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ABSTRACT 

Linear Sensor Networks (LSNs) are often utilized for monitoring and 

surveying linear structure material such as pipelines, roads, and demarcation of 

borders. The Under Water Linear Sensor Network (UWLSN) is facing the challenges 

of limited capability such as bandwidth due to the acoustic signal. In addition, the 

way and manner of the sensor nodes that are deployed, and data collection that are 

conducted contribute to the delay in the data delivery to the sink node. Existing 

deployment strategies forward data to a higher capacity node in order to forward to 

an Autonomous Underwater Vehicle (AUV) or the sink node. However, these 

approaches cause delay and do not guarantee data delivery to the sink. The problem 

could be due to both the higher capacity node and autonomous vehicle that might 

deviate due to water currents, hence leading to entrapment or local maxima. In 

addition, existing path planning algorithms do not consider the network coverage of 

heterogeneous sensor nodes. Consequently, it is important to employ a path planning 

strategy that utilizes AUV with a unique path movement to collect data with 

minimum delay and higher data delivery ratio. This research designed and developed 

an AUV Path planning Data Aggregation Scheme (APDAS) to handle heterogeneous 

and long distance pipeline sensors without depleting a large amount of sensor energy 

in UWLSN. The APDAS includes node distribution and path planning strategies for 

AUV. The node distribution was performed based on the capability and signal 

coverage of the heterogeneous nodes. Furthermore, the path planning concept was 

based on sinusoidal sine wave movement for effective traversal of forwarding nodes 

at the base of the pipeline. Extensive simulation experiments were performed in 

order to benchmark the performance of the proposed APDAS scheme against 

baseline schemes. The results of the simulation were evaluated based on Packet 

Delivery Ratio (PDR), End-to-End Delay (E2ED), and throughput with performance 

improvements of 13%, 17.8%, and 14.1%, respectively. APDAS was compared with 

the existing schemes namely, Minimizing Deep-sea Data Collection Delay with 

Autonomous (MDD-CDA) underwater vehicles and Scalable Heterogeneous Nodes 

Deployment (SHND) algorithm for monitoring of long-range underwater pipeline. 

The results obtained were based on the average of both MDD-CDA and SHND, and 

the percentage was estimated in order to increase the packet delivery while reducing 

the E2ED and throughput. Thus, the findings have shown the APDAS scheme 

significantly improved the packet delivery rate and reduced delay during data 

collection in UWLSN. 
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ABSTRAK 

Rangkaian Sensor Linear (LSN) sering digunakan untuk memantau dan 

mengukur bahan struktur linear seperti saluran paip, jalan raya, dan penandaan 

sempadan. Rangkaian Sensor Linear Dalam Air (UWLSN) menghadapi cabaran 

keupayaan terhad seperti jalur lebar disebabkan oleh isyarat akustik. Di samping itu, 

cara dan cara nod sensor yang digunakan dan pengumpulan data yang dilakukan 

menyumbang kepada kelewatan penghantaran data ke nod sink. Strategi penyebaran 

sedia ada menyambung data ke nod kapasiti yang lebih tinggi untuk meneruskan ke 

Autonomous Vehicle Underwater (AUV) atau nod sink. Walau bagaimanapun, 

pendekatan ini menyebabkan kelewatan dan tidak menjamin penghantaran data ke 

sink. Masalahnya mungkin disebabkan kedua-dua nod kapasiti yang lebih tinggi dan 

kenderaan autonomi yang mungkin menyimpang disebabkan oleh arus air, oleh itu 

membawa kepada pemerangkapan atau maxima tempatan. Di samping itu, algoritma 

pelan laluan sedia ada tidak menganggap liputan rangkaian nod sensor heterogen. 

Oleh itu, adalah penting untuk menggunakan strategi perancangan laluan yang 

menggunakan AUV dengan pergerakan laluan unik untuk mengumpul data dengan 

kelewatan minimum dan nisbah penghantaran data yang lebih tinggi. Kajian ini 

mereka bentuk dan membangunkan skim pengumpulan data perancangan jalur 

kelewatan menggunakan AUV (APDAS) untuk pemantauan sensor saluran paip 

heterogen dan jarak jauh tanpa mengurangkan jumlah tenaga sensor di UWLSN. 

APDAS termasuk pengedaran nod dan strategi perancangan laluan untuk AUV. 

Pengagihan nod dilakukan berdasarkan keupayaan dan liputan isyarat nod-nod yang 

heterogen. Tambahan pula, konsep perancangan laluan adalah berdasarkan 

pergerakan gelombang sinus sinusoidal untuk traversal penghantaran nod yang 

berkesan di dasar saluran paip. Eksperimen simulasi yang meluas dilakukan untuk 

menanda aras prestasi skim APDAS yang dicadangkan terhadap skim asas. 

Keputusan simulasi dinilai berdasarkan Nisbah Pengiriman Paket (PDR), Kelewatan 

Akhir (E2ED), dan daya tampung dengan peningkatan prestasi masing-masing 

sebanyak 13%, 17.8%, dan 14.1%. APDAS dibandingkan dengan skema yang sedia 

ada termasuk Mengurangkan Kelewatan Pengumpulan Data laut dalan dengan 

kenderaan bawah laut Autonomi (MDD-CDA) dan Algoritma Penyebaran Nod 

Heterogen Berkala untuk pemantauan saluran paip bawah air (SHND). Hasil yang 

diperoleh adalah berdasarkan pada purata MDD-CDA dan SHND, dan peratusan 

dianggarkan untuk meningkatkan penghantaran paket sambil mengurangkan E2ED 

dan penghantaran. Oleh itu, skim yang dicadangkan dengan ketara dapat 

meningkatkan kadar penghantaran paket dan mengurangkan kelewatan semasa 

pengumpulan data di UWLSN.   
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Overview 

Global offshore oil production in 2015 was the highest level since 2010, and 

accounted for nearly 30% of total global oil production (Global Crude Oil 

Production, 2016). The total crude oil production is more than 27 million barrels per 

day (mbd) from more than 50 different countries (Global Crude Oil Production, 

2016). Structure of these offshore rigs and connecting pipelines are very complex 

and spread over a very large area. Maintaining and monitoring of the pipelines is 

challenging due to the harsh environment. Monitoring of offshore pipelines is very 

important to save natural resources, the environment, and wildlife. Thus, most of the 

installations of infrastructures are done on the coast and if there is any damage, the 

impact can be massive. In addition, the concentrations of pipelines are very dense 

and complex on both onshore and offshore which are connected to each other (Dey et 

al., 2004). For these reasons, any damage, leakage or fault needs to be detected and 

fixed as soon as possible (see Figure 1.1 for illustration of underwater pipeline). 

Underwater communication was first explored in the World War II when American 

war ships used to communicate to the control station on island (Ayaz et al. 2011). 

Insufficient technology and equipment was a major hurdle in communication 

performance. After communication technologies thrive, researchers have explored 

the underwater communication domain. Several communication strategies and 

architectures have been explored, specifically for underwater due to the unique 

nature of water as a wireless communication channel. Consequently, routing 

algorithms for Underwater Wireless Sensors Network (UWSN) are required for a 

successful communication 



 

2 

Underwater Pipeline with Sensors for Oil and GasUnderwater Pipeline with Sensors for Oil and Gas

Sensor NodesSensor Nodes

Deep SeaDeep Sea

Sea SurfaceSea Surface

 

Figure 1.1 Underwater Pipeline with Sensors 

Due to underwater environment restrictions and computing capabilities, 

UWSNs are different from Wireless Sensor Networks (WSNs). Thus, WSN routing 

protocols are not feasible for UWSN applications (Ayaz et al., 2011). Underwater 

sensor nodes are limited in bandwidth, transmission power, energy, and memory. 

Hence, these limitations have led to many issues in the design of UWSNs. 

Accordingly, data transmission mechanisms between ordinary nodes and sinks need 

to be designed based on some suitable criteria such as shortest paths, in order to 

achieve optimal data forwarding towards destination, which improves network 

efficiency. The UWSNs communication models are based on acoustic channels, 

which have many challenges namely, propagation delay, which is five times higher 

than the radio frequency, frequent movement of the water affects acoustic signal, 

which increase bit error rates, and high deterioration of signal strength in underwater 

communication (Ayaz and Abdullah, 2009). Considering the acoustic 

communication having limited bandwidth, underwater sensor nodes face higher 

delay and it is impractical to use Radio Frequency (RF) in underwater environment 

for information gathering. Therefore, higher latency and proper node deployment are 

the main design challenges of underwater sensor networks. One kind of UWSN is the 

Underwater Wireless Linear Sensor Network, (UW-LSN) which also faces many 

challenges in monitoring the underwater linear structures such as underwater 

pipelines. The inspection of underwater pipeline’s health is a critical task requiring 

active, frequent and event based monitoring process. Such monitoring process 

becomes highly expensive, risky and unreliable by using human intervention, tools, 

or robot systems. 
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Moreover, the network topology for data forwarding plays a key role in the 

design of any network and has a major contribution to the network performance 

(Smith et al., 2002). UWSNs, UW-LSNs and its deployment are discussed in detail 

in Chapter 2. There are two types of deployment areas, dense sensors deployment, 

and sparse sensors deployment; the dense sensors deployments are mainly used when 

a large numbers of sensors are utilized for small coverage area while the sparse 

sensors deployment schemes utilize high capacity sensors placed at a longer distance 

to cover a large area. In order to achieve optimal data delivery, there is a need for 

routing scheme that performs better in the acoustic environment. Meanwhile, several 

routing schemes have been suggested in the previous literature including geographic 

routing, and opportunistic routing. Geographic routing relies on geographic position 

information. It is mainly proposed for wireless networks and based on the idea that 

the source node sends a message to a geographic location of the destination instead 

of using the node address. Geographic routing is important because it is a concept 

that relates to sensor localization (positioning), which is a concept in AUV operation. 

Opportunistic routing has proven its efficiency in underwater data forwarding 

(Coutinho and Boukerche, 2017). It is a data packet forwarding process that employs 

broadcasting concept for efficient routing. Several studies, such as Lee et al. (2010), 

Ayaz et al. (2011), Noh et al. (2013) and Coutinho et al. (2016) have considered the 

opportunistic routing approach for data forwarding in underwater communication. 

The opportunistic routing takes advantage of the broadcast nature of the wireless 

network for enhancing data delivery. In opportunistic routing, each node broadcasts 

the packet to a set of nodes that are within its neighbourhood and in the forwarding 

direction to the sink node. Hence, there is more retransmission that causes high 

overhead. Opportunistic routing achieves higher data delivery in the underwater 

acoustic transmission and is suitable for linear sensor network. 

A distributed topology is a deployment approach whereby an ordered list of 

all the nodes in the network is uniformly arranged. In distributed topology, 

heterogeneous node deployment has a central role within network design as different 

types of nodes perform different functions in network field, so their proper 

deployment is highly important. Accordingly, placement of the appropriate node in 

UW-LSN for pipeline monitoring is challenging in distributed topology-based 

routing protocols (Aziz et al., 2013; Domingo and Prior, 2007; Jawhar et al., 2012; 
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Wang et al., 2007). The design of UW-LSNs derived from Linear Sensor Networks 

(LSNs) is a routing protocol that is classified into autonomous underwater vehicles 

(AUV), chains, distributed topology, and jump-based communication types. 

Autonomous Underwater Vehicle (AUV) is a computerized managed system that is 

self-operative for the purpose of collecting sensing data in the deep-sea environment 

(Fiorelli et al., 2006; Paul et al., 2014). In the underwater environment, the sensors 

installed on the pipeline are required to forward information from the base of the sea 

to the top of the sea level. However, the transmission capacity of the sensor node is 

limited and forwarded data might not get to the sink node at the top of the sea (Akbar 

et al., 2016). Therefore, there is need for a more powerful sensor node called AUV, 

which can dive into the sea as deep as 6000 meters (Nyrkov et al., 2017). The AUV 

is a self-powered system that can traverse a longer distance pipeline. Sensor nodes 

are utilized to monitor different parameters regarding the pipeline and its 

environment. It is assumed that sensors are installed in a very remote area with harsh 

condition and left unattended (Ali et al., 2015). The connection between the sensor 

node and AUVs as well as the connection between AUVs and the sink is often an 

acoustic communication. The connection between the sink and Network Control 

Centre (NCC) can employ any type of communication technology. 

1.2 Problem Background 

Underwater sensor nodes are embedded to the pipeline for monitoring 

purpose. The data collected during the monitoring are forwarded from the depth of 

the sea to the sea surface. Due to restricted data rate constraints in underwater 

acoustic communication, delay has a great impact in UW-LSN applications for 

efficient data forwarding. Underwater acoustic sensor nodes are typically having low 

bandwidth and expected to face higher delay issues. Therefore, acoustic 

communication is a limited channel and has to be managed properly for efficient data 

forwarding in large scale UW-LSN. Besides, it is a difficult task in underwater 

environment to assure reliable chained links for data communication especially for 

large scale LSN with minimum delay in packet delivery. Keeping in view the issues 

discussed, it is still hard to find an efficient LSN routing protocol, for the monitoring 
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of thousand kilometres long and deep sea oil and gas pipeline leakage, in order to 

maintain the communication between underwater sensors with delay and energy 

constraint. The node deployment of LSN is normally predefined for different kinds 

of applications while LSN routing protocols explore channel characteristics, signal, 

and node distribution components for minimizing energy consumption. Different 

chains, autonomous vehicles and distributed topology discovery based schemes are 

proposed by several researchers for improving network scalability and minimizing 

delay. There are many critical issues that need to be considered while designing 

UWSN protocols, such as proper deployment of sensors (Khan et al., 2015; Han et 

al., 2013; Owojaiye and Sun, 2013), unique addresses for each sensor (Ayaz and 

Abdullah, 2009a; Jawhar et al., 2008; Sarr et al., 2012) and efficient routing 

mechanism (Pompili, 2009; Kheirabadi, 2013). 

In the existing routing schemes for data forwarding such as in Abbas et al. 

(2016), the method considers scalability in node distribution with heterogeneous 

nodes. The unequal-capacity nodes are spread based on their different capacity of 

transmission coverage. The nodes with higher capacity are utilized as relaying node 

and dissemination node, while the smaller capacity nodes are used as the basic 

sensing node. In the proposed deployment method, the sensor node spacing is equal, 

which might not be effective because smaller nodes that become weak in terms of 

energy capacity cannot transmit to a longer distance. Considering the deployment 

methods, the employed distribution strategies still encounter a significant amount of 

data error and propagation delay due to deployment spacing and data forwarding 

technique. Thus, a  proper node distribution in required in order to attain scalability. 

Another scheme for data collection is named AUV-based data collection in a 

linear sensor network (Khan et al., 2015). Homogenous types of sensor node are 

placed in a straight line on the pipeline for sensing data. An AUV known as mobile 

node moves in a straight line above the sensor node to collect the data. However, the 

straight path movement might not be feasible since there is frequent water current 

(Garau et al., 2009), which displace the position of AUV during data collection. 

Another issue is that it takes long time to arrive at the collected data to the sink so 

there might be a chance of error occurring in the data forwarding that leads to loss of 
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data. Further, data collection from a specific node is difficult, since there is need for 

the AUV to move across all the nodes on the pipeline and also navigate to the sink 

for data forwarding. Therefore, there is need to explore another method of path 

planning that resist the force of water current and reach data to the sink efficiently. In 

addition, Zheng et al. (2017) suggested a delay-aware data reporting using AUV 

based on linear distributed sensors in the underwater environment. It focused on 

Minimizing Deep-sea Data Collection Delay with Autonomous underwater vehicles 

(MDD-CDA). The challenge is to forward timely sensor data by addressing the 

acoustic transmission delay in an ocean. The AUV is utilized for the deep-sea data 

collection in 3-dimensional or 2-dimensional interplanetary navigation as the concept 

for the path planning in such a way that the AUV traverses nodes during data 

collection. This is from the relay sensor nodes to the sink at the water surface. 

However, the interplanetary path planning strategy lacks the consideration of 

different signal coverage, which is very important in an heterogeneous sensor 

deployment. Therefore, there is need to further explore how to efficiently utilize 

AUV since one of the major advantages of AUV is the localization of sensor’s 

position along with the ability to follow a path trajectory (Luo et al., 2010). Hence, 

there is need to explore a suitable data aggregation scheme in underwater pipelines. 

Several studies such as Lee et al. (2010), Ayaz et al. (2011), Noh et al. 

(2013) and Coutinho et al. (2016) have employed opportunistic routing approach for 

data forwarding in underwater data communication. The routing approach takes 

advantage of the broadcast nature of the wireless network for enhancing data 

delivery. In opportunistic routing, each node forwards packet to a set of nodes that 

are within it neighborhood and in direction of the sink node. Hence, there is lower 

overhead because of fewer retransmissions. Opportunistic routing approach achieves 

high data delivery in the UWSNs. To improve on the strengths of the opportunistic 

routing approach, a proper deployment of AUVs, and unique path for each AUV, 

routing mechanism between AUVs and SNs, are required. 

 In the proposed solution, the network setup is similar to that of Abbas et al. 

(2016) but with modification of sensor node distribution spacing, and the 

introduction of AUV path-planning concept for data collection scheme. Currently, 
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the data forwarding and monitoring techniques (Jawhar et al., 2013; Jawhar et al., 

2007; Mohamed et al., 2010; Umar et al., 2015) for UW-LSN routes managements 

might have delay and data error. Data error occurs when the received data is not 

completely the same as the transmitted data. There for more improvement is 

required. 

1.3 Problem Statement 

This research addressed the problem of higher delay faced by the existing 

data aggregation schemes for underwater pipeline sensor network. For efficient data 

delivery, three critical aspects are considered in this research: scalable nodes 

deployment, path planning of AUV and aggregated data forwarding. The existing 

deployment strategies are faced with complex communication process because nodes 

have to send data to other nodes across the pipeline, which deplete the energy of 

most nodes and lead to delay. Further, the data forwarding procedure experiences 

packet error/loss in the process of data packet forwarding. Unlike the classical data 

forwarding schemes, AUV-based data collection schemes have proved to be more 

adaptable to the underwater pipeline harsh environment. However, most of the 

existing AUV-based data collection schemes employ straight path planning, which 

collect data from pipeline-sensors and forward to the sink node, but experience delay 

and loss of some data due to AUV Path Planning mechanism. Additionally, the 

available sensor node deployment strategies do not consider explicit variable 

transmission coverage of heterogeneous nodes with respect to AUV path planning, 

which lead to packet loss in the data collection process. Furthermore, the existing 

opportunistic routing scheme employed for the data collection increase end-to-end 

delay due to neighbor node waiting for a packet to reach the furthest node during 

packet forwarding. 
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1.4 Research Questions 

Based on the discussion in problem background and problem statement, the 

following research questions are formulated as: 

i. How can heterogeneous sensors be deployed while considering their different 

transmission coverage and conforming to AUV path planning to achieve higher 

packet delivery ratio? 

ii. How can path planning algorithm for AUV navigation be constructed in order to 

enhance data aggregation performance? 

iii. How can the aggregated data be forwarded between the basic sensing nodes to 

the relay node and dissemination node up to the AUV and to the sink at the 

surface of the sea, which reduces delay?  

1.5 Research Aim 

The aim of this research is to propose an efficient data aggregation scheme 

for autonomous underwater linear sensor network, which is an efficient data 

forwarding scheme for long-range underwater pipeline that uses AUV to maximize 

the packet delivery ratio and minimize the delay between underwater heterogeneous 

linear network nodes and sinks. 

1.6 Research Objectives 

The subsequent research objectives are proposed to achieve the aim of the 

research. These objectives are considered in the perspective of the research questions 

mentioned in Section 1.4. 
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i. To enhance a scalable heterogeneous sensor node deployment strategy 

considering the AUV path planning and the transmission coverage of sensor 

nodes that reduces delay in aggregated data forwarding. 

ii. To enhance a path planning scheme for AUV to increase coverage of the 

underwater pipeline monitoring area. 

iii. To enhance an aggregated data forwarding scheme based on opportunistic 

routing approach in large scale UW-LSN that reduces delay.  

1.7 Research Contributions 

The contribution of this research is summarized as follows: 

i. AUV path planning scheme with heterogeneous node deployment strategy 

that minimizes delay for underwater pipeline data aggregation. 

ii. An enhanced path planning scheme for an autonomous underwater vehicle 

that has lower delay in underwater pipeline data aggregation. 

iii. An enhanced data aggregation scheme that has higher packet delivery ratio 

and considers large-scale coverage of the underwater linear sensor network 

by using AUV. 

1.8 Research Scope 

The scope of the research covers the following. 

i. This research focuses on design and development of UW-LSN where a single 

AUV and limited number of underwater sensors are used to cover long-range 

pipeline.  

ii. This research only focuses on deep-sea underwater sensing environment and 

sparse deployment of underwater sensors. 
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iii. In this research, only the coastal area starting from the seacoast to 100 KM 

into the deep sea to monitor offshore pipeline is considered. 

1.9 Research Significance 

This research contributes significantly to the field of underwater pipeline 

monitoring, which could be crude oil pipeline, water pipeline and other important 

pipelines carrying natural resources. Thus, the research focuses on efficient data 

aggregation scheme, which is capable of deploying heterogeneous types of sensors 

and optimize the path discovery for AUV. The proposed scheme enables a more 

efficient linear pipeline monitoring in underwater environment. Therefore, 

monitoring of pipeline leakage and destruction can be carried out in real time. Hence, 

it could reduce loss of natural resources and in turn increase revenue generation. 

1.10 Thesis Organization 

The rest of the thesis is organized and structured as follows: 

Chapter 2: Presents an extensive literature review of the underwater sensor 

network and UW-LSN routing techniques and management concepts and research 

challenges. In addition, the proposed solutions and their limitations were discussed. 

Chapter 3: Presents the research methodology and the general architectural 

design of each phase. It discusses problem formulation based on the literature review 

chapter. The simulation setup parameters were presented along with the performance 

evaluation criteria. In the end, the research plan has been explained in detail. 

Chapter 4: Presents the detailed design and development of the AUV path 

planning scheme. The network model, path planning algorithm and the data 

collection algorithms are discussed in detail. 
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Chapter 5: Presents the performance and evaluation of results obtained from 

the simulation implementation. The analysis of the result is based on traffic load and 

the benchmarking with existing schemes considering two metrics, namely, packet 

delivery ratio and end-to-end delay. 

Chapter 6: Provides a summary of research achievements, conclusion and future 

research directions in AUV path planning based efficient routing scheme. 
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