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ABSTRACT 

 

 

Liquefied Petroleum Gas (LPG) has been regarded as a cleaner fuel because it has 

less impact on air quality. The study conducted opened up a more realistic solution to 

predict the actual usage of LPG. This is to minimize the problem related to the residue 

amount since there was no single method capable to empty the cylinder. Residue problem 

was still unsolved since at the early stage of LPG usage in Malaysia, therefore, it was 

considered as one of the national interest projects. The objective of this study is to obtain 

detailed understanding of LPG characteristics in cylinder during the continuous 

exhaustion process via modification of the existing operation design. The parameters 

affecting the evaporation process such as the surrounding temperature, composition, 

initial flow rate and filling weight of LPG were observed through experimental works on 

the rig set up. The experimental data was compared with the model that was developed 

based on fundamentals of material and energy balance under dynamic condition using 

MathCAD 2000. A rather good agreement between the model and experimental data was 

obtained. The propane content of minimum of 60%, the quantity filling of minimum and 

maximum of 62.5% and 84.0% and the surrounding temperature of minimum of 25
o
C 

must be considered in the planning of the composition and filling percentage design as 

well as selection of the installation method. Additionally, based on scaled-up factor the 

maximum discharging flow rate is approximately 18.0 m
3
/hr. The distributions of heat in 

cylinder showed that the sensible heat used for evaporation process is taken mainly at the 

internal wall. With that, the dominant heat derived for the evaporation process is through 

the axial direction than the radial direction. Finally, the study indicates that with proper 

selection of operating parameters the LPG residue in a cylinder could be reduced to less 

than 10%. 
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ABSTRAK 

 

 

Gas Petroleum Cecair (GPC) dipertimbangkan sebagai satu bahanapi yang bersih 

kerana hanya memberi sedikit kesan pencemaran kepada kualiti udara. Kajian yang 

dibuat mengemukakan penyelesaian secara realistik dalam meramal penggunaan sebenar 

GPC. Ini untuk mengatasi masalah berkaitan dengan baki kerana tidak ada satu 

kaedahpun yang mampu mengosongkan silinder secara lengkap. Masalah baki masih lagi 

belum dapat diselesaikan sejak dari awal penggunaan GPC di Malaysia, maka ia 

dipertimbangkan sebagai kajian yang mempunyai kepentingan negara. Objektif kajian ini 

adalah untuk memperolehi pemahaman yang terperinci mengenai ciri-ciri GPC di dalam 

silinder semasa proses pengeluaran berterusan seterusnya mengubahsuai rekabentuk 

operasi sedia ada. Parameter-parameter yang mempengaruhi proses peruwapan GPC 

seperti suhu persekitaran,  komposisi, berat dan kadaralir diramal melalui ujikaji makmal 

ke atas rig yang dibangunkan. Data daripada ujikaji makmal dibandingkan dengan data 

dari model ringkas yang dibangun menggunakan perisian MathCAD 2000 berdasarkan 

hukum asas keseimbangan bahan dan tenaga pada keadaan dinamik. Keputusan yang 

hampir sama telah diperolehi antara kedua-dua kaedah yang digunakan. Kandungan 

propana minimum 60%, kuantiti pengisian minimum dan maksimum 62.5% dan 84.0% 

dan suhu persekitaran minimum 25
o
C perlu dipertimbangkan dalam sebarang 

perancangan rekabentuk komposisi dan  peratus pengisian serta kaedah pemasangan. 

Sebagai tambahan, berdasarkan kepada faktor pengskalaan kadaralir maksimum ialah 

dianggarkan setinggi 18.0 m
3
/jam. Agihan haba dalam silinder menunjukkan majoriti 

haba deria yang diambil semasa proses peruwapan adalah pada dinding dalam silinder. 

Oleh itu, haba diambil secara dominan untuk proses peruwapan menerusi arah paksian 

berbanding arah jejarian. Akhir sekali, kajian menunjukkan pemilihan parameter-

parameter operasi dengan betul boleh mengurangkan baki GPC kepada kurang daripada 

10 peratus. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

1.1 Research Background 

 

 

Liquefied petroleum gas (LPG) has become more popular compared to other 

liquid fuels based on several factors i.e. easy to handle, less pollution, minimum storage 

space and can produce a high quality product (Australian Automobile Association , 2001 

& Jaimes and Sandoval, 2002). Four percent of the energy demand of the world is met 

with LPG (Karamangil, 2006). At present, in certain countries, the increase in LPG 

consumption rate is equal to the rate of the population growth. In the latest development, 

LPG seems to be the appropriate long term candidate to replace refrigerants in the 

existing refrigerator (Fatouh and Khafafy, 2006) since it will provide energy saving up to 

six percent and environmental protection (Maclaine and Leoardi, 1995 & Liu et al., 

1995). There are a few concepts of LPG distribution to the customer and it depends on 

the categories of customer i.e. whether it is domestic, commercial or industrial. LPG will 

be delivered to the customer using cylinder, bulk storage and pipeline. 

 

LPG is a group of hydrocarbons derived from crude petroleum processes or 

natural gas (Karamangil, 2006 & Ceviz and Yuksel, 2006), which are gases at normal 

temperatures and atmospheric pressures but which become liquid with either a moderate 

drop in temperature or pressure, or both. With that characteristic, sometimes LPG is 

known as a ‘hydrocarbon borderline product’ (Leary, 1980). LPG is a mixture of 

petroleum hydrocarbons consisting mainly of propane and butane and it can also exist in 

its individual components such as pure propane or butane (Johnson, 1977 & Purkayastha 



  

and Bansal, 1998). Besides the main components, other minor components, which may 

exist in LPG, are propylene, butylenes, and butadiene with these minor components 

mainly depending on its sources (William, 1982). The difference in the LPG produced in 

crude petroleum processes is that some of the unsaturated hydrocarbons appear together 

with the LPG such as propylene and butylenes (Beggs, 1984 & Hazzaini, 1998). 

Statistically, in the market, 75 percent of LPG is derived from natural gas and 25 percent 

is from crude petroleum processes (Thomas et al, 1965). In Malaysia, however, the 

differential among the two cannot be identified because of the bottling plant design is in 

such a way that the products from the gas processing plant and the refinery come through 

a commingle line. 

 

An understanding of the behavior of LPG is necessary to assist in the planning 

and engineering design of process plant, transportation and storage, safety and other 

applications (Seeto and Bowen, 1983). LPG can be easily liquefied and vaporized, hence, 

it is stored under pressure above its boiling point (Park et al., 2006). Propane is liquefied 

when it is frozen below - 42
o
C under atmospheric pressure or pressurized at above 7 bar 

(700 kPa) under constant temperature. Butane is more easily liquefied under the 

conditions of –0.5
o
C and 2 bar (200 kPa). Furthermore, as LPG becomes extremely less 

voluminous (propane reduced to one over 270, butane one over 240) when liquefied, it is 

feasible to be safely transported and stored (Loasiripojana and Assabumrungrat, 2005). 

LPG has a high evaporation heat point, requiring a large quantity of evaporation heat 

when vaporized. So, the installation of separate vaporization facilities are required when 

a large quantity of LPG is used such as for industrial purpose. 

 

LPG is colorless, odorless and tasteless in liquid and vapor form, yet liquid leaks 

are often characterized by foggy conditions at ground level as the cooling effect 

condenses water vapor in the air, and frost may occur at the point of escape. Only a small 

quantity of odorant is added in order to detect it when leaking. A liquid, LPG is only half 

of the weight of water yet in gaseous form is twice as heavy as air, so it is difficult to 

disperse and tends to hug the ground, sliding downhill to accumulate in lower lying areas 

(Ditali et al., 2000 & Seeto and Bowen, 1983). It is propane and butane that is the most 

commonly used and most easily liquefied of these gases.  Both have flammability limits 

between 2 to 4 percent in air, so just 1 liter of split liquid cloud create up to 12.5 m
3
 of 

flammable vapor which could be ignited perhaps 50m downwind from the leak point 
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(Stawczyk, 2003). It is observed that the flammability range of LPG becomes narrow 

with the addition of nitrogen gas (Mishara and Rahman, 2003). The information of this 

limit is very much required for the prevention of explosive hazards (Clay et al., 1988 & 

Chakraborty et al., 1975). However, the degree of hazards depends on many factors such 

as the mass of substances released, physico-chemical properties of the substance in the 

moment of its release, flammability and toxicity of the medium flowing out (Stawczyk, 

2003). Any liquid with a flash point greater than 26.7
o
C is considered a non-flammable 

substance (Lehr and Beatty, 2004). Even though LPG is not poisonous but after exposure 

to LPG it will cause death due to asphyxia from hypoxia as a result of the exclusion of 

oxygen by the gas (Tatsushige et al., 1996) as well as lung damage from breathing cold 

vapors (Hanlin, 2006). 

 

Commercial LPG in the market normally consists of propane and butane with 30 

percent and 70 percent in composition (3070) respectively. However, its composition will 

vary accordingly and subject to the application, country and surrounding temperatures 

(Purkayasha and Bansal, 1998, Philip et al., 2004, Leal and Santiago, 2004 & Kwangsam 

et al., 2004). Generally, the gas industry will follow the agreement with clients or follow 

the specification fixed by the Gas Processor Supplier Association (GPSA) concerning the 

composition (Royal Dutch, 1986 & William, 1983). The specification of GPSA is based 

on the maximum vapor pressure, minimum vaporization rate and the limitation of the 

components that will cause corrosion such as water and sulfur. This means that the 

industry will use both of the cases. However, usually LPG contains a certain amount of 

residue with higher vaporization points falling in the range of lubricant oil. The sources 

of residue are the LPG processing equipment i.e. pumps, compressors and containers 

(Quan et al., 2004). In industries, there is a routine need to analyze residues in LPG for 

quality control. Usually, on specific application, residues concentration of LPG must 

meet industrial codes. For instance, the Australia LPG Association requires the residue 

concentration below 20 ppm of mass (Quan et al., 2005). 

 

LPG is economically feasible to be produced, transported, sold, and stored as a 

liquid fuel (Stawczyk, 2003 & Murillo et al., 2005). The obvious advantage of this 

liquefied fuel is that its heating energy is highly concentrated compared to other liquefied 

fuels (Purkayasha and Bansal, 1998 & Murillo et al., 2005). For instance one cubic feet 

of liquid propane can provide nearly 47 percent more heating value compared to the same 
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amount of liquid methane (Clifford, 1973 & Karamangil, 2006). LPG, however, provides 

low combustion velocity at low pressure than gasoline but will increase according to 

pressure increase (Mohd Kamaluddin, 1984 & Murillo et al., 2005). 

 

LPG has received increasing attention since it was recognized as a reasonable 

energy resource and commonly used for many applications (Hazzaini, 1998 & Dokupil et 

al., 2006). LPG supply for industrial and commercial use is available to the consumer in 

cylinders of larger capacity than the regular domestic household cylinders or in bulk 

tanks of even larger capacities. Commercial cylinders are generally used for restaurants 

and bakeries where the LPG consumption and gas delivery rate are high that the 

vaporization rate of the regular household cylinders cannot support. Commercial 

cylinders may be linked together to support higher capacities which is through  manifold 

system. LPG offers a great reduction in pollutant emissions (Chang et al., 2001) which is 

100 times lower than gasoline (Karamangil, 2006). Because of these reasons, LPG can be 

utilized in many sectors such as domestic, commercial and industrial sectors. LPG can be 

transported and stored in liquid form under moderate pressures and at normal 

temperatures. When released at atmospheric pressure at relatively low temperature it 

vaporizes and can be handled as a gas (Purkayasha and Bansal, 1998). But this operation 

cycle included a problem related to the loss due to the residual amount of gas left at 

exhaustion. This problem has been considered as one of the main drawbacks in LPG 

cylinders that create unsatisfactory conditions.  

 

This problem occurs when the vapor is consumed through the natural evaporation 

process at high exhaustion rate (Nor Maizura, 1994). In this process, the temperature of 

the liquid and the pressure inside the cylinder drop rapidly and may reach a point when 

the cylinder pressure is insufficient to supply the gas at the required exhaustion rate 

(Ditali et al., 2000). The required exhaustion pressure is the minimum inlet pressure for a 

regulator and normally considers being at 7 psi (0.5 bar) for commercial sector (Che 

Badrul, 1994). At this point the exhaustion rate may approach zero and create residue in 

the cylinder. 
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Even though the use of portable cylinder in Malaysia has started since early 

1980s, when LPG has made its way to most commercial and residential area to cater for 

public needs, especially in cooking and heating appliances (Ahmad Fauzi et al., 1991), 

there is still unsolved residual problem especially in commercial size cylinder. The 

problem occurs when natural evaporation takes place. During the evaporation 

temperature and pressure in the cylinder will drop (Raj, 1981, Waite et al., 1983, Vai and 

Chun, 2004 & Chen et al., 2004) to the point that pressure is not able to push out the LPG 

from the cylinder at the required level of flow. At that point, normally the pressure in side 

the cylinder is equal to the atmospheric pressure and some amount of LPG still exists in 

the cylinder (Dick and Timns, 1970). It is reported that more than 30 percent of residue or 

12.6 kg is found in the 50 kg water capacity cylinder (Che Badrul, 1994). The residue of 

the LPG in the cylinder resulted in the customer paying extra money for the unused fuel. 

Gas suppliers have received complaints on this problem. The  residue consisted of 2.17% 

of propane and 97.82% of butane by weight respectively (Che Badrul, 1994). Recently, 

even though there are a number of researchers investigating the residue problem, a 

complete solution is yet to be found.  

 

The possible methods in reducing the residue problem and thus increasing the 

evaporation process in liquefied petroleum gas storage are increasing thermal 

conductivity and heat capacity, installing coil system inside the storage, adding absorbent 

material inside the storage, applying coating agents on outer vessel wall and changing 

initial LPG composition. However, based on the results declared by previous researchers 

there is no single method capable to completely withdraw LPG from storage or in other 

words to empty the storage but only to minimize the residue (Dick and Timms, 1970).  

 

Since there is no single method or technique capable to empty the cylinder and the 

residue will vary with the mode of application and yet the dimension of the cylinder is 

also not the same with different suppliers, then another approach need to be explored. 

However all methods mentioned above show some potential in improvement of the 

evaporation process. Nevertheless, the methods lack applicability and practicability to be 

adopted, and hence are not possible to be commercialized (Muhammad Noorul Anam, 

2002).  
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Therefore, the researcher suggested that it should be better if the overall concept 

of mass and heat transfer to the LPG cylinder under dynamic condition is carried out in 

detail. This is because the major factor affecting the residue is the amount of sensible heat 

required during the evaporation process. By understanding the concept of heat and mass 

transfer under dynamic conditions, it will lead to the development of a mathematical 

model. The data gathered from both methods which are mathematical model and 

experimental rig will be compared. Hence, it will lead to the development of a new 

design of operation parameters of LPG. Last but not least, it will benefit the customers by 

gaining more energy corresponding to the price that they paid for as well as to gas 

suppliers in any designing related to the LPG for the purpose of reducing the loss 

incurred by the customer through evaluating all these parameters.  

 

 

1.2 Objective and Scopes of Study  

 

Although much information has been obtained to date, there are remaining 

technical and theoretical gaps related to the behavior or characteristics of LPG in cylinder 

during continuous exhaustion process. Therefore, the objective of this study is to obtain 

the detailed understanding of LPG behavior in the cylinder system during the continuous 

exhaustion. The research will attempt to overcome the problems of LPG residue in 

cylinder via modification of the existing operation parameters design.  

 

In LPG storage operations, several main parameters affect the performance of the 

discharging process such as the surrounding temperature, LPG composition, and 

discharging flow rate as well as filling weight. Therefore the first objective of this study 

is to elucidate the inter-related effects of these parameters on bath evaporation process in 

storage. In order to compare the experimental results, a mathematical model will be 

developed based on the fundamental theory of material and energy balance under 

dynamic conditions.  
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Cylinder thermal behavior holds the key role since it has strong impact on the 

performance of vaporization process in cylinder. One of the useful methods to analyze 

heat distribution is based on dimensionless analysis. Therefore, an analysis of heat 

distribution on the basis of axial and radial flow directions will be the second objective of 

this study. 

 

Experimental work has been carried out through a small scale cylinder to reduce 

experimental time and thus allowing more repetitions to confirm data obtained.  Based on 

the results obtained and detailed analysis, the design operation parameters will be 

proposed and will be the third objective of this study.  

 

All the identified parameters were varied accordingly which were 10
o
C to 35

o
C 

for the surrounding temperature, commercial propane to commercial butane for the LPG 

composition, 20 liters per minute to 73 liters per minute for the flow rate and 2 kg to 7 kg 

for the filling weight.  

 

In this study, the parameters that are to be discussed are the profiles of 

temperature, pressure, vapor and liquid composition, weight, flow rate and liquid level. 

Thus, by evaluating all these parameters, it will be beneficial in any designing related to 

the LPG storage for the purpose of reducing the loss incurred due to the residue problem. 

 

 

1.3 Report Outline 

 

This thesis will discuss on the study of evaporation process of LPG in storage. 

The study conducted opens up a more realistic solution to predict the actual usage of 

LPG, which is to overcome or minimize the problems of LPG residue in cylinders via 

modification of the existing operation design parameters.  
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The thesis consists of five chapters, which starts with the introduction and ends 

with conclusions and recommendations.  In Chapter 1, the discussion is based on the 

research background, which highlights on the increasing attention that LPG has received 

since it was recognized as one of the popular fuels, the problem that occurs when the 

vapor is consumed through the natural evaporation process and the possible methods in 

reducing the residue problem. In conjunction with that, the objective and scopes of the 

study are also highlighted with the focus on experimental. 

 

In Chapter 2, which is a literature study, the highlighted discussion is related to 

the basic concepts of evaporation process, heat and mass transfer and vapor liquid 

equilibrium. All discussions are related to the LPG, which is stored in the cylinder under 

pressure. Apart from that, the overview of the history and usage of LPG in Malaysia is 

highlighted at the beginning of this chapter. 

 

In Chapter 4, it is about materials and methods used for the experimental study. 

The schematic diagram of the experimental rig with consists of all equipment is discussed 

in this chapter. Apart from that, the study procedure is also highlighted in this chapter. 

Prior to that a simple model for experimental data comparison has been developed as 

highlighted in Chapter 3. The result gathered from the experimental study which includes 

temperature profile, pressure profile, vapor and liquid composition, liquid level and 

weight are discussed in Chapter 5. The discussion is based on the four main categories 

that have been studied which are the variation in surrounding temperature, variation in 

initial flow rate, variation in composition and variation in filling weight of LPG. At the 

end of the Chapter 5, comparison of the experimental results through theoretical model is 

highlighted.  

 

Chapter 6 is the final part of this thesis, which highlights the conclusions and 

recommendations that can be achieved from the research work.   
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1.4 Summary 

 

In Chapter 1, the researcher tries to highlight the definition and general concepts 

of LPG storage as well as the problem occurring when the gas is consumed through the 

natural evaporation process, which is related to the residual problem. It is reported that 

more than 30 percent of residue is found in cylinder with 50 kg water capacity size. Even 

though a lot of researches have been done to explore and overcome that problem, there is 

but no single method capable of doing it. Therefore, through this study, which consists of 

three main objectives that are related to the characteristics of LPG, it will be able to 

investigate the actual residue. 
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