error (RMSE) and accuracy metric. 
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1.7 Significances of the Study 

 The proposed model is targeted to assist practitioners or researchers in 

forecasting of COSP by producing a more accurate forecasting result. The modified 

hybrid approach can be utilized in helping to improve the economy of an organization 

by providing a better prediction so that future planning or decision making can be 

established for the country’s economic growth. Good forecasting performance of 

COSP may help governments to develop policies to mitigate the effects of inflation 

and to decide about future investments as well as oil reserves to help the markets in 

predicting future consumption (Azevedo et al., 2016).  

 Besides that, the data decomposition and clustering process are essential in 

forecasting because it can effectively increase the prediction accuracy of a forecasting 

model. This study modified the existing EWT-LSSVM by incorporating FCM 

clustering method to observe whether the accuracy of forecasting can be improved. 

The clustering algorithm is implemented because it can remove the unusual 

fluctuations and outliers and the dataset is packed in representative interval sets (Bulut 

et al., 2012). Therefore, this study contributes by evaluating whether the incorporation 

of the clustering method can empirically improve the forecasting performance of 

hybrid forecasting model. 

1.8 Report Outline 

 This proposal is divided into six chapters. The first chapter provides a brief 

description of the problems background and related information about the research. 

The second chapter elaborates the literature review and the identified gaps regarding 

the related topics. The third chapter explains the methodology of the research. The 

fourth chapter presents the development of related models. Then, chapter five shows 

the comparison and discussion of the result obtained from the experiment. Lastly, 

chapter six concludes the overall research work. Each chapter is briefly explained next. 
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