CONTINUANCE USAGE INTENTION MODEL OF PHYSICAL ACTIVITY TRACKING TECHNOLOGY

NITTEE WANICHAVORAPONG

A thesis submitted in fulfillment of the requirements for the award of the degree of Doctor of Philosophy

> School of Computing Faculty of Engineering Universiti Teknologi Malaysia

> > 30 APRIL 2019

DEDICATION

Specially dedicated to My father and mother I would not have accomplished this thesis without the great support from both of my parents. The more I think of them the more I have encouragement to move forwards with all my full willpower to this study goals.

 $\sim Nittee \sim$

ACKNOWLEDGEMENT

I would like to express my deepest appreciation to all those who provided me with the possibility to complete this thesis. A special gratitude I give to my supervisor and co-supervisor, Assoc. Prof. Dr. Ab Razak Bin Che Hussin and Dr. Ahmad Fadhil Yusof, whose contribution in stimulating suggestions and encouragement, helped me to coordinate my research project, especially in guiding and writing this thesis.

Furthermore, I would also like to acknowledge with much appreciation the crucial role of the staff of UTM, Computing Department, who gave the permission to use all required facilities and the necessary materials to complete the task.

I perceive this opportunity as a big milestone in my academic development. Hence, I will strive to use the acquired skills and knowledge in the best possible way and will continue to work for improvement, in order to benefit our society. Hope to continue cooperation with my supervisor and co-supervisor in the near future.

Last but not least, I would like to thank my parents, Vorawit Wanichavorapong and Bunchoo Wanichavorapong, for supporting me spiritually throughout my life.

ABSTRACT

In eHealth, physical activity (PA) tracking technology exists that can assist people in monitoring their PAs. However, long-term use is the cornerstone of information technology (IT) product and service success; otherwise, it is a failure. Then, persistence becomes a factor of concern and it fades away over time. There is limited knowledge of information system (IS) continuance in this domain called PA tracking devices and apps (PATDA). Prior IS continuance research has no suitable models that can explain continuance intention (CI) of PATDA. The aim of this study is to build a model that predicts users to continue using PATDAs. This study also demonstrated the use of expectation-confirmation model (ECM), Network externalities (NE), and Value-based factors to understand CI of PATDA. Through data collection, a survey method was carried out among PATDA Singaporean users. The proposed model has been tested for reliability and validity using a Structural Equation Modelling (SEM) method. The results exhibited that all the ECM constructs had statistically significant impacts on CI. However, Social Value (SS) had rather an insignificant correlation with CI. Referent Network Size (RNS) also received an insignificant association with Usefulness. Besides, the analysis showed many of the constructs clustered in the group that yielded high performance and importance, including Satisfaction. Utilitarian. Confirmation. Hedonic, Complementarity, and Usefulness. Referent Network Size arrived in the middle between Social Value, which is rated as insufficient on performance and importance and the outstanding group. The research model can be functioning as a guideline to increase the understanding regarding the CI of a PATDA. By applying the evaluation result of identified factors, stakeholders can embrace a range of benefits from PA tracking technology in connection with research, product features, and usage.

ABSTRAK

Dalam eKesihatan, terdapat teknologi pengesanan aktiviti fizikal (PA) yang boleh membantu pengguna memantau PA mereka. Dengan beberapa produk dan perkhidmatan teknologi maklumat (IT), penggunaan jangka panjang adalah asas kepada kejayaan; jika sebaliknya, ia merupakan satu kegagalan. Oleh itu, kegigihan menjadi kebimbangan dengan penggunaan yang berterusan. Walau bagaimanapun, terdapat pengetahuan terhad mengenai sistem maklumat (IS) yang berterusan dalam domain ini yang disebut peranti dan aplikasi pengesanan PA (PATDA). Penyelidikan berterusan IS sebelum ini tiada mempunyai model yang sesuai yang boleh menerangkan niat berterusan (CI) PATDA. Tujuan kajian ini adalah untuk membina sebuah model yang mendorong pengguna untuk terus menggunakan PATDA. Kajian ini menggunakan model pengesahan-jangkaan (ECM), Rangkaian luaran (NE), dan faktor berasaskan Nilai untuk memahami CI PATDA. Melalui pengumpulan data, kaedah kaji selidik telah dijalankan di kalangan pengguna PATDA di Singapura. Model yang dicadangkan telah diuji kebolehpercayaan dan kesahihan menggunakan kaedah Permodelan Persamaan Struktur (SEM). Hasil kajian menunjukkan bahawa kesemua konstrak ECM mempunyai kesan signifikan secara statistik terhadap CI. Walau bagaimanapun, nilai sosial (SS) tidak menunjukkan hubungan yang signifikan dengan CI. Saiz Rangkaian Rujukan (RNS) juga menunjukkan persamaan yang tidak signifikan dengan Kegunaan. Selain itu, analisis menunjukkan banyak konstrak yang dikumpulkan dalam kumpulan yang mempunyai prestasi tinggi dan berkepentingan seperti Kepuasan, Praktikal, Pengesahan, Kesukaan, Pelengkap dan Kegunaan. RNS dinilai rendah di kedua-dua skala prestasi dan kepentingan. Model yang dicadangkan dapat berfungsi sebagai panduan untuk meningkatkan pemahaman tentang CI dari PATDA. Dengan menggunakan keputusan penilaian faktor-faktor yang dikenal pasti, pihak berkepentingan boleh meningkatkan lagi pelbagai faedah dari teknologi pengesanan PA berkaitan dengan penyelidikan, ciri produk dan penggunaan.

TABLE OF CONTENTS

TITLE

PAGE

14

DI	ECLARAT	ION	ii	
DI	EDICATIO	Ν	iii	
A	CKNOWLE	EDGEMENT	iv	
Al	BSTRACT		V	
Al	BSTRAK		vi	
TABLE OF CONTENTS			vii	
LI	LIST OF TABLES			
LI	ST OF FIG	URES	xiii	
LI	ST OF AB	BREVIATIONS	xiv	
LI	ST OF API	PENDICES	xvi	
CHAPTER 1 INTRODUCTION		1		
1.1	l Introd	uction	1	
1.2	2 Proble	em Background	2	
1.3	3 Proble	em statement and research questions	6	
1.4	4 Resear	rch objectives	7	
1.5	5 Scope		7	
1.0	5 Signif	icance of the study	8	
1.7	7 The or	ganization of the thesis	9	
CHAPTER 2	LITE	RATURE REVIEW	9	
2.2	l Introd	uction	9	
2.2	2 Syster	natic Literature Review	10	
	2.2.1	Search method	10	
	2.2.2	Review scheme	13	
		2.2.2.1 Criteria for inclusions and exclusions	13	

2.2.2.2 Quality assessment

		2.2.2.3 Preliminary inspection	15
	2.2.3	SLR protocol and report	15
2.3	Physic	cal Activity (PA)	17
	2.3.1	Types of PA	18
	2.3.2	Levels of PA Intensity	19
	2.3.3	Types of PA Measurement	19
2.4	PA Tr	racking device or app (PATDA)	20
	2.4.1	The definition of PATDA	22
	2.4.2	Discussion of PA tracking technology	22
		2.4.2.1 Web-based PA apps	22
		2.4.2.2 Smartphone PA apps	23
		2.4.2.3 Wearable devices	23
2.5	Previo	ous studies of PA tracking technology (PATT)	25
2.6	Social	l media	26
	2.6.1	The concept of Social media (SM)	26
	2.6.2	Social media definition	26
	2.6.3	Types of social media	27
2.7	Comn	non IS theories on PATT	28
	2.7.1	Technology acceptance model (TAM)	28
	2.7.2	The Theory of Planned Behavior (TPB)	29
	2.7.3	The Social Cognitive Theory (SCT)	29
	2.7.4	Transtheoretical Model (TTM)	30
	2.7.5	Self-determination theory (SDT)	30
	2.7.6	Expectation Confirmation model (ECM)	31
2.8	Other	prior frameworks in IS continuance	31
	2.8.1	Value-based factors in IS	32
	2.8.2	Network externalities in IS	33
2.9	Critic	ism of prior theories and models	33
2.10	Critic	ism of CI and relevant models in PA tracking	36
2.11	The outcomes of the SLR 36		
2.12	Summary 39		

CHAPTER 3	RESEARCH METHODOLOGY	41
3.1	Introduction	41
3.2	Research paradigm	41
3.3	Research approach	42
3.4	Research framework	44
	3.4.1 Process 1: Preliminary data gathering	46
	3.4.2 Process 2: Problem definition	46
	3.4.3 Process 3: Theoretical foundation	47
	3.4.4 Process 4: Hypothesizing	48
	3.4.5 Process 5: Research design	49
	3.4.6 Process 6: Data collection, analysis, and interpretation	51
	3.4.6.1 Data collection	51
	3.4.6.2 Face and content validity	55
	3.4.6.3 Data analysis and interpretation	56
	3.4.7 Process 7: Deduction	57
3.5	Ethical Considerations	58
3.6	Summary	58
CHAPTER 4 DESIGN	MODEL DEVELOPMENT AND INSTRUMENT	59
4.1	Introduction	59
4.2	Theoretical foundation	59
4.3	Model formulation	61
	4.3.1 Continuance intention models in eHealth	61
	4.3.2 Variable analysis of prior studies	62
4.4	The proposed model	69
4.5	Construct operational definitions and hypotheses	71
4.6	Measurement and structural model	77
4.7	Instrument development	78
	4.7.1 Instrument design	79
	4.7.2 Pre-testing instrument and Pilot test	83
4.8	Summary	86

CHAPTER 5		DATA ANALYSIS AND INTERPRETATION	
	5.1	Introduction	87
	5.2	Respondents' Profile	87
		5.2.1 Missing value imputation	89
	5.3	Reliability test	90
	5.4	Validity test	91
		5.4.1 Convergent Validity	91
		5.4.2 Discriminant validity	92
	5.5	Model assessment thresholds	95
	5.6	Multicollinearity statistics	97
	5.7	Hypothesis testing and interpretation	98
	5.8	Compare the findings with prior studies	105
	5.9	Effects size and predictive relevance	108
	5.10	Importance-Performance Map Analysis (IPMA)	110
	5.11	Summary	114
CHAPTER 6		CONCLUSION	115
	6.1	Introduction	115
6.2		The achievement of the research objectives	116
		6.2.1 The first objective: Identifying the relevant factors for PATDA	116
		6.2.2 The second objective: the proposed model	117
		6.2.3 The third objective: the evaluation of the identified factors	118
	6.3	Research contributions	119
		6.3.1 Theoretical foundation	119
		6.3.2 Practical contribution	121
	6.4	Continuance intention model for PATDA	122
	6.5	Limitations	123
	6.6	The direction for future research	124

REFERENCES

LIST OF TABLES

TABLE NO	D. TITLE	PAGE
2.1	The important qualities of the LR papers	15
2.2	Physical activity & exercise differneces (Caspersen et al., 1985)	18
3.1	Research framework	44
3.2	Type I and Type II error (Singh, 2006)	49
3.3	Elements of research design Sekaran & Bougie, (2016)	50
3.4	Experts' background	56
4.1	eHealth and IS continuance intention consctucts	61
4.2	Variables used in prior studies	62
4.3	Prior references that provided relationships between constructs	66
4.4	Selected variables	69
4.5	Construct operational definitions	71
4.6	Construct Measurement	80
4.7	Number of indicators	82
4.8	Cross loadings- Pilot	84
4.9	Fornell-Larcker Criterion - Pilot	85
4.10	Heterotrait-Monotrait Ratio (HTMT) - Pilot	85
5.1	Respondent sumary table	88
5.2	Demographic profile of respondents	89
5.3	Internal consistency reliability and convergent validity, AVE	91
5.4	Cross loadings	93
5.5	Heterotrait-Monotrait Ratio of Correlations (HTMT)	94
5.6	Fornell-Larcker Criterion	95
5.7	Model reliability and validity assessment	96
5.8	Model quality assessment	96

5.9	Multicollinearity	97
5.10	Hypothesis testing results	98
5.11	Hypothesis testing summary table	104
5.12	Comparison with prior analyses	107
5.13	R 2 and Q 2 results	109
5.14	Effect size and predictive relevance results	109
5.15	Importance-Performance Map Analysis (IPMA) result	111

LIST OF FIGURES

FIGURE NO	. TITLE	PAGE
2.1	Systematic literature review map	10
2.2	Screening process in SLR	12
2.3	A temporal view of the included papers	16
2.4	Origins of the included papers	16
3.1	Hypothetico-deductive framework (adapted from Sekaran & Bougie, 2010)	43
3.2	Theories used in Continuance Intention from 2001-2014 (Nabavi et al., 2016)	48
3.3	Purposive sampling (Saunders, 2016)	52
3.4	Sample size calculation by G*power (Faul et al., 2007)	54
4.1	The proposed model with hypotheses	70
4.2	Instrument Development adapted from Diem, (2002)	80
4.3	Measurement model	86
5.1	The structural model with the results	104
5.2	The measurement model with the results	105
5.3	Importance-Performance Map Analysis (IPMA) plot	112
6.1	The final model	123

LIST OF ABBREVIATIONS

ACP	-	Average Congruency Percentage
AMOS	-	Analysis of A Moment Structures, a statistic CB-SEM
		application
AVE	-	Average Variance Extracted
BBC	-	British Broadcasting Corporation
BS	-	Bone-strengthening
CA	-	Cronbach's alpha
CB	-	Covariance-based
CFA	-	Confirmatory Factor Analysis
CI	-	Continuance intention
CR	-	Composite Reliability
CVI	-	Content Validity Index
DV	-	Dependent variable
ECT	-	Expectation Confirmation Theory
ECM	-	Expectation and confirmation Model
EFA	-	Exploratory factor analysis
HE	-	Hedonic
HPB	-	Health Promotion Board
HTMT	-	Heterotrait-Monotrait ratio
IoT	-	Internet of Thing
IPMA	-	The importance-performance map analysis
IS	-	Information system
IT	-	Information Technology
IV	-	Independent variable
LTPA	-	Leisure-time physical activity
MET	-	Metabolic Equivalent of Task
MI	-	Multiple Mutation
MS	-	Muscle-strengthening
MVPA	-	Moderate-vigorous intensity physical activity
NE	-	Network Externalities

PA	-	Physical activity
PATDA -		Physical activity tracking device and application
PATT	-	Physical activity tracking technology
PBC	-	Perceived Behavioral Control
PC	-	Perceived complementarity
PEOU	-	Perceived ease of use
PLS	-	Partial Least Squares
PU	-	Perceived usefulness
PV	-	Perceived Value
RNS	-	Referent network size
SCT	-	Social Cognitive theory
SDT	-	Self-determination Theory
SEM	-	Structural equation modeling
SIT	-	Social Interaction Ties
SLR	-	Systematic Literature Review
SM	-	Social media
SNSs	-	Social Networking Sites
SS	-	Social value
TAM	-	Technology Acceptance Model
TPB	-	Theory of Planned Behavior
TRA	-	Theory of Reason Action
TTM	-	Transtheoretical Model
UGC	-	User Generated-Contents
UT	-	Utilitarian
UTAUT	-	The Unified Theory of Acceptance and Use of
		Technology
VB	-	Variance based
VIF	-	Variance Inflation Factors
WAT	-	Wearable activity trackers
WFT	-	Wearable fitness technologies
WHO	-	World Health Organization

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix A	THE MINDMAP OVERVIEW OF THE STUDY	153
Appendix B	THE SUMMARY OF THE REVIEW PAPERS	155
Appendix C	THE EXTRACTED VARIABLES FROM PRIOR STUDIES	165
Appendix D	LETTER OF INVITATION TO CONTENT VALIDATION	173
Appendix E	CONTENT VALIDITY FORM	175
Appendix F	EXPERTS' JUDGEMENT TABLE	181
Appendix G	SURVEY QUESTIONNAIRE	183
Appendix H	THE RESPONDENT'S DATA CHARACTERISTICS	187
Appendix I	POPULAR PHYSICAL ACTIVITY APPLICATIONS & DEVICES	189

CHAPTER 1

INTRODUCTION

1.1 Introduction

Sedentary lifestyle activities such as watching television, working with computers or playing games may, consequently, lead to unwanted chronic diseases (Biswas et al., 2015). The reduction of screen time has been studied as the effect of lessening the inactive issue, in fact; these scholars tried to detect the relationship between cause and effect (Mark & Janssen, 2008; Olds et al., 2006). In addition, inactivity is harmful to an individual as it introduces obesity and diseases, thus reduces the quality of life. Researchers came up with one of the solutions that physical activity (PA) can be performed together with lifestyles, and quoted walking is free (Sullivan & Lachman, 2017). Recently, there has been a shift in the focus of health prevention programs. As such, any individual who has a severe health issue would need a real discipline and commitment to alter the inactive lifestyle. To elucidate this, the promotion of especially moderate-vigorous physical activity (MVPA) intensity (e.g. brisk walking, jogging, cycling, dancing, sprinting, and swimming) must be done in an efficient way to diminish the difficulty and to enhance the quality of life.

The evolution of activity tracking technology starting from electric typewriters, which are used to record people's activities manually (BBC, 2017). Later, web platforms whereas individuals monitor their PA by entering data into the systems, mounting with social media site (Web 2.0) then individuals can upload photos, videos, and other multimedia types with the ability to share their activities, ideas and thoughts to other friends or people on the same network community. In the digital age, the arrival of eHealth delivers an alternative practice to a typical method by combining information and communication technology (ICT) including

computers, cellphones, tablets, mobile devices, social media (SM), and the Internet with healthcare to increase the quality of health practices (Baker et al., 2014; Oh et al., 2005). It is valid, there is a concern that research in eHealth would not keep up with the speed of technological development. Then, fitness and PA tracking technology that can assist people in monitoring and archiving PAs, including a wearable device, a smartphone app, and a web-based app are gaining popularity and enjoying the flourishing market. Wearables (Garmin, Samsun gear, Apple watch, and Fitbit), and apps (Runtastic, Strava, Runkeeper, and Endomondo) are the examples of Quantified Self. The latest technology, including smartphone apps (Middelweerd et al., 2014) wearable devices (Canhoto & Arp, 2017) and smart devices (Lazar et al., 2015) that aid people with automated tasks, for instance, logging data and uploading to servers for further usages.

PA tracking technology plays the important role in assisting and improving their health behaviors for examples tracking, monitoring, visualizing, and archiving PA. Even though the immense benefits from PA tracking technology many others failed to constantly use it in the long-term rather they try and intermittently use the technology. The continuance intention (CI) of information technology (IT) goods and services has intrigued researchers for decades in tackling the issue of long-term use (Bhattacherjee, 2001; Kim et al., 2007; Jin et al., 2007). Despite the increasing popularity of PA tracking technology, it is being challenged with the high rate of abandoning (Lazar et al., 2015). Therefore, the improvement in this situation can be accomplished from research focusing on the CI of physical activity tracking devices and applications (PATDA). Certainly, stakeholders, including health professionals, producers, and researchers can refer the study results to broaden their perspectives about the CI of PATDA.

1.2 Problem Background

Previous research studies addressed the continuance use of eHealth, for example, mHealth services (Akter et al., 2013), Mobile Wellness Application (MWA) (Yusof & Iahad, 2013), and smart-connected sports products (Song et al., 2017). Currently, there is still lacking research on the continuance usage of PATDA. Finding the real solution to identify the influential factors pertaining to the CI of a PATDA must be accomplished. A research study focused on PA phone application and behavior change tools admitted making long-term engagement of users is challenging (Karapanos, 2015). In relation to CI, many of the variables were extracted and derived from multiple sources (Touzani et al., 2017, Zhou et al., 2016, and Nabavi et al., 2016) including theories, frameworks, and models, which are for their specific purposes and contexts. Thus, there should be a research study that focuses on the CI of PATDA in order that this will contribute to the more understanding, and stakeholders can benefit from the study. Therefore, it is best to identify the variables that help to increase the knowledge of the CI of PATDA. The meaning is that research studies have to connect together what factors influence people to continue using PA tracking technology in order to plan and locate more resources in the right direction.

Persistence becomes a primary concern with continuing to use of Physical activity tracking technology (PATT) as self-monitoring is likely to fade away over time when people ending up with similar amounts of activity each day then PATT turns to an unnecessary thing (Karapanos, 2015). Clawson et al., (2015) contributed their study to the reason behind the abandon of the devices on a classified website. Many users left behind their devices sometime after six months and half of them reported no longer use the devices. In spite of the growing popular usage of PA tracking devices and adoption, there exists that an increasing concern with the technology would not capture long-term use. As such, the evidence can be found on craigslist.com posted by the previous owners (Lazar et al., 2015, Shih et al., 2015) using for a short time because this technology may not answer their needs or the usage is only to achieve their set goals and then abandoned them. Substantially, a huge number of users were not succeeding in prolonged use and half of those owners stop using PA trackers. Besides, 75% deserted their PA trackers within six months (Ledger & McCaffrey, 2014). A variety of downloadable applications available for easy use do not guarantee long-term use (Yusof & Iahad, 2013) in a mobile wellness context which specializes in obesity monitoring. For the reason, this research study will look for the solution to increase the prolonged utilization of PATDA.

There is the evidence from that the absence of a model that will be used to understand and predict the CI for PATDA from the systematic literature review, there appears to be the necessity of having an appropriate model. Based on a study conducted by Nabavi et al., (2016), the most-used model in IS continuance is ECM (Bhattacherjee, 2001) where it has been used in a variety of IS contexts such as mobile phone subscription, mobile banking, online banking, online shopping, and elearning. It seems there is a limitation of the model in covering and understanding other aspects, for example, network externalities and value-based factors. By assigning factors from these aspects, the knowledge of can be acquired thus it increases the understanding of these parts.

The understanding between technology and users' behaviors will bolster the way people use it to make a PATDA meaningful and suitable for an individual. In addition, ECM emerged in 2001 when there is non-existence of a newly eHealth concept and after two decades, ECM needs to be equipped with additional constructs to handle many innovations and changes in terms of technology, business and users' requirements. Apparently, the extension of NE would be favorable to increase and broaden the understanding of the CI. NE (Katz & Shapiro, 1985) and prior research studies have reported NE has a positive influence on both enjoyment and usefulness (Gao & Bai, 2014; Zhou et al., 2015). Touzania et al., (2017) implies that valuebased factors have the degree of contribution to increase the continuance usage level. Li et al., (2013) analyzed the CI of a social network game and reported these valuebased factors having the degree of influence to the CI. The combination of these models and factors which formed a conceptual model can be used to predict and understand the CI of PATDA and this expands the body of knowledge. The model is proposed to fill up the missing piece of the previous IS continuance model (Bhattacherjee, 2011) by integrating NE and value factors to cover more on other perspectives.

IS continuance research was identified from previous studies as implementation, incorporation, and routinization (Zmud, 1982; Kwon & Zmud 1987; Cooper & Zmud 1990). In addition, the high cost of achieving new users is five times or 80% more than retaining the old users, which promotes the attention for research (Bhattacherjee, 2001). The initial use and acceptance of IT products or

services triggered much of interest for research in IS success, on the other hand, the continuous long-term use poses a bigger challenge. This is the preferred solution rather than the first adoption due to IS continuance actually leads to project success (Bhattacherjee, 2001; Akter et al., 2013). In other words, an IS project can be classified as successful; it needs to show a significant number of IT product or service users have moved from the initial adoption by using IT technology a continuous and long-term basis. There exists that the evidence pointed out the determinants of the dependent variable in adoption and continuance consisted of different factors (Limayem et al., 2007). Consciously, it sounds more difficult in practice than in the reality to gain success in the sustainable long-term use of IT products and services (Limayem et al., 2007).

From the review of a similar context, it appears research studies asserted that users faced with difficulty in embracing the technology for long-term use; however, the situation would be in reverse as they switched back to their old habits (Yusof & Iahad, (2012). There exists that a bunch of technical problems causes a halt in longterm use. Research in this area is still immature, and a number of studies highlighted on the reliability and validity of measures (Lunney et al 2016). Users do not like to wear a PA tracking device as they feel uneasy, or they may not consent to use it as a stylish accessory (Mekky, 2014). Certainly, there is the absence of a proper solution to the continuance usage in PA tracking technology. This implicitly indicates that they will exit and desert the technology in later stages. Akter et al., (2013) affirmed that promoting mHealth services cannot just maximize and expand the accessibility or make low costs. Next, it happens to some individuals who IT tension results in isolation and in turn make them disconnected in the context of connected objects (Touzani et al., 2017). The limited knowledge of the post-adoption behaviors and repetitive use behaviors developed a level of concern to IS continuance research, as well as the emotional state of users from a variety of modern technologies.

Singapore has an effective healthcare system, along with the expenditure on healthcare is S\$7.6 billion, which is equal to 3.8% of the GDP in 2005 (Wong & Lee, 2008). On the other hand, Straitstimes, (2016) reported Singaporean workers appeared to be lacking PA, which is affected by stress as reported by a survey conducted by Willis Towers Watson, an advisory company. They were subjected to

stress (56%), lack of PA (52%), lack of sleep (32%), and obesity (24%). In addition, this indicates that lacking PA has a strong correlation with stress and obesity among them. In response, Singapore's government invested heavily in the wellness of their people as seen in the promotion of health promotion board (HPB), a Singapore government unit has come up with a step challenge program and many events.

1.3 Problem statement and research questions

One of the main interests is that eHealth research would lag behind the fast pace of ICT development (Baker et al., 2014). There is still a concern that the technology may not make longstanding use that has been addressed. In addition, studies focused on the adoption of PA tracking technology and mHealth are in surplus however, prior research addressed no concern with the CI of a PATDA (e.g. Al-Debei et al., 2013; Zhou, 2013; Song et al., 2017; Cho et al., 2014; Canhoto & Arp, 2017; Lunney et al., 2016). In order to reduce the time and effort of inputs in full production and avoiding pitfalls, the measures of importance and performance have to be empirically measured. Obviously, these are the identified gaps that need to be filled to improve the situation and to build up the knowledge in this specific area for the purposes of use in research and other solutions.

This study started with a research question is "How to understand users' behaviors regarding the continuance usage intention of physical activity tracking devices or apps (PATDA)?" In order to tackle this, the research question is fragmented into 3 smaller questions. They are described below:

- 1. What are the factors that influence the continuance usage intention of a PATDA?
- 2. What is the appropriate model that explains the continuance usage intention of a PATDA?
- 3. How to evaluate the proposed model of the continuance usage intention of a PATDA?

1.4 Research objectives

The objectives of this study, which are corresponding to the sub research questions are as follows:

- 1. To identify the important factors that influence a user's intention to continue using a PATDA.
- 2. To propose a model of continuance use intention of a PATDA.
- 3. To evaluate and assess the model for the continuance use of a PATDA.

1.5 Research Scope

According to the research questions and objectives, the directional intention of the study focus is the users' CI. This study focuses on only for PA tracking for health preventive reasons. Besides, this study has no intention to resolve technical and engineering issues, for instance, testing algorithms to improve accuracy and establishing a new method to measure reliability and validity.

This study would target potential PATDA users in Singapore's environment, including the ages between 21 and 60. This is the working-age range, thus their mental and physical are shaped by the determination to maintain health. These are the ranges that Gao et al., (2015) reported that they were two groups of people in the US who use this type of technology are the young people and older people. The respondents are Singaporean who have experience using a PATDA. The intention of this research study is to understand and predict CI from other dimensions.

REFERENCES

- Adams, D. A., Nelson, R. R., & Todd, P. A. (1992). Perceived usefulness, ease of use, and usage of information technology: A replication. MIS quarterly, 227-247.
- Ainsworth, B., & Buchholz, S. W. (2017). How to Assess Physical Activity in Clinical Practice and for Scholarly Work. The Journal for Nurse Practitioners, 13(1), 14-20.
- Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. In Action control (pp. 11-39). Springer Berlin Heidelberg.
- Ajzen, I. (2011). The theory of planned behaviour: reactions and reflections.
- Ajzen, I., & Fishbein, M. (1988). Theory of reasoned action-Theory of planned behavior. University of South Florida.
- Akter, S., Ray, P., & D'Ambra, J. (2013). Continuance of mHealth services at the bottom of the pyramid: the roles of service quality and trust. Electronic Markets, 23(1), 29-47.
- Al-Debei, M. M., Al-Lozi, E., & Papazafeiropoulou, A. (2013). Why people keep coming back to Facebook: Explaining and predicting continuance participation from an extended theory of planned behaviour perspective. Decision Support Systems, 55(1), 43-54.
- Allen, K., & Morey, M. C. (2010). Physical activity and adherence. In Improving Patient Treatment Adherence (pp. 9-38). Springer New York.
- Al-Lozi, E. M., & Al-Debei, M. M. (2012). A framework of value exchange and role playing in Web 2.0 websites. arXiv preprint arXiv:1208.0891.
- Al-Maghrabi, T., Dennis, C., & Vaux Halliday, S. (2011). Antecedents of continuance intentions towards e-shopping: the case of Saudi Arabia. Journal of Enterprise Information Management, 24(1), 85-111.
- Andridge, R. R., & Little, R. J. (2010). A review of hot deck imputation for survey non-response. International Statistical Review, 78(1), 40-64.
- Asimakopoulos, S., Asimakopoulos, G., & Spillers, F. (2017, January). Motivation and user engagement in fitness tracking: Heuristics for mobile healthcare

wearables. In Informatics (Vol. 4, No. 1, p. 5). Multidisciplinary Digital Publishing Institute.

- Atkinson, N. L., & Gold, R. S. (2002). The promise and challenge of eHealth interventions. American Journal of Health Behavior, 26(6), 494-503.
- Baker, K., Pember, S., Zhang, X., & Bissell, K. (2016). COUNTING STEPS? HOW'S THAT WORKING FOR YOU? ASSESSING THE EFFECTS OF TRACKING MONITORS AND SOCIAL CONTEXTS ON FITNESS GOALS. Journal of Fitness Research, 5(3).
- Baker, T. B., Gustafson, D. H., & Shah, D. (2014). How can research keep up with eHealth? Ten strategies for increasing the timeliness and usefulness of eHealth research. Journal of Medical Internet Research, 16(2).
- Bandura, A. (1989). Human agency in social cognitive theory. American psychologist, 44(9), 1175.
- Barber, J. S. (2011). The Theory of Planned Behaviour: considering drives, proximity and dynamics. Vienna yearbook of population research/Vienna Institute of Demography, Austrian Academy of Sciences, 9, 31.
- Barker, C., Pistrang, N., & Elliott, R. (2005). Self-Report Methods. Research Methods in Clinical Psychology: An Introduction for Students and Practitioners, Second Edition, 94-118.
- BBC, (2017). Every Step You Take. Retrieved December 1, 2017, from http://www.bbc.co.uk/programmes/b092fj9b
- Beck, C. T., & Gable, R. K. (2001). Ensuring content validity: An illustration of the process. Journal of nursing measurement, 9(2), 201-215.
- Becker, J. M., Klein, K., & Wetzels, M. (2012). Hierarchical latent variable models in PLS-SEM: guidelines for using reflective-formative type models. Long Range Planning, 45(5), 359-394.
- Becker, M., Kolbeck, A., Matt, C., & Hess, T. (2017). Understanding the Continuous Use of Fitness Trackers: A Thematic Analysis.
- Belk, R. W. (1988). Possessions and the extended self. Journal of Consumer Research, 15(2), 139-168.
- Berkman, L. F., Glass, T., Brissette, I., & Seeman, T. E. (2000). From social integration to health: Durkheim in the new millennium. Social Science & Medicine, 51(6), 843-857.

- Bhattacherjee, A. (2001). Understanding information systems continuance: an expectation-confirmation model. MIS quarterly, 351-370.
- Bhattacherjee, A., & Barfar, A. (2011). Information technology continuance research: current state and future directions. Asia Pacific Journal of Information Systems, 21(2), 1-18.
- Biswas, A., Oh, P. I., Faulkner, G. E., Bajaj, R. R., Silver, M. A., Mitchell, M. S., & Alter, D. A. (2015). Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adultsa systematic review and meta-analysissedentary time and disease incidence, mortality, and hospitalization. Annals of Internal Medicine, 162(2), 123-132.
- Black, K. (2009). Business statistics: Contemporary decision making. John Wiley & Sons.
- Bond, C. (2017). Healthcare utopia or dystopia: empowering improved selfmanagement may be a better role for technology. Journal of Innovation in Health Informatics.
- Borg, W. R., & Gall, M. D. (1983). Instructor's Manual for Educational Research: To Accompany Educational Research: an Introduction. Longman.
- Bort-Roig, J., Gilson, N. D., Puig-Ribera, A., Contreras, R. S., & Trost, S. G. (2014). Measuring and influencing physical activity with smartphone technology: a systematic review. Sports Medicine, 44(5), 671-686.
- Bosworth, H. (Ed.). (2010). Improving patient treatment adherence: A clinician's guide. Springer Science & Business Media.
- Bowden, A., Fox-Rushby, J. A., Nyandieka, L., & Wanjau, J. (2002). Methods for pre-testing and piloting survey questions: illustrations from the KENQOL survey of health-related quality of life. Health Policy and Planning, 17(3), 322-330.
- Brandao, A. R. D. (2016). Factors Influencing Long-Term Adoption of Wearable Activity Trackers. Rochester Institute of Technology.
- Brereton, P., Kitchenham, B. A., Budgen, D., Turner, M., & Khalil, M. (2007). Lessons from applying the systematic literature review process within the software engineering domain. Journal of Systems and Software, 80(4), 571-583.

- Buchwald, A., Letner, A., Urbach, N., & von Entress-Fuersteneck, M. (2015). Towards explaining the use of self-tracking devices: Conceptual development of a continuance and discontinuance model.
- Burns, N., & Grove, S. K. (1993). The practice of nursing research. Conduct, critique & utilization, 4.
- Burrell, G., & Morgan, G. (1979). Sociology paradigm and organisational analysis: Elements of the Sociology of Corporate Life.
- Cadmus-Bertram, L. (2017). Using fitness trackers in clinical research: what nurse practitioners need to know. The Journal for Nurse Practitioners, 13(1), 34-40.
- Cai, L., Sallinen, T., & Lennstrand, B. (2017). Millennial Fitness App Usage in Shanghai.
- Canhoto, A. I., & Arp, S. (2017). Exploring the factors that support adoption and sustained use of health and fitness wearables. Journal of Marketing Management, 33(1-2), 32-60.
- Cao, H., Jiang, J., Oh, L. B., Li, H., Liao, X., & Chen, Z. (2013). A Maslow's hierarchy of needs analysis of social networking services continuance. Journal of Service Management, 24(2), 170-190.
- Car, J., Tan, W. S., Huang, Z., Sloot, P., & Franklin, B. D. (2017). eHealth in the future of medications management: personalization, monitoring and adherence. BMC Medicine, 15(1), 73.
- Caspersen, C. J., Powell, K. E., & Christenson, G. M. (1985). Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Reports, 100(2), 126.
- Cerit, Y. (2009). The effects of servant leadership behaviours of school principals on teachers' job satisfaction. Educational Management Administration & Leadership, 37(5), 600-623.
- Chalomba, N. (2016). Effectiveness of branded mobile apps on brand loyalty among generation Y consumers (Doctoral dissertation).
- Chandon, P., Wansink, B., & Laurent, G. (2000). A benefit congruency framework of sales promotion effectiveness. Journal of Marketing, 64(4), 65-81.
- Chang, I. C., Liu, C. C., & Chen, K. (2014). The effects of hedonic/utilitarian expectations and social influence on continuance intention to play online games. Internet Research, 24(1), 21-45.

- Chang, Y. P., & Zhu, D. H. (2012). The role of perceived social capital and flow experience in building users' continuance intention to social networking sites in China. Computers in Human Behavior, 28(3), 995-1001.
- Chiu, C. M., Cheng, H. L., Huang, H. Y., & Chen, C. F. (2013). Exploring individuals' subjective well-being and loyalty towards social network sites from the perspective of network externalities: The Facebook case. International Journal of Information Management, 33(3), 539-552.
- Chiu, C. M., Chiu, C. S., & Chang, H. C. (2007). Examining the integrated influence of fairness and quality on learners' satisfaction and Web-based learning continuance intention. Information Systems Journal, 17(3), 271-287.
- Chiu, C. M., Hsu, M. H., Sun, S. Y., Lin, T. C., & Sun, P. C. (2005). Usability, quality, value and e-learning continuance decisions. Computers & Education, 45(4), 399-416.
- Cho, J., Park, D., & Lee, H. E. (2014). Cognitive factors of using health apps: systematic analysis of relationships among health consciousness, health information orientation, eHealth literacy, and health app use efficacy. Journal of Medical Internet Research, 16(5).
- Cho, J., Quinlan, M. M., Park, D., & Noh, G. Y. (2014). Determinants of adoption of smartphone health apps among college students. American Journal of Health Behavior, 38(6), 860-870.
- Chuah, S. H. W., Rauschnabel, P. A., Krey, N., Nguyen, B., Ramayah, T., & Lade, S. (2016). Wearable technologies: The role of usefulness and visibility in smartwatch adoption. Computers in Human Behavior, 65, 276-284.
- Chun, H., Lee, H., & Kim, D. (2012). The integrated model of smartphone adoption: Hedonic and utilitarian value perceptions of smartphones among Korean college students. Cyberpsychology, Behavior, and Social Networking, 15(9), 473-479.
- Chung, A. E., Skinner, A. C., Hasty, S. E., & Perrin, E. M. (2017). Tweeting to health: a novel mHealth intervention using Fitbits and Twitter to foster healthy lifestyles. Clinical Pediatrics, 56(1), 26-32.
- Clawson, A., Koehler, C., Tanenbaum, J., & Nguyen, D. H. (2015, September). Why we use and abandon smart devices. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing (pp. 635-646). ACM.

- Clawson, J., Pater, J. A., Miller, A. D., Mynatt, E. D., & Mamykina, L. (2015, September). No longer wearing: investigating the abandonment of personal health-tracking technologies on craigslist. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing (pp. 647-658). ACM.
- Collins, D. (2003). Pretesting survey instruments: an overview of cognitive methods. Quality of Life Research, 12(3), 229-238.
- Cooper, R. B., & Zmud, R. W. (1990). Information technology implementation research: a technological diffusion approach. Management Science, 36(2), 123-139.
- Coorevits, L., & Coenen, T. (2016). The rise and fall of wearable fitness trackers. In Academy of Management.
- Creswell, J. W., & Creswell, J. D. (2017). Research design: Qualitative, quantitative, and mixed methods approaches. Sage publications.
- Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. psychometrika, 16(3), 297-334.
- Csikszentmihalyi, M., & Csikszentmihalyi, I. (1975). Beyond boredom and anxiety (Vol. 721). San Francisco: Jossey-Bass.
- Dano, R. (2015). Health and Fitness Wearables: Affecting Healthy Behaviors, Moving Beyond Fashion.
- Davies, N. B., Krebs, J. R., & West, S. A. (2012). An introduction to behavioural ecology. John Wiley & Sons.
- Davis, F. D. (1993). User acceptance of information technology: system characteristics, user perceptions and behavioral impacts. International journal of Man-Machine Studies, 38(3), 475-487.
- Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management Science, 35(8), 982-1003.
- De Guinea, A. O., & Markus, M. L. (2009). Why break the habit of a lifetime? Rethinking the roles of intention, habit, and emotion in continuing information technology use. Mis Quarterly, 433-444.
- Deci, E. L., & Ryan, R. M. (1985). The general causality orientations scale: Selfdetermination in personality. Journal of Research in Personality, 19(2), 109-134.

- DeLone, W. H., & McLean, E. R. (1992). Information systems success: The quest for the dependent variable. Information Systems Research, 3(1), 60-95.
- Denecke, K. (2016). Integrating Social Media and Mobile Sensor Data for Clinical Decision Support: Concept and Requirements. In Nursing Informatics (pp. 562-566).
- Deng, Z., Mo, X., & Liu, S. (2014). Comparison of the middle-aged and older users' adoption of mobile health services in China. International Journal of Medical Informatics, 83(3), 210-224.
- Dewing, M. (2010). Social media: An introduction (Vol. 1). Ottawa: Library of Parliament.
- Diem, K. G. (2002). A step-by-step guide to developing effective questionnaires and survey procedures for program evaluation and research. New Brunswick, NJ: Rutgers NJAES Cooperative Extension.
- Dijkstra, T. K., & Henseler, J. (2015). Consistent partial least squares path modeling. MIS quarterly= Management Information Systems Quarterly, 39(2), 297-316.
- Dillman, D. A. (2000). Mail and internet surveys: The total design method. New York: Wiley.
- Doll, W. J., Deng, X., RAGHUNATHAN, T. S., Torkzadeh, G., & Xia, W. (2004). The meaning and measurement of user satisfaction: A multigroup invariance analysis of the end-user computing satisfaction instrument. Journal of Management Information Systems, 21(1), 227-262.
- Dwan, K., Altman, D. G., Arnaiz, J. A., Bloom, J., Chan, A. W., Cronin, E., ... & Ghersi, D. (2008). Systematic review of the empirical evidence of study publication bias and outcome reporting bias. PloS one, 3(8), e3081.
- Ein-Dor, P., & Segev, E. (1978). Organizational context and the success of management information systems. Management Science, 24(10), 1064-1077.
- Ekkekakis, P., & Lind, E. (2006). Exercise does not feel the same when you are overweight: the impact of self-selected and imposed intensity on affect and exertion. International Journal of Obesity, 30(4), 652-660.
- Ellison, N. B., Steinfield, C., & Lampe, C. (2007). The benefits of Facebook "friends:" Social capital and college students' use of online social network sites. Journal of Computer-Mediated Communication, 12(4), 1143-1168.

- Evers, K. E., Prochaska, J. M., Prochaska, J. O., Driskell, M. M., Cummins, C. O., & Velicer, W. F. (2003). Strengths and weaknesses of health behavior change programs on the Internet. Journal of Health Psychology, 8(1), 63-70.
- Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175-191.
- Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention and behavior: An introduction to Theory and Research.
- Fitbit. (2017, May 15). Fitbit Data Reveals List of Fittest Countries and US Cities. Retrieved December 1, 2017, from https://investor.fitbit.com/press/pressreleases/press-release-details/2017/Fitbit-Data-Reveals-List-of-Fittest-Countries-and-US-Cities/default.aspx
- Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 39-50.
- Forsythe, S., Liu, C., Shannon, D., & Gardner, L. C. (2006). Development of a scale to measure the perceived benefits and risks of online shopping. Journal of Interactive Marketing, 20(2), 55-75.
- Fowler Jr, F. J. (2013). Survey research methods. Sage Publications.
- Gao, L., & Bai, X. (2014). An empirical study on continuance intention of mobile social networking services: Integrating the IS success model, network externalities and flow theory. Asia Pacific Journal of Marketing and Logistics, 26(2), 168-189.
- Gao, Y., Li, H., & Luo, Y. (2015). An empirical study of wearable technology acceptance in healthcare. Industrial Management & Data Systems, 115(9), 1704-1723.
- Garrity, E. J., & Sanders, G. L. (Eds.). (1998). Information systems success measurement. Igi Global.
- Geisser, S. (1974). A predictive approach to the random effect model. Biometrika, 61(1), 101-107.
- Geladi, P., & Kowalski, B. R. (1986). Partial least-squares regression: a tutorial. Analytica Chimica acta, 185, 1-17.
- George, D., & Mallery, P. (2016). IBM SPSS statistics 23 step by step: A simple guide and reference. Routledge.

- Gilmore, J. N. (2016). Everywear: The quantified self and wearable fitness technologies. New Media & Society, 18(11), 2524-2539.
- Godinho de Matos, M., Ferreira, P., & Krackhardt, D. (2014). Peer influence in the diffusion of the iPhone 3G over a large social network.
- Goran, M. I., Kaskoun, M., & Johnson, R. (1994). Determinants of resting energy expenditure in young children. The Journal of Pediatrics, 125(3), 362-367.
- Gouveia, R., Karapanos, E., & Hassenzahl, M. (2015, September). How do we engage with activity trackers?: a longitudinal study of Habito. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing (pp. 1305-1316). ACM.
- Gravetter, F. J., & Wallnau, L. B. (2016). Statistics for the behavioral sciences. Cengage Learning.
- Guba, E. G., & Lincoln, Y. S. (1981). Effective evaluation: Improving the usefulness of evaluation results through responsive and naturalistic approaches. Jossey-Bass.
- Gupta, S., Jain, D. C., & Sawhney, M. S. (1999). Modeling the evolution of markets with indirect network externalities: An application to digital television. Marketing Science, 18(3), 396-416.
- Haapala, I., Barengo, N. C., Biggs, S., Surakka, L., & Manninen, P. (2009). Weight loss by mobile phone: a 1-year effectiveness study. Public Health Nutrition, 12(12), 2382-2391.
- Hagger, M. S., & Chatzisarantis, N. L. (2009). Integrating the theory of planned behaviour and self-determination theory in health behaviour: a meta-analysis. British Journal of Health Psychology, 14(2), 275-302.
- Hair Jr, J. F., Hult, G. T. M., Ringle, C., & Sarstedt, M. (2016). A primer on partial least squares structural equation modeling (PLS-SEM). Sage Publications.
- Hair, J. F., Hult, G. T. M., Ringle, C., & Sarstedt, M. (2014). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM).
- Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing Theory and Practice, 19(2), 139-152.
- Hair, J. F., Ringle, C. M., & Sarstedt, M. (2013). Partial least squares structural equation modeling: Rigorous applications, better results and higher acceptance.

- Hallebone, E., & Priest, J. (2008). Business and management research: paradigms and practices. Palgrave Macmillan.
- Hallowell, R. (1996). The relationships of customer satisfaction, customer loyalty, and profitability: an empirical study. International Journal of Service Industry Management, 7(4), 27-42.
- Hamilton, S., & Chervany, N. L. (1981). Evaluating information system effectiveness-Part I: Comparing evaluation approaches. MIS quarterly, 55-69.
- Hare, R. D. (2003). The psychopathy checklist-Revised. Toronto, ON.
- Haynes, S. N., Richard, D., & Kubany, E. S. (1995). Content validity in psychological assessment: A functional approach to concepts and methods. Psychological Assessment, 7(3), 238.
- Henseler, J. (2007). A new and simple approach to multi-group analysis in partial least squares path modeling.
- Henseler, J., Hubona, G., & Ray, P. A. (2016). Using PLS path modeling in new technology research: updated guidelines. Industrial Management & Data Systems, 116(1), 2-20.
- Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115-135.
- Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science in information systems research. MIS Q 28 (1): 75–105.
- Hickey, A. M., & Freedson, P. S. (2016). Utility of consumer physical activity trackers as an intervention tool in cardiovascular disease prevention and treatment. Progress in Cardiovascular Diseases, 58(6), 613-619.
- Hill, R. (1998). What sample size is "enough" in internet survey research. Interpersonal Computing and Technology: An electronic journal for the 21st century, 6(3-4), 1-12.
- Höck, C., Ringle, C. M., & Sarstedt, M. (2010). Management of multi-purpose stadiums: Importance and performance measurement of service interfaces. International Journal of Services Technology and Management, 14(2-3), 188-207.
- Holbrook, M. B., & Hirschman, E. C. (1982). The experiential aspects of consumption: Consumer fantasies, feelings, and fun. Journal of Consumer Research, 9(2), 132-140.

- Hong, H., & Lee, S. G. (2005). Effect of apparel merchandise on experienced emotion for apparel shopping and attitude toward the internet store. Journal of the Korean Society of Clothing and Textiles, 29(3_4), 478-490.
- Hong, J. C., Lin, P. H., & Hsieh, P. C. (2017). The effect of consumer innovativeness on perceived value and continuance intention to use smartwatch. Computers in Human Behavior, 67, 264-272.
- Hong, S., Thong, J. Y., & Tam, K. Y. (2006). Understanding continued information technology usage behavior: A comparison of three models in the context of mobile internet. Decision Support Systems, 42(3), 1819-1834.
- Hossain, M. A., & Quaddus, M. (2012). Expectation–confirmation theory in information system research: A review and analysis. In Information Systems Theory (pp. 441-469). Springer New York.
- Hoy, M. B. (2016). Personal activity trackers and the quantified self. Medical Reference Services Quarterly, 35(1), 94-100.
- Hsiao, C. H., & Tang, K. Y. (2015). Examining a model of mobile healthcare technology acceptance by the elderly in Taiwan. Journal of Global Information Technology Management, 18(4), 292-311.
- Hsu, C. L., & Lin, J. C. C. (2015). What drives purchase intention for paid mobile apps?–An expectation confirmation model with perceived value. Electronic Commerce Research and Applications, 14(1), 46-57.
- Hsu, M. H., & Chiu, C. M. (2004). Internet self-efficacy and electronic service acceptance. Decision Support Systems, 38(3), 369-381.
- Hsu, M. H., Yen, C. H., Chiu, C. M., & Chang, C. M. (2006). A longitudinal investigation of continued online shopping behavior: An extension of the theory of planned behavior. International Journal of Human-Computer Studies, 64(9), 889-904.
- Hurling, R., Fairley, B. W., & Dias, M. B. (2006). Internet-based exercise intervention systems: Are more interactive designs better?. Psychology and Health, 21(6), 757-772.
- Isaac, S., & Michael, W. B. (1995). Handbook in research and evaluation: A collection of principles, methods, and strategies useful in the planning, design, and evaluation of studies in education and the behavioral sciences. EdiTS Publishers.

- Ives, B., Olson, M. H., & Baroudi, J. J. (1983). The measurement of user information satisfaction. Communications of the ACM, 26(10), 785-793.
- Jarrahi, M. H., Gafinowitz, N., & Shin, G. (2017). Activity trackers, prior motivation, and perceived informational and motivational affordances. Personal and Ubiquitous Computing, 1-16.
- Jesson, J., Matheson, L., & Lacey, F. M. (2011). Doing your literature review: Traditional and systematic techniques. Sage.
- Jiang, J. J., Klein, G., Wu, S. P., & Liang, T. P. (2009). The relation of requirements uncertainty and stakeholder perception gaps to project management performance. Journal of Systems and Software, 82(5), 801-808.
- Jin, X. L., Cheung, C. M., Lee, M. K., & Chen, H. P. (2007, July). Factors affecting users' intention to continue using virtual community. In E-Commerce Technology and the 4th IEEE International Conference on Enterprise Computing, E-Commerce, and E-Services, 2007. CEC/EEE 2007. The 9th IEEE International Conference on (pp. 239-246). IEEE.
- Johanson, G. A., & Brooks, G. P. (2010). Initial scale development: sample size for pilot studies. Educational and Psychological Measurement, 70(3), 394-400.
- Joseph, R. P., Pekmezi, D. W., Lewis, T., Dutton, G., Turner, L. W., & Durant, N. H. (2013). Physical activity and social cognitive theory outcomes of an internetenhanced physical activity intervention for African American female college students. Journal of Health Disparities Research and Practice, 6(2), 1.
- Jusob, F. R., George, C., & Mapp, G. (2016, September). Enforcing trust as a means to improve adoption of connected wearable technologies. In Intelligent Environments (IE), 2016 12th International Conference on (pp. 254-257). IEEE.
- Kaplan, A. M., & Haenlein, M. (2010). Users of the world, unite! The challenges and opportunities of Social Media. Business Horizons, 53(1), 59-68.
- Karapanos, E. (2015). Sustaining user engagement with behavior-change tools. interactions, 22(4), 48-52.
- Katz, M. L., & Shapiro, C. (1985). Network externalities, competition, and compatibility. The American Economic Review, 75(3), 424-440.
- Khalifa, M., & Liu, V. (2004). The state of research on information system satisfaction. JITTA: Journal of Information Technology Theory and Application, 5(4), 37.

- Kim, B., & Han, I. (2011). The role of utilitarian and hedonic values and their antecedents in a mobile data service environment. Expert Systems with Applications, 38(3), 2311-2318.
- Kim, H. W., Chan, H. C., & Gupta, S. (2007). Value-based adoption of mobile internet: an empirical investigation. Decision Support Systems, 43(1), 111-126.
- Kim, J. (2014). Analysis of health consumers' behavior using self-tracker for activity, sleep, and diet. TELEMEDICINE and e-HEALTH, 20(6), 552-558.
- Kim, K. J., & Sundar, S. S. (2014). Does screen size matter for smartphones? Utilitarian and hedonic effects of screen size on smartphone adoption. Cyberpsychology, Behavior, and Social Networking, 17(7), 466-473.
- Kim, S. H. (2008). Moderating effects of job relevance and experience on mobile wireless technology acceptance: Adoption of a smartphone by individuals. Information & Management, 45(6), 387-393.
- Kim, S. S., & Malhotra, N. K. (2005). A longitudinal model of continued IS use: An integrative view of four mechanisms underlying postadoption phenomena. Management Science, 51(5), 741-755.
- Kim, S., & Garrison, G. (2009). Investigating mobile wireless technology adoption: An extension of the technology acceptance model. Information Systems Frontiers, 11(3), 323-333.
- Kline, R. B. (1998). Software review: Software programs for structural equation modeling: Amos, EQS, and LISREL. Journal of psychoeducational Assessment, 16(4), 343-364.
- Kline, R. B. (2015). Principles and practice of structural equation modeling. Guilford Publications.
- Kothari, C. R. (2004). Research methodology: Methods and techniques. New Age International.
- Kotler, P., (2000), Marketing Management. (10th Edition), New Jersey, Prentice-Hall.
- Koufaris, M. (2002). Applying the technology acceptance model and flow theory to online consumer behavior. Information Systems Research, 13(2), 205-223.
- Krippendorff, K., & Bock, M. A. (2009). The content analysis reader. Sage.

- Kwon, T. H., & Zmud, R. W. (1987, April). Unifying the fragmented models of information systems implementation. In Critical issues in information systems research (pp. 227-251). John Wiley & Sons, Inc..
- Lai, I. K. W., & Shi, G. (2015). The impact of privacy concerns on the intention for continued use of an integrated mobile instant messaging and social network platform. International Journal of Mobile Communications, 13(6), 641-669.
- Landry, B. W., & Driscoll, S. W. (2012). Physical activity in children and adolescents. PM&R, 4(11), 826-832.
- Lazar, A., Koehler, C., Tanenbaum, J., & Nguyen, D. H. (2015, September). Why we use and abandon smart devices. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing (pp. 635-646). ACM.
- Leavy, P. (2017). Research design: Quantitative, qualitative, mixed methods, artsbased, and community-based participatory research approaches. Guilford Publications.
- Ledger, D., & McCaffrey, D. (2014). Inside wearables: How the science of human behavior change offers the secret to long-term engagement. Endeavour Partners, 200(93), 1.
- Lee, I. M., & Paffenbarger Jr, R. S. (2000). Associations of light, moderate, and vigorous intensity physical activity with longevity: the Harvard Alumni Health Study. American Journal of Epidemiology, 151(3), 293-299.
- Leedy, P. D., & Ormrod, J. E. (2005). Practical research. Pearson Custom.
- Levy, Y., & Ellis, T. J. (2006). A systems approach to conduct an effective literature review in support of information systems research. Informing Science, 9.
- Lewis, Z. H., Lyons, E. J., Jarvis, J. M., & Baillargeon, J. (2015). Using an electronic activity monitor system as an intervention modality: a systematic review. BMC Public Health, 15(1), 585.
- Li, H., Liu, Y., Xu, X., & Heikkila, J. (2013). Please stay with me! An empirical investigation on hedonic IS continuance model for social network games.
- Liebowitz, S. J., & Margolis, S. E. (1994). Network externality: An uncommon tragedy. Journal of economic perspectives, 8(2), 133-150.
- Lim, K. H., & Benbasat, I. (2000). The effect of multimedia on perceived equivocality and perceived usefulness of information systems. MIS quarterly, 449-471.

- Lim, S., Xue, L., Yen, C. C., Chang, L., Chan, H. C., Tai, B. C., ... & Choolani, M. (2011). A study on Singaporean women's acceptance of using mobile phones to seek health information. International Journal of Medical Informatics, 80(12), e189-e202.
- Limayem, M., & Cheung, C. M. (2008). Understanding information systems continuance: The case of Internet-based learning technologies. Information & Management, 45(4), 227-232.
- Limayem, M., Hirt, S. G., & Cheung, C. M. (2007). How habit limits the predictive power of intention: The case of information systems continuance. MIS quarterly, 705-737.
- Lin, C. P., & Bhattacherjee, A. (2008). Elucidating individual intention to use interactive information technologies: The role of network externalities. International Journal of Electronic Commerce, 13(1), 85-108.
- Lin, K. Y., & Lu, H. P. (2011). Why people use social networking sites: An empirical study integrating network externalities and motivation theory. Computers in Human Behavior, 27(3), 1152-1161.
- Lin, X., Featherman, M., & Sarker, S. (2017). Understanding factors affecting users' social networking site continuance: A gender difference perspective. Information & Management, 54(3), 383-395.f
- Literary Devices. (2015). Symbolism Examples and Definition of Symbolism. Retrieved December 28, 2017, from https://literarydevices.net/symbolism/
- Lomborg, S., & Frandsen, K. (2016). Self-tracking as communication. Information, Communication & Society, 19(7), 1015-1027.
- Lunney, A., Cunningham, N. R., & Eastin, M. S. (2016). Wearable fitness technology: A structural investigation into acceptance and perceived fitness outcomes. Computers in Human Behavior, 65, 114-120.
- Lupton, D. (2014). Self-tracking modes: Reflexive self-monitoring and data practices.
- Lyytinen, K., & Hirschheim, R. (1988, May). Information systems failures—a survey and classification of the empirical literature. In Oxford Surveys in Information Technology (pp. 257-309). Oxford University Press, Inc.
- Maddison, R., Pfaeffli, L., Stewart, R., Kerr, A., Jiang, Y., Rawstorn, J., ... & Whittaker, R. (2014). The HEART mobile phone trial: the partial mediating

effects of self-efficacy on physical activity among cardiac patients. Frontiers in Public Health, 2, 56.

- Malhotra, Y., & Galletta, D. F. (1999, January). Extending the technology acceptance model to account for social influence: Theoretical bases and empirical validation. In Systems sciences, 1999. HICSS-32. Proceedings of the 32nd annual Hawaii International Conference on (pp. 14-pp). IEEE.
- Mallett, R., Hagen-Zanker, J., Slater, R., & Duvendack, M. (2012). The benefits and challenges of using systematic reviews in international development research. Journal of Development Effectiveness, 4(3), 445-455.
- Mäntymäki, M., & Islam, A. N. (2014). Social virtual world continuance among teens: Uncovering the moderating role of perceived aggregate network exposure. Behaviour & Information Technology, 33(5), 536-547.
- Mäntymäki, M., & Riemer, K. (2014). Digital natives in social virtual worlds: A multi-method study of gratifications and social influences in Habbo Hotel. International Journal of Information Management, 34(2), 210-220.
- Marakhimov, A., & Joo, J. (2017). Consumer adaptation and infusion of wearable devices for healthcare. Computers in Human Behavior, 76, 135-148.
- Marcus, B. H., Dunsiger, S. I., Pekmezi, D. W., Larsen, B. A., Bock, B. C., Gans, K. M., ... & Tilkemeier, P. (2013). The Seamos Saludables study: A randomized controlled physical activity trial of Latinas. American Journal of Preventive Medicine, 45(5), 598-605.
- Mark, A. E., & Janssen, I. (2008). Relationship between screen time and metabolic syndrome in adolescents. Journal of Public Health, 30(2), 153-160.
- McGloin, R., Embacher, K., & Atkin, D. (2017). Health and Exercise-related Predictors of Distance-tracking App Usage. Health Behavior and Policy Review, 4(4), 306-317.
- McKinney, V., Yoon, K., & Zahedi, F. M. (2002). The measurement of webcustomer satisfaction: An expectation and disconfirmation approach. Information Systems Research, 13(3), 296-315.
- McKnight, T. L. (2007). Obesity management in family practice. Springer Science & Business Media.
- McNamara, B., Waddell, C., & Colvin, M. (1994). The institutionalization of the good death. Social Science & Medicine, 39(11), 1501-1508.

- Mekky, S. (2014, April). Wearable Computing and the Hype of Tracking Personal Activity. In Royal Institute of Technology's Student Interaction Design Research conference (SIDeR) Stockholm, Sweden (1-4). Google Scholar.
- Meyer, J., Schnauber, J., Heuten, W., Wienbergen, H., Hambrecht, R., Appelrath, H. J., & Boll, S. (2016, October). Exploring Longitudinal Use of Activity Trackers. In Healthcare Informatics (ICHI), 2016 IEEE International Conference on (pp. 198-206). IEEE.
- Meyers, L. S., Gamst, G., & Guarino, A. J. (2016). Applied multivariate research: Design and interpretation. Sage Publications.
- Meythaler, I. (2016). The adoption of wearable technology in Germany and the USA.
- Michaelis, J. R., Rupp, M. A., Kozachuk, J., Ho, B., Zapata-Ocampo, D., McConnell, D. S., & Smither, J. A. (2016, September). Describing the User Experience of Wearable Fitness Technology through Online Product Reviews. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 60, No. 1, pp. 1073-1077). Sage CA: Los Angeles, CA: SAGE Publications.
- Middelweerd, A., Mollee, J. S., van der Wal, C. N., Brug, J., & te Velde, S. J. (2014). Apps to promote physical activity among adults: a review and content analysis. International Journal of Behavioral Nutrition and Physical Activity, 11(1), 97.
- Mimouni-Chaabane, A., & Volle, P. (2010). Perceived benefits of loyalty programs: Scale development and implications for relational strategies. Journal of Business Research, 63(1), 32-37.
- Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., ... & Stewart, L. A. (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Systematic Reviews, 4(1), 1.
- Mosier, C. I. (1947). A critical examination of the concepts of face validity. Educational and Psychological Measurement, 7(2), 191-205.
- Muijs, D. (2011). Leadership and organisational performance: from research to prescription?. International Journal of Educational Management, 25(1), 45-60.

- Nabavi, A., Taghavi-Fard, M. T., Hanafizadeh, P., & Taghva, M. R. (2016). Information Technology Continuance Intention: A Systematic Literature Review. International Journal of E-Business Research (IJEBR), 12(1), 58-95.
- Namba, H., Yamada, Y., Ishida, M., Takase, H., & Kimura, M. (2015). Use of a Web-Based Physical Activity Record System to Analyze Behavior in a Large Population: Cross-Sectional Study. Journal of Medical Internet Research, 17(3).
- Narayanan, A. (2012). A review of eight software packages for structural equation modeling. The American Statistician, 66(2), 129-138.
- Nelson, E. C., Verhagen, T., & Noordzij, M. L. (2016). Health empowerment through activity trackers: An empirical smart wristband study. Computers in Human Behavior, 62, 364-374.
- Nevo, B. (1985). Face validity revisited. Journal of Educational Measurement, 22(4), 287-293.
- Nidhra, S., Yanamadala, M., Afzal, W., & Torkar, R. (2013). Knowledge transfer challenges and mitigation strategies in global software development—A systematic literature review and industrial validation. International Journal of Information Management, 33(2), 333-355.
- Nigg, C. R., Geller, K. S., Motl, R. W., Horwath, C. C., Wertin, K. K., & Dishman, R. K. (2011). A research agenda to examine the efficacy and relevance of the transtheoretical model for physical activity behavior. Psychology of Sport and Exercise, 12(1), 7-12.
- O'brien, T., Troutman-Jordan, M., Hathaway, D., Armstrong, S., & Moore, M. (2015). Acceptability of wristband activity trackers among community dwelling older adults. Geriatric Nursing, 36(2), S21-S25.
- Oghuma, A. P., Libaque-Saenz, C. F., Wong, S. F., & Chang, Y. (2016). An expectation-confirmation model of continuance intention to use mobile instant messaging. Telematics and Informatics, 33(1), 34-47.
- Oh, H., Rizo, C., Enkin, M., & Jadad, A. (2005). What is eHealth (3): a systematic review of published definitions. Journal of Medical Internet Research, 7(1).
- Olds, T., Tomkinson, G., Léger, L., & Cazorla, G. (2006). Worldwide variation in the performance of children and adolescents: an analysis of 109 studies of the 20-m shuttle run test in 37 countries. Journal of Sports Sciences, 24(10), 1025-1038.

- Oliver, R. L. (1980). A cognitive model of the antecedents and consequences of satisfaction decisions. Journal of Marketing Research, 460-469.
- Oliver, R. L. (1993). Cognitive, affective, and attribute bases of the satisfaction response. Journal of consumer research, 20(3), 418-430.
- Oliver, R. L. (1999). Whence consumer loyalty?. the Journal of Marketing, 33-44.
- Oliver, Richard L. "A cognitive model of the antecedents and consequences of satisfaction decisions." Journal of Marketing Research (1980): 460-469.
- Ormrod, J. E. (2014). Essentials of educational psychology: Big ideas to guide effective teaching. Pearson Higher Ed.
- Osborne-Gowey, J. (2015). Doing Cool Science? Why You Should Be Blogging about It. Fisheries, 40(11), 530-530.
- Ozturk, A. B., Nusair, K., Okumus, F., & Hua, N. (2016). The role of utilitarian and hedonic values on users' continued usage intention in a mobile hotel booking environment. International Journal of Hospitality Management, 57, 106-115.
- Parthasarathy, M., & Bhattacherjee, A. (1998). Understanding post-adoption behavior in the context of online services. Information Systems Research, 9(4), 362-379.
- Patel, M. S., Asch, D. A., & Volpp, K. G. (2015). Wearable devices as facilitators, not drivers, of health behavior change. Jama, 313(5), 459-460.
- Paton, C., Margaret, M., Fernandez-Luque, L., & Lau, A. Y. (2012). Self-tracking, social media and personal health records for patient empowered self-care.
- Petersen, K., Feldt, R., Mujtaba, S., & Mattsson, M. (2008, June). Systematic Mapping Studies in Software Engineering. In EASE (Vol. 8, pp. 68-77).
- Pfeiffer, J., von Entress-Fuersteneck, M., Urbach, N., & Buchwald, A. (2016, June). Quantify-me: Consumer Acceptance of Wearable Self-tracking Devices. In ECIS (p. ResearchPaper99).
- Plaisent, M., Favreau, S., & Bernard, P. (2017). Fitness Wearables: Indispensable Assistant or Useless Gadget?.
- Polit, D. F., & Beck, C. T. (2006). The content validity index: are you sure you know what's being reported? Critique and recommendations. Research in Nursing & Health, 29(5), 489-497.
- Polit-O'Hara, D., & Beck, C. T. (2006). Essentials of nursing research: Methods, appraisal, and utilization (Vol. 1). Lippincott Williams & Wilkins.

- Pontiggia, A., & Virili, F. (2010). Network effects in technology acceptance: Laboratory experimental evidence. International Journal of Information Management, 30(1), 68-77.
- Premkumar, G., & Bhattacherjee, A. (2008). Explaining information technology usage: A test of competing models. Omega, 36(1), 64-75.
- Prochaska, J. O., & DiClemente, C. C. (1984). The transtheoretical approach: Crossing traditional boundaries of therapy. Dow Jones-Irwin.
- Pura, M. (2005). Linking perceived value and loyalty in location-based mobile services. Managing Service Quality: An International Journal, 15(6), 509-538.
- Puri, A., Kim, B., Nguyen, O., Stolee, P., Tung, J., & Lee, J. (2017). User Acceptance of Wrist-Worn Activity Trackers Among Community-Dwelling Older Adults: Mixed Method Study. JMIR mHealth and uHealth, 5(11).
- Rajanen, D., & Weng, M. (2017, September). Digitization for fun or reward?: a study of acceptance of wearable devices for personal healthcare. In Proceedings of the 21st International Academic Mindtrek Conference (pp. 154-163). ACM.
- Randriambelonoro, M., Chen, Y., & Pu, P. (2017). Can Fitness Trackers Help Diabetic and Obese Users Make and Sustain Lifestyle Changes?. Computer, 50(3), 20-29.
- Raykov, T. (1998a). Coefficient alpha and composite reliability with interrelated nonhomogeneous items. Applied Psychological Measurement, 22, 375-385. Google Scholar, Link
- Remenyi, D., & Williams, B. (1998). Doing research in business and management: an introduction to process and method. Sage.
- Ringle, C. M., Ringle, C. M., Sarstedt, M., & Sarstedt, M. (2016). Gain more insight from your PLS-SEM results: The importance-performance map analysis. Industrial Management & Data Systems, 116(9), 1865-1886.
- Ringle, C. M., Wende, S., & Becker, J. M. (2015). SmartPLS 3. Boenningstedt: SmartPLS GmbH, http://www.smartpls.com.
- Rintamäki, T., Kanto, A., Kuusela, H., & Spence, M. T. (2006). Decomposing the value of department store shopping into utilitarian, hedonic and social dimensions: Evidence from Finland. International Journal of Retail & Distribution Management, 34(1), 6-24.

- Ritterband, L. M., Thorndike, F. P., Cox, D. J., Kovatchev, B. P., & Gonder-Frederick, L. A. (2009). A behavior change model for internet interventions. Annals of Behavioral Medicine, 38(1), 18.
- Roca, J. C., Chiu, C. M., & Martínez, F. J. (2006). Understanding e-learning continuance intention: An extension of the Technology Acceptance Model. International Journal of Human-Computer Studies, 64(8), 683-696.
- Rosenberg, D., Kadokura, E. A., Bouldin, E. D., Miyawaki, C. E., Higano, C. S., & Hartzler, A. L. (2016). Acceptability of Fitbit for physical activity tracking within clinical care among men with prostate cancer. In AMIA Annual Symposium Proceedings (Vol. 2016, p. 1050). American Medical Informatics Association.
- Rovniak, L. S., Sallis, J. F., Kraschnewski, J. L., Sciamanna, C. N., Kiser, E. J., Ray, C. A., ... & George, D. R. (2013). Engineering online and in-person social networks to sustain physical activity: application of a conceptual model. BMC Public Health, 13(1), 753.
- Rubin, D. B. (2004). Multiple imputation for nonresponse in surveys (Vol. 81). John Wiley & Sons.
- Ryan, R. M., Patrick, H., Deci, E. L., & Williams, G. C. (2008). Facilitating health behaviour change and its maintenance: Interventions based on selfdetermination theory. European Health Psychologist, 10(1), 2-5.
- Saga, V. L., & Zmud, R. W. (1993, October). The nature and determinants of IT acceptance, routinization, and infusion. In Proceedings of the IFIP TC8 working conference on diffusion, transfer and implementation of information technology (pp. 67-86). Elsevier Science Inc..
- Sarkar, A. (2011). Impact of utilitarian and hedonic shopping values on individual's perceived benefits and risks in online shopping. International Management Review, 7(1), 58.
- Saunders, M., Lewis, P., & Thornhill, A. (2016). Research methods for business students. Pearson Education.
- Schloderer, M. P., Sarstedt, M., & Ringle, C. M. (2014). The relevance of reputation in the nonprofit sector: The moderating effect of socio-demographic characteristics. International Journal of Nonprofit and Voluntary Sector Marketing, 19(2), 110-126.

- Schlomann, A., von Storch, K., Rasche, P., & Rietz, C. (2016). Means of Motivation or of Stress? The Use of Fitness Trackers for Self-Monitoring by Older Adults. HeilberufeScience, 7(3), 111-116.
- Schmuck, P., Kasser, T., & Ryan, R. M. (2000). Intrinsic and extrinsic goals: Their structure and relationship to well-being in German and US college students. Social Indicators Research, 50(2), 225-241.
- Schuitema, G., Anable, J., Skippon, S., & Kinnear, N. (2013). The role of instrumental, hedonic and symbolic attributes in the intention to adopt electric vehicles. Transportation Research Part A: Policy and Practice, 48, 39-49.
- Seddon, P. B. (1997). A respecification and extension of the DeLone and McLean model of IS success. Information Systems Research, 8(3), 240-253.
- Segar, M. L. (2017). ACTIVITY TRACKING+ MOTIVATION SCIENCE: Allies to Keep People Moving for a Lifetime. ACSM's Health & Fitness Journal, 21(4), 8-17.
- Seiler, R., & Hüttermann, M. (2015). E-Health, fitness trackers and wearables—Use among Swiss students. In Advances in Business-Related Scientific Research Conference 2015 Proceedings.
- Sekaran, U., & Bougie, R. (2010). Research methods for business: A skill building approach. Wiley.
- Sekaran, U., & Bougie, R. (2016). Research methods for business: A skill building approach. John Wiley & Sons.
- Shapiro, C., & Varian, H. R. (1998). Information rules: a strategic guide to the network economy. Harvard Business Press.
- Shapiro, C., Carl, S., & Varian, H. R. (1998). Information rules: a strategic guide to the network economy. Harvard Business Press.
- Shih, P. C., Han, K., Poole, E. S., Rosson, M. B., & Carroll, J. M. (2015). Use and adoption challenges of wearable activity trackers. IConference 2015 Proceedings.
- Sijtsma, K. (2009). On the use, the misuse, and the very limited usefulness of Cronbach's alpha. Psychometrika, 74(1), 107.
- Silva, M. N., Markland, D., Vieira, P. N., Coutinho, S. R., Carraça, E. V., Palmeira, A. L., ... & Teixeira, P. J. (2010). Helping overweight women become more active: need support and motivational regulations for different forms of physical activity. Psychology of Sport and Exercise, 11(6), 591-601.

- Singh, Y. K. (2006). Fundamental of research methodology and statistics. New Age International.
- Smith, M. P. (1998). The global city-whose social construct is it anyway? A comment on White. Urban Affairs Review, 33(4), 482-488.
- Sniehotta, F. F., Scholz, U., & Schwarzer, R. (2005). Bridging the intention– behaviour gap: Planning, self-efficacy, and action control in the adoption and maintenance of physical exercise. Psychology & Health, 20(2), 143-160.
- Sol, R., & Baras, K. (2016, September). Assessment of activity trackers: toward an acceptance model. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct (pp. 570-575). ACM.
- Song, J., Kim, J., & Cho, K. (2017). Understanding users' continuance intentions to use smart-connected sports products. Sport Management Review.
- Stauss, B., & Neuhaus, P. (1997). The qualitative satisfaction model. International Journal of Service Industry Management, 8(3), 236-249.
- Stern, P. C. (2000). New environmental theories: toward a coherent theory of environmentally significant behavior. Journal of social issues, 56(3), 407-424.
- Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. Journal of the royal statistical society. Series B (Methodological), 111-147.
- Strader, T. J., Ramaswami, S. N., & Houle, P. A. (2007). Perceived network externalities and communication technology acceptance. European Journal of Information Systems, 16(1), 54-65.
- Stragier, J., Evens, T., & Mechant, P. (2015). Broadcast yourself: an exploratory study of sharing physical activity on social networking sites. Media International Australia, 155(1), 120-129.
- Stragier, J., Mechant, P., & De Marez, L. (2013). Studying physical activity using social media: An analysis of the added value of RunKeeper tweets. International Journal of Interactive Communication Systems and Technologies (IJICST), 3(2), 16-28.
- Straitstimes. (2016). Stress and lack of physical activity are top health issues for workers, say companies. Retrieved December 15, 2017, from http://www.straitstimes.com/singapore/manpower/stress-and-lack-ofphysical-activity-are-top-health-issues-for-workers-sa

- Sullivan, A. N., & Lachman, M. E. (2017). Behavior change with fitness technology in sedentary adults: a review of the evidence for increasing physical activity. Frontiers in Public Health, 4, 289.
- Sun, N., & Rau, P. L. P. (2015). The acceptance of personal health devices among patients with chronic conditions. International Journal of Medical Informatics, 84(4), 288-297.
- Sun, Y., Liu, L., Peng, X., Dong, Y., & Barnes, S. J. (2014). Understanding Chinese users' continuance intention toward online social networks: an integrative theoretical model. Electronic Markets, 24(1), 57-66.
- Sutton, S. (2001). Back to the drawing board? A review of applications of the transtheoretical model to substance use. Addiction, 96(1), 175-186.
- Swan, J. E., & Trawick, I. F. (1981). Disconfirmation of expectations and satisfaction with a retail service. Journal of Retailing.
- Tapscott, D. (2009). Grown up digital (Vol. 361). New York: McGraw Hill.
- Teixeira, P. J., Carraça, E. V., Markland, D., Silva, M. N., & Ryan, R. M. (2012). Exercise, physical activity, and self-determination theory: a systematic review. International Journal of Behavioral Nutrition and Physical Activity, 9(1), 78.
- Thelwall, M. (2009). Homophily in myspace. Journal of the Association for Information Science and Technology, 60(2), 219-231.
- Thong, J. Y., Hong, S. J., & Tam, K. Y. (2006). The effects of post-adoption beliefs on the expectation-confirmation model for information technology continuance. International Journal of Human-Computer Studies, 64(9), 799-810.
- Touzani, M., Charfi, A. A., Boistel, P., & Niort, M. C. (2017). Connecto ergo sum! An Exploratory Study of the Motivations behind the Usage of Connected Objects. Information & Management.
- Troiano, R. P., Berrigan, D., Dodd, K. W., Mâsse, L. C., Tilert, T., & McDowell, M. (2008). Physical activity in the United States measured by accelerometer. Medicine and Science in Sports and Exercise, 40(1), 181.
- Trost, S. G., McIver, K. L., & Pate, R. R. (2005). Conducting accelerometer-based activity assessments in field-based research. Medicine & Science in Sports & Exercise, 37(11), S531-S543.

- Tsao, L., Haferkamp, L., & Ma, L. (2016, July). User requirements of wearable technology for activity tracking. In International Conference on Cross-Cultural Design (pp. 436-447). Springer International Publishing.
- Tudor-Locke, C., Hatano, Y., Pangrazi, R. P., & Kang, M. (2008). Revisiting" how many steps are enough?". Medicine & Science in Sports & Exercise, 40(7), S537-S543
- Tuzovic, S., Kuppelwieser, V., & Bianchi, C. (2017). Adoption of smart health wearables: An empirical analysis in Chile and the US.
- Tuzovic, S., Kuppelwieser, V., & Gierke, A. (2015). The rise of self-tracking: Investigating the adoption of fitness trackers and the relationship on preventive health care. Proceedings of the 2015 Australian and New Zealand Marketing: Innovationa and Growth Strategies in Marketing.
- United States Department of Agriculture. (2017). Supertracker: Physical Activity Tracker. Retrieved December 5, 2017, from https://www.supertracker.usda.gov/physicalactivitytracker.aspx
- Vaishnavi, V. K., & Kuechler, W. (2015). Design science research methods and patterns: Innovating Information And Communication Technology. CRC Press.
- Van der Heijden, H. (2004). User acceptance of hedonic information systems. MIS quarterly, 695-704.
- Van Dijck, J., & Poell, T. (2013). Understanding social media logic.
- Vandelanotte, C., Spathonis, K. M., Eakin, E. G., & Owen, N. (2007). Websitedelivered physical activity interventions: A review of the literature. American Journal of Preventive Medicine, 33(1), 54-64.
- Venkatesh, V., & Bala, H. (2008). Technology acceptance model 3 and a research agenda on interventions. Decision Sciences, 39(2), 273-315.
- Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186-204.
- Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS quarterly, 425-478.
- Venkatesh, V., Thong, J. Y., Chan, F. K., Hu, P. J. H., & Brown, S. A. (2011). Extending the two-stage information systems continuance model:

Incorporating UTAUT predictors and the role of context. Information Systems Journal, 21(6), 527-555.

- Voorhees, C. M., Brady, M. K., Calantone, R., & Ramirez, E. (2016). Discriminant validity testing in marketing: an analysis, causes for concern, and proposed remedies. Journal of the Academy of Marketing Science, 44(1), 119-134.
- Walden university. (2016). Information Systems and Technology Research: Databases: Articles & More. Retrieved December 17, 2017, from http://academicguides.waldenu.edu/informationsystemsresearch#s-lg-box-1523962
- Wang, J. C., Leng, H. K., & Kee, Y. H. (2015). Use of Facebook in physical activity intervention programme: Test of self-determination theory.
- Wang, L., Zhao, W., Sun, X., Zheng, R., & Qu, W. (2016). Modeling of causes of Sina Weibo continuance intention with mediation of gender effects. Frontiers in psychology, 7, 619.
- Wang, Y. (2017). An Examination of App Features and Individual Differences on Mobile Fitness App Adoption (Doctoral dissertation, Purdue University).
- Wantland, D. J., Portillo, C. J., Holzemer, W. L., Slaughter, R., & McGhee, E. M. (2004). The effectiveness of Web-based vs. non-Web-based interventions: a meta-analysis of behavioral change outcomes. Journal of Medical Internet Research, 6(4).
- Weston, R., & Gore Jr, P. A. (2006). A brief guide to structural equation modeling. The Counseling Psychologist, 34(5), 719-751.
- Whewell, W., & Butts, R. E. (1968). Theory of scientific method. Hackett Publishing.
- WHO. (2017, February 01). Factsheets, Physical activity. Retrieved December 10, 2017, from http://www.who.int/mediacentre/factsheets/fs385/en
- Wilson, P. M., & Rodgers, W. M. (2004). The relationship between perceived autonomy support, exercise regulations and behavioral intentions in women. Psychology of Sport and Exercise, 5(3), 229-242.
- Wong, C. Y., & Lee, H. C. (2008). Healthcare in Singapore: challenges and management. Int Med Commun, 51, 343-6.
- Worldometers. (2017.). Current World Population. Retrieved December 1, 2017, from http://www.worldometers.info/world-population

- Wu, Y., Kankanhalli, A., & Huang, K. W. (2015). Gamification in Fitness Apps: How Do Leaderboards Influence Exercise?.
- Wu, Y., Wu, C., Li, B., Zhang, L., Li, Z., & Lau, F. (2015). Scaling social media applications into geo-distributed clouds. IEEE/ACM Transactions on Networking (TON), 23(3), 689-702.
- Xu, J., Li, X., & Niu, H. (2017). The effects of post-adoption beliefs on continuance use of a microblogging service: the role of network externalities. International Journal of Networking and Virtual Organisations, 17(1), 88-102.
- Xue, L., Yen, C. C., Chang, L., Chan, H. C., Tai, B. C., Tan, S. B., ... & Choolani, M. (2012). An exploratory study of ageing women's perception on access to health informatics via a mobile phone-based intervention. International Journal of Medical Informatics, 81(9), 637-648.
- Yang, H. L., & Lin, R. X. (2017). Determinants of the intention to continue use of SoLoMo services: Consumption values and the moderating effects of overloads. Computers in Human Behavior, 73, 583-595.
- Yin, F. S., Liu, M. L., & Lin, C. P. (2015). Forecasting the continuance intention of social networking sites: Assessing privacy risk and usefulness of technology. Technological Forecasting and Social Change, 99, 267-272.
- Yoganathan, D., & Kajanan, S. (2013). Persuasive Technology for Smartphone Fitness Apps. In PACIS (p. 185).
- Yusof, A. F. B., & Iahad, N. B. A. (2013, November). Theoretical model for continuance use of mobile phone wellness application. In Research and Innovation in Information Systems (ICRIIS), 2013 International Conference on (pp. 459-474). IEEE.
- Yusof, A. F., & Iahad, N. A. (2012, June). Review on online and mobile weight loss management system for overcoming obesity. In Computer & Information Science (ICCIS), 2012 International Conference on (Vol. 1, pp. 198-203). IEEE.
- Zhang, C. B., Li, Y. N., Wu, B., & Li, D. J. (2017). How WeChat can retain users: Roles of network externalities, social interaction ties, and perceived values in building continuance intention. Computers in Human Behavior, 69, 284-293.
- Zhang, X., Yan, X., Cao, X., Sun, Y., Chen, H., & She, J. (2017). The role of perceived e-health literacy in users' continuance intention to use mobile

healthcare applications: an exploratory empirical study in China. Information Technology for Development, 1-26

- Zhao, L., & Lu, Y. (2012). Enhancing perceived interactivity through network externalities: An empirical study on micro-blogging service satisfaction and continuance intention. Decision Support Systems, 53, 825–834.
- Zhou, H. (2012). The internet of things in the cloud: A middleware perspective. CRC press.
- Zhou, T. (2011). Understanding mobile Internet continuance usage from the perspectives of UTAUT and flow. Information Development, 27(3), 207-218.
- Zhou, T. (2013). An empirical examination of continuance intention of mobile payment services. Decision Support Systems, 54(2), 1085-1091.
- Zhou, T., & Li, H. (2014). Understanding mobile SNS continuance usage in China from the perspectives of social influence and privacy concern. Computers in Human Behavior, 37, 283-289.
- Zhou, T., & Lu, Y. (2011). Examining mobile instant messaging user loyalty from the perspectives of network externalities and flow experience. Computers in Human Behavior, 27(2), 883-889.
- Zhou, T., Li, H., & Liu, Y. (2015). Understanding mobile IM continuance usage from the perspectives of network externality and switching costs. International journal of Mobile Communications, 13(2), 188-203.
- Zhou, Y., Kankanhalli, A., & Huang, K. W. (2016). Effects of Fitness Applications with SNS: How Do They Influence Physical Activity.
- Zhu, Y., Dailey, S. L., Kreitzberg, D., & Bernhardt, J. (2017). "Social Networkout": Connecting Social Features of Wearable Fitness Trackers with Physical Exercise. Journal of Health Communication, 1-7.
- Zmud, R. W. (1982). Diffusion of modern software practices: influence of centralization and formalization. Management science, 28(12), 1421-1431