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ABSTRACT 

Arithmetic knowledge are composed of several components, including 

procedural skill which are simple mathematics computation (MC) and complex 

mathematics computation, (MM), conceptual understanding and factual knowledge 

(FR). These components have been the basic references when conducting the 

neuroimaging study of cognitive arithmetic. Previous studies showed evidence of 

cortical activation of fronto-parietal regions with different intensity while performing 

various types of mental arithmetic problems. In addition, some studies have suggested 

that problem-size or difficulty can affect the activation of fronto-parietal regions. 

However, not much research has been done on effects of problem-size and arithmetic 

components in terms of their brain connectivity. Therefore this study was carried out 

to determine both empirical effects on the aspect of Functional Specialization (FS) and 

Effective Connectivity (EC) of fronto-parietal networks. In this study, functional 

Magnetic Resonance Imaging (fMRI) scans were performed on twenty-two (n = 22) 

healthy male participants. Each participant performed a series of arithmetic problems 

which presented in pseudorandom order. For each task, an arithmetic problem of true 

and false answers were presented in block stimulus paradigm within 30s followed by 

30s rest. Participants made a judgement by pressing the handgrip button to indicate the 

wrong answer. Statistical Parametric mapping (SPM8) and Dynamic Causal 

Modelling (DCM10) were used to determine brain Functional Specialization (FS) and 

Effective Connectivity (EC). For each participant, a number of 56 EC models for 

PART I (Effects of Problem-Size) and 77 for PART II (Effects of arithmetic 

components) were constructed for each hemisphere to test the existence of couplings 

between Superior Parietal Lobule (SPL), insular, Inferior Occipital Gyrus (IOG) and 

Dorsolateral Prefrontal Cortex (DLPFC). These regions have been proved to be the 

key role in mental arithmetic and representing the fronto-parietal networks. The EC 

results show the existence of interactions between the regions of interest, but with 

different pattern of connectivity between hemispheres. In PART I, the SPL → DLPFC 

connection during single-digit MM task was the only one that was significant 

(Posterior probability, P < 0.90) on the left hemisphere compared to other tasks. 

Meanwhile, the same connection, but on the right hemisphere was only significant 

during a MM task in PART II. This is due to both regions play important roles in 

fronto-parietal network, in which SPL is associated with number processing, while 

DLPFC is generally associated with working memory and task difficulty. Comparison 

study on MC and FR tasks where the answer can be directly retrieved from the memory, 

MM tasks were more complex, thus forcing the subject to retrieve, memorize and 

compute the answers at the same time. These findings indicated that both left and right 

hemispheres are involved in arithmetic processing. The results obtained from this 

study revealed that problem-size and arithmetic components do affect the EC between 

regions of interest despite their insignificantly difference in cortical activation. 
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ABSTRAK 

Pengetahuan arithmetik terdiri daripada beberapa komponen, termasuk kemahiran 

prosedural (pengiraan matematik mudah, (MC) dan pengetahuan matematik yang 

kompleks, (MM)), pemahaman konsep dan pengetahuan fakta (FR). Semua komponen 

ini telah menjadi rujukan asas apabila menjalankan kajian ke atas arithmetik kognitif 

menggunakan kaedah imbasan neuro. Kajian terdahulu telah membuktikan 

pengaktifan korteks fronto-parietal dengan keamatan yang berbeza semasa 

menjalankan pelbagai jenis masalah mental arithmetik. Beberapa kajian juga 

mencadangkan bahawa masalah saiz atau kesukaran boleh mempengaruhi pengaktifan 

fronto-parietal. Walau bagaimanapun, kurang penyelidikan yang telah dilakukan 

untuk menangani kesan masalah saiz dan pengiraan mathematik dari segi kehubungan 

efektif di dalam otak. Oleh itu, kajian ini dijalankan untuk menentukan kedua-dua 

kesan empirikal dari aspek pengkhususan kefungsian (FS) dan kehubungan efektik 

(EC) bagi rangkaian fronto-parietal semasa melakukan pengiraan matematik. Dalam 

kajian ini, imbasan pengimejan resonans magnet kefungsian (fMRI) dilakukan ke atas 

dua puluh dua (n=22) subjek lelaki yang sihat. Setiap subjek perlu melakukan satu siri 

arithmetik yang dipersembahkan dalam susunan rawak. Bagi setiap arithmetik, 

jawapan yang betul dan salah telah dipamerkan dalam paradigma blok rangsangan. 

Subjek membuat pengiraan secara mental dan menekan butang bagi menunjukkan 

jawapan yang salah. Pemetaan Statistik Berparamater (SPM8) dan Pemodelan 

Dinamik Penyebab (DCM10) digunakan untuk menentukan sifat FS dan EC otak. 

Untuk setiap subjek, sejumlah 56 model EC bagi BAHAGIAN I (Kesan Masalah Saiz) 

dan 77 model bagi BAHAGIAN II (Kesan Komponen Arithmetik) dibina untuk setiap 

hemisfera bagi menguji kewujudan gandingan di antara Lobus Superior Parietal (SPL), 

Girus Inferior Osipital (IOG), Insular dan Korteks Dorsolateral Prefrontal (DLPFC). 

Kawasan korteks ini terbukti memainkan peranan utama dalam mental arithmetik dan 

mewakili rangkaian korteks fronto-parietal. Keputusan bagi EC menunjukkan 

kewujudan interaksi antara kawasan otak yang terlibat, tetapi dengan corak EC yang 

berbeza di antara hemisfera. Di BAHAGIAN I, hanya SPL→DLPFC pada hemisfera 

kiri yang bererti (Kebarangkalian posterior,P<0.90), iaitu ketika satu-digit MM 

berbanding arithmetik lain. Sementara itu, EC yang sama tetapi pada hemisfera kanan 

menunjukan kehubungan bererti semasa MM dalam BAHAGIAN II. Ini kerana, 

kedua-dua korteks memainkan peranan penting dalam rangkaian fronto-parietal, di 

mana SPL dikaitkan dengan pemprosesan nombor, dan DLPFC amnya dikaitkan 

dengan ingatan kerja dan kesukaran tugas. Berbanding dengan MC dan FR, MM 

adalah lebih kompleks, di mana subjek perlu mendapatkan semula pengetahuan fakta 

sedia ada, menghafal dan mengira jawapan pada masa yang sama. Penemuan 

menunjukkan bahawa kedua-dua hemisfera otak terlibat dalam pemprosesan 

arithmetik. Hasil kajian menunjukkan bahawa masalah saiz dan komponen arithmetik 

mempengaruhi EC antara kawasan pengaktifan dalam korteks fronto-parietal 

meskipun pengaktifan mempamerkan perbezaan yang tidak ketara 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

In the first chapter, the scenario of mathematics in daily life as well as how 

neuroimaging research bridge the gap between neuroscience and mathematics 

education will be explained briefly under the first section of research background. 

Then, the problem statements of this work will be defined thoroughly followed by the 

contribution of this research in section three. In section four, a few research questions 

are listed. And as the objectives were lined up, the research scope will be drawn up as 

the boundary of the present study. At the end of this chapter, the research hypothesis 

is composed. 

 

 

 

 

1.1   Introduction 

 

 

One of the basic elements of mathematics are numbers. We use numbers almost 

daily to measure ordinary things such as height and weight, calculate daily expenses 

and even to estimate the education loan. In addition, numbers are used in various types 

of operations in mathematics such as ranking, counting and comparing quantities. 

Meanwhile, arithmetic knowledge comprises of several components, such as factual 
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knowledge, procedural skill, and conceptual understanding (Gilmore, 2006; Long, 

2011). Generally, conceptual knowledge involves “knowing how”, which is composed 

of a network of relationships among pieces of information. Problems that are involved 

an inversed transformation (e.g.10 + 4 - 4 = ?) are used to measure the conceptual 

knowledge of arithmetic between addition and subtraction.  

 

On the other hand, procedural knowledge can be defined as “knowing-how-to”, 

whereby composed of sets of procedures executed in a specific sequence and it 

primarily involves a standard arithmetic problem (e.g. 10 + 8 - 3 = ?). Meanwhile, the 

cognitive number processing of arithmetic fact retrieval was proposed by McCloskey 

since three decades ago by verbally testing on dyscalculia patients (Dagenbach and 

McCloskey,1992; McCloskey et al.,1985). McCloskey (1985) also proposed that 

calculation involving multiplication and division encompassed of several calculation-

specific processes.  

 

These processes postulate the mechanisms for (1) retrieval of arithmetic facts 

(e.g., 6x7 = 42), (2) execution of calculation procedures, and (3) comprehension of 

operation signs (e.g.,+,x) or words (e.g.,plus). In conclusion, mental calculation can be 

described as a complex task that delineate an important component of higher order 

cognition that involves several fundamental cognitive activities. The specific 

processes involve covert production of numbers, execution of a calculated operation 

which is represented by arithmetic facts from a memorized table and storing data in 

working memory for further operations. This specific process is shown in Figure 1.1. 

Aschraft (1992) in his review journal entitled, “Cognitive arithmetic: A review of data 

and theory” has proposed four important empirical effects which can influence the 

organization of a person’s knowledge of numbers and mathematics in the memory and 

the processes that can enable this knowledge to be accessed and applied in different 

settings. These engage the problem size/difficulty effects, error effects, relatedness 

effects and strategies of processing.  

 

The problem-size effect has been described as a well-known phenomenon in 

mental arithmetic, in which the problem difficulty increases with the numerical size of 

the operands (Ashcraft, 1992). This shows that, the problem size effect is the most 

basic empirical effect in mental arithmetic studies, whereby as problems grow larger, 
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the process becomes more difficult. Taking this as a hypothesis, the first part of the 

current study was designed to observe the effect of problem size/difficulty on cortical 

activation as well as to how the information travel ipsilaterally between the regions. 

An inaugural study of mental arithmetic using neuroimaging modalities has been 

conducted about three decades ago by Roland and Friberg (1985). They measured the 

regional changes in cerebral blood flow, which was induced by different cognitive 

tasks, using single-photon emission tomography.  

 

 

 

 

 

 

Figure 1.1 The cognitive process on calculation-specific processing for the mental 

arithmetic (Dagenbach and McCloskey, 1992; McCloskey et al., 1985) 

 

 

A serial of subtraction problems used in arithmetic tasks has specifically 

activated the Angular Gyrus (AG) bilaterally. Upon this study, a number of significant 

neuropsychological studies have evolved over the last three decades, which 

concentrated on the cognitive mapping of number processing and calculation 

(Arsalidou and Taylor, 2011; Zamarian et al., 2009). This shows that in the last 30 
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years, the rapid development of brain imaging techniques has helped the identification 

of the neuro-anatomical brain areas supporting arithmetic functions more precisely. 

 

Networks of brain regions are responsible for the different functions executed 

during arithmetic problem solving. However, based on the number of steps they 

require, this arithmetic decision has posed various numbers of cognitive demands, 

differently. Numerous neuroimaging studies focus on arithmetic processing using 

single-step arithmetic problems (e.g.,3 + 4 , 5 - 2) which are composed of one-digit or 

a combination of one and two-digit numbers (Fehr et al., 2007). Besides, it also 

includes the manipulation of numbers in successive operations  (e.g., 4 – 3 + 6) (V 

Menon et al., 2000) or even solving integration problems (Ambady et al., 2009).  

Evidence from neuroimaging studies indicates that the neural substrate of arithmetic 

processes are composed of the cingulate cortex, parietal cortex (including intra-parietal 

sulcus and inferior parietal lobule), lateral prefrontal cortex, insula and occipital cortex 

(Eickhoff et al., 2009; Kong et al., 2005). These areas are proved to be the main region 

in mental arithmetic.  

 

The involvement of prefrontal cortex in the brain activity has been linked to 

one of the cognitive functions such as working memory (Yoo et al., 2012), with 

considerable emphasis on its role in monitoring or manipulating information, as 

required in arithmetic tasks. Researchers who study numerical processing and 

computation perceive that difficult arithmetic tasks require more working memory 

resources than simple tasks (Fehr et al., 2007; Kong et al., 2005). 

 

Practically, it is suggested that the three parietal circuits (Stanislas Dehaene et 

al., 2003a) are involved in arithmetic processing. The bilateral horizontal intraparietal 

sulcus/superior parietal lobule, which is one of the three parietal circuits is thought to 

be the domain-specific for arithmetical processing. Meanwhile, the other two regions, 

involving the left AG verbal system and the posterior parietal attention system are most 

probably shared with other cognitive domains.  One of these parietal, which is the 

superior parietal lobule (SPL) bolster the attention, spatial working memory and visuo-

spatial processes.  
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These processes are pertinent to numerical processing. Specifically, these three 

parietal regions are also known as Triple Code Model (TCM) (Stanislas Dehaene et 

al., 2003a; Schmithorst and Brown, 2004). TCM model predicts that numbers are 

handled in three numerical surface format: (1) a visual Arabic code portrayed by a 

series of digits (brought on the activation of bilateral activity in inferior ventral 

occipital-temporal areas), (2) an analogic quantity and magnitude code (generated 

activity in the left inferior parietal areas, which underlies quantity and magnitude 

judgement) and (3) verbal code represented by words (prompted the initiation of the 

left perisylvian areas). Inside this system, simple-digit calculations can be tackled 

either through a direct route utilizing operands (e.g., 3 x 5) transcoded into a verbal 

code (three times five), which would inspire the rote memory of this operation, or 

through an indirect semantic route in which the operands represent quantities in which 

semantical meaningful manipulations can be performed.  

 

As for subtraction problem, the indirect route is regularly taken when rote 

memory for a problem is inaccessible. Therefore, Dehaene and Cohen (1996; 2003a) 

contended that addition and multiplication depend generally on rote verbal memory 

(direct route), while subtraction depends for the most part on quantitative 

manipulations (indirect route), and that these two processes are reflected in the brain 

as two main cortical systems for calculations. 

 

The involvement of frontal, central-parietal (or temporal) and parietal 

components have been described in numerous fMRI  and ERP studies regarding 

addition and subtraction (Burbaud et al., 1999, 2000; Chochon et al., 1999; Cowell et 

al., 2000; S. Dehaene, 1999; Rickard et al., 2000; S M Rivera et al., 2005; Stanescu-

Cosson et al., 2000; L. Zago et al., 2001; Rocha et al., 2005). These widespread areas 

are included in arithmetic calculations and have been articulated in the previous studies. 

All authors have focused on both the left frontal and parietal areas as common and 

critical components of the arithmetic brain.  

 

Some of these authors have recommended that the frontal regions are greatly 

involved in the more difficult calculations (Anderson et al., 2011; Bongard and Nieder, 

2010; V. Menon et al., 2000; Rypma and D’Esposito, 1999; Yu et al., 2012) while the 

temporal region is generally hypothesized as having a bilateral distribution in 
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arithmetic computations, its activity is depicted as for the most part reliant on the type 

of calculation and problem size (Chochon et al., 1999; Cowell et al., 2000; S. Dehaene, 

1999; Rickard et al., 2000; Stanescu-Cosson et al., 2000). Whereas, some authors have 

additionally alluded to other visual and verbal components related  to arithmetic 

calculation (Cowell et al., 2000; S. Dehaene, 1999). 

 

In concomitant to the increasing numbers of cortical activation study on mental 

arithmetic, the focus began to shift from blobology to connectivity. The aboriginal 

study of connectivity underlying number processing has been conducted by Yiyuang 

Tang and colleagues (2006). They have developed a functional connectivity of visuo-

premotor association network of simple addition task by comparing the effects of 

culture on brain activities. The focus on connectivity underlying different types of 

mental arithmetic began to increase in a small number despite the increasing numbers 

of connectivity studies in other areas. This research study has been extensively used to 

observe and discover brain connectivity focusing more on cognitive brain function 

such as language, auditory, visual, working memory etc.  

 

However, the effective connectivity underlying multiplication network has 

been discovered for the past five years using Multivariate Granger Causality method 

(Krueger et al., 2011). Other brain connectivity underlying mental arithmetic were also 

conducted using DTI fiber tractography (Tsang et al., 2009), functional connectivity 

(Emerson and Cantlon, 2012; Park et al., 2013), and Fiber Tract (Open DX)(Klein et 

al., 2013).  

 

Despite the importance of number processing in daily life and numerous 

findings on the development of its underlying brain regions, little is known about the 

effective connectivity underlying number processing between fronto-parietal networks, 

unlike in other basic cognitive functions, such as auditory system. The ability to 

observe brain functions as well as brain connectivity that exists between the network 

during number processing via mental calculation enables us to study the changes in 

circuitry during different complexity (effect of problem size) and different operators 

(procedural knowledge vs. fact retrieval), thus it may help to improve effective 

teaching strategies.  
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In addition, neuroscience approach may add to open deliberation by 

demonstrating that diverse neural circuits are included in the procedural knowledge 

and the retrieval of arithmetic facts as an aftereffect of the present study upheld by past 

discoveries. Therefore, to the author’s knowledge, this is the first study giving proof 

that different complexity (problem size) and different successive operators 

significantly affect the fronto-parietal networks attained from functional Magnetic 

Resonance Imaging (fMRI) and Dynamic Causal Modelling (DCM) Analysis. 

 

In this study, the functional specialization, activation intensity and effective 

connectivity for two mental arithmetic tasks encompasses the effect of problem-size 

(Results presented in Chapter 4: Effect of Problem Size) and the impact of arithmetic 

components (Results presented in Chapter 5: Effect of Arithmetic Knowledge) were 

conducted with twenty-two healthy participants. The functional specialization of the 

brain is based on the tasks involving different types of arithmetic problems given 

during the fMRI experiments. The fMRI data collected from this study will be analysed 

using Statistical Parametric Mapping (SPM) method.  

 

SPM is a statistical methodology of Random Field Theory (RFT) that is used 

to make inferences about the topological features of statistical processes that are 

continuous functions of space or time and it is typically used to distinguish regionally 

particular impact in neuroimaging data to describe functional anatomy and disease-

related changes (K. J. Friston et al., 1995). Functional data obtained from the 

experiment needs to be matched with standard anatomical space to associate the 

activation with the brain regions. Next, parameter estimation will be conducted using 

general linear model to specify the statistical models which represent the 

haemodynamic response of the tasks. Then, the statistical inference is made based on 

the Gaussian Random Field Theory and this step is known as functional specialization.  

 

To obtain the analysis of functional integration, the percentage signal change 

(PSC) analysis on the region of interests (ROIs) is conducted. The purpose of this 

analysis is to explore the data, which involves various types of stimulus or tasks 

(Mohammad, 2012). Besides, the analyses will focus only on the brain regions that are 

dependent on the given task. The signal changes are defined as relative signal changes 
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in the brain regions. To analyse the effective connectivity between regions of interest, 

the dynamic causal modelling (DCM) is used.  

 

DCM posits a causal model whereby neuronal activity in a given region 

induces changes in neuronal activity in different areas, by means of interregional 

connections, and in its own particular activity, through self-connections. A DCM is 

fitted to data by tuning the neuro-dynamic and haemodynamic parameters so as to 

minimize the error between predicted and observed fMRI time series. A few models 

are constructed by specializing the activated brain regions, which refer to the different 

mental arithmetic tasks. These models will be fitted with the measured BOLD signals. 

Therefore, the intrinsic connection between regions and how they are influenced by 

the experiment-context can be obtained.  

 

Then, all models are analysed using Bayesian Model Selection (BMS) and 

Bayesian Model Averaging (BMA). BMS is a powerful technique in deciding the most 

likely, among a set of contending hypotheses of the mechanisms that generate the 

observed data (K.E. Stephan et al., 2009). Whereas, BMA is used to produce the 

average network structure of the winning models (Will D. Penny et al., 2010).       

 

 

 

 

1.2   Problem Statements 

 

 

Either in natural phenomenon or technologies arising around us, mathematics 

is used extensively as it expresses itself everywhere and in almost every facet of life. 

This scenario supports the fact that mathematics is the language of science and 

engineering. Besides, mathematics is defined as the science of numbers, and as a 

matter of fact human being did not invent mathematics concepts instead, we 

discovered them. Uniquely, the language of mathematics is in numbers. Not Malay, 

English or Japanese language.   
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In the present study, both specialization and integration analysis proposed in 

neuroimaging study were conducted in order to deeply understand how the brain 

regions are involved in mathematics working memory response between fronto-

parietal networks under different approach of mathematical tasks. Study on functional 

specialization focuses on the region activated during mental arithmetic task has been 

reported numerously. Detail on neuroscience of learning arithmetic based on fMRI 

evidence has been summarized by Zamarian et al. (2009). However, little is known 

about functional integration analysis which focuses more on “How the brain interact 

to one another during certain tasks (Stevens, 2009)” especially in the field of learning 

arithmetic.  

 

The distribution of previous studies, which analysed and observed the mental 

arithmetic performance on brain activity through different fields of study is shown in 

Figure 1.2. Therefore, the present study will clearly discuss activated fronto-parietal 

network across different mathematical tasks and how the brain works during these 

tasks. Thus, this present study will bridge the gap between experimental psychological 

study of working memory with education (mental arithmetic) and neuroscience study 

(the fronto-parietal activation and connectivity) in order to draw out a better 

understanding of mental arithmetic processing within the brain on normal subjects. 

 

At the end of this study, the outcome can be made as a reference baseline of 

disconnected brain network of dyscalculia (the disability of doing mathematics) 

subjects while doing the same mental arithmetic study. Thus, a clear distinction of 

fronto-parietal connectivity between normal and dyscalculia subjects could be justified 

in the future. Therefore, it is hoped that through this study, researchers could develop 

more effective teaching method of basic mathematics learning (e.g., mental arithmetic) 

for dyscalculia subject as well as lower performance subjects in such a way that can 

help them survive in the real world since basic mathematical calculation is a vital 

component in life. 
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Figure 1.2 The distribution of previous study conducted on mental arithmetic tasks 

through different fields of study 

 

 

 

 

1.3 Research Questions 

  

 

There are several questions that arose during this study: 

a. Which part of the brain is involved in arithmetic processing? 

b. How are these regions connected with one another during arithmetic 

processing? 

c. Does problem-size/ difficulty affect arithmetic processing? And how? 
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1.4 Research Objectives 

 

 

The present research study was conducted in order to bridge the gap that exists 

between neuroscience and education. Generally, this study was conducted in order to 

analyse the functional specialization and integration under two different chapters. 

Chapter 4 focuses on the effects of problem-size, which is indicated by single- and 

double-digit problems, while Chapter 5 concentrates on the effects of mathematics 

components during mental arithmetic tasks, which encompass procedural and factual 

knowledge. There are several objectives that this study hopes to achieve, which are: 

 

i. Identifying the functional specialization in the brain regions 

 

ii. Comparing the percentage of signal change on the four regions of interests 

(ROIs), which comprise of IOG, SPL, DLPFC and insular for both left and 

right hemispheres 

 

iii. Determining the structure of effective connectivity between the regions by 

contrariety the connection between SPL to IOG, DLPFC and Insular 

 

iv. Constructing the effective connectivity model for each case, which can explain 

how the ROIs interact with one another during computation of mental 

arithmetic tasks 

 

 

 

 

1.5 Research Scope 

 

 

The scope or boundaries of this research study comprise of a few aspects which 

include the modality used as well as the image format. Besides, it also explains the 

boundaries of subjects selected in this research study. For the modality, the present 
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study only uses functional Magnetic Resonance Imaging (fMRI) as one of the 

neuroimaging modalities. Other modalities will not be used in this study. Therefore, 

the image used in this study will be a set of fMRI time-series, which results from the 

brain scanning during mental calculation tasks given during the experimental session. 

 

Subjects or participants selected for this research study were Diploma students 

from the University Teknologi Malaysia (Kuala Lumpur Campus) with 11 years of 

education background. Although the nature and origin of gender differences in 

mathematics remains unclear, variability in performance tends to be higher in males 

(Feingold, 1992; Geary, 1998). Consequently, to reduce variability in the present study, 

only male students are involved in this study. The whole analyses conducted in this 

study were based on Statistical Parametric Mapping (SPM8) and Dynamic Causal 

Modelling (DCM). This research study also focuses only on mental calculation 

involving four basic arithmetic operations, which is one of the basic cognitive 

functions. 

 

 

 

 

 

1.6 Significance of Study 

 

 

Compared to the developed countries in the world, research on brain activities 

using non-invasive, radiation – free technology of fMRI is still new and growing in 

the developing countries, especially in Malaysia. This functional Magnetic Resonance 

Imaging (fMRI) is utilized to assess how the brain’s blood flow and oxygen change, 

in the specific areas, react to certain stimuli. It can outline how language and speech 

are acquired, how pain and other emotions are handled, how numbers are prepared and 

accumulated and a bunch of other brain functions. 

 

 

From this study, we will be able to give new and important information on 

various types of mental arithmetic problems and how the regions of interest interact 
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with one another during mathematics computation tasks, which is unable to be 

obtained simply through behavioural analysis or clinical tasks. In addition, the 

understanding on how mental arithmetic computes under different cases can be done 

in this study in terms of functional specialization and integration aspects. 

 

Robust studies have been conducted on simple addition and multiplication 

tasks involving single-digits and the brain regions that specialize in number processing 

have been identified. However, not much research has been done to tackle the double-

digit problems and effects of math computation of more than one operator. Therefore, 

this study was conducted in order to give new insight of math computation via fMRI 

data analysis. Moreover, from this study, it is hoped that the construction of effective 

connectivity model for each case will give some basic understanding of the 

connectivity patterns between SPL and the fronto-parietal system, including insular, 

DLPFC and IOG.   

 

Besides, analysis of mental arithmetic using fMRI can give additional info to the 

current psychological analysis in terms of brain neurophysiology mechanism as well 

as functional specialization and integration. By comparing with previous findings, this 

study contributes in the use of dynamic causal modelling (DCM), together with 

Bayesian Model Selection (BMS) and Bayesian Model Averaging (BMA) to scrutinize 

brain connectivity between regions during mental arithmetic tasks. In addition, this is 

the first study that investigates the intrinsic connectivity constructed between regions 

that is modulated by problem-size effects as well as the arithmetic operators (the 

mathematic computation and fact retrieval). 

 

 

 

 

1.7 Thesis Organization  

 

 

This thesis is organized into six chapters. 
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Chapter 1 provides the introduction of the project, which contains a brief executive 

summary information where the scope of the project is also discussed. It also presents 

the motivation and objectives of the research done. Several facts about the previous 

work by other researchers are also touched. 

 

Chapter 2 contains literature review and details about the information and scope of the 

research. It also illustrates prior knowledge concerning the brain and its cognitive 

functions as well as modern neuroimaging technologies used to examine and discover 

the neural network underlying these functions. 

 

Chapter 3 discusses briefly on the methodology for the project in every research stages. 

These include the five main phases which is data collection, data pre-processing, 

model specification, inference on the brain activation and the intrinsic connectivity 

analysis.  

 

Chapter 4 presents the results obtained from Statistical Parametric Mapping (SPM8) 

and Dynamic Causal Modelling (DCM10) analysis during the problem size tasks. 

These include Fixed Effect Analysis (FFX), Random Effect Analysis (RFX), Region 

of Interest (ROIs) and Effective Connectivity (EC) analysis. Discussion will be made 

based on i) FFX and RFX analysis as well as ROI analysis involving functional 

specialization of activated brain regions and ii) effective connectivity analysis 

demonstrating the interaction between regions of interest (ROIs) during single- and 

double-digit. 

 

Chapter 5 presents the results obtained from SPM8 and DCM10 analysis carried out 

to discover the effect of Arithmetic Component. Discussion will be made based on 

both functional specialization of activated brain regions as well as the effective 

connectivity analysis demonstrating the interaction between ROIs during math 

computation and fact retrieval. 

 

Chapter 6 concludes the thesis with a review of the objectives and their fulfilment, a 

summary of the work that has been accomplished, and recommended future work. 
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