
ENHANCEMENT OF AUTOMATED BLACK-BOX WEB APPLICATION

VULNERABILITY ASSESSMENT ALGORITHMS

LIM KAH SENG

A thesis submitted in fulfilment of the

requirements for the award of the degree of

Doctor of Philosophy (Computer Science)

School of Computing

Faculty of Engineering

Universiti Teknologi Malaysia

OCTOBER 2019



DEDICATION

This thesis is dedicated to my family members for their moral support and upbringing.

This thesis also dedicated to Him, which the challenges poured by Him had shaped me

into a better person.

iv



ACKNOWLEDGEMENT

Many people have been pivotal in aiding me toward completing this thesis. Not

only did they deliver the necessary knowledge to widen my point of view towards the

study of computation and its vulnerability assessment, but also the mental supports.

Without them, it would have been difficult for me to complete this research work.

First of all, I would like to express my gratitude to my supervisors, Assoc. Prof.

Dr Norafida Ithnin andDr Syed Zainudeen for their guidance. Without their guidance, it

would have been impossible forme to produce this thesis work. My sincere appreciation

also to CSM for the willingness to participate in my research work.

I would like to thank my family members for their moral and financial support,

as well as my close friends Miss Cindy Puah and Mr Wan Mohd. Yacob, for their

companionship.

Finally, all gratitude to Him for the challenges which made me a better person.

In addition, I would like to also thank all those who had lent me a helping hand,

and whose names are not mentioned here. The completion of this thesis would be

impossible without these people.

v



ABSTRACT

Presently, the web application vulnerability assessment has been widely

automated to shorten the web application penetration testing life-cycle. Unfortunately,

in the testing environment of the black-box where web-based application codes are

unreachable, the automation of web application vulnerability assessment tend to

produce the false negatives. This research was conducted to enhance the present

state-of-the-art automated web application vulnerability assessment and mitigate the

research problems of test coverage and false negatives. In this research, three

enhancements were developed to address the problems. The first enhancement

involved the improvement of current web-based application reconnaissance solution,

using the derived algorithms for form fills and input generation. The second

enhancement improved the existing vulnerability assessment solutions by using an

invented algorithm, which implemented the execution-path oriented analysis. The

final enhancement improved the present vulnerability detection solution with an

algorithm that detects vulnerability using a proposed execution path-oriented data

flow analysis and fuzzy set theory. This research was conducted based on applied

research method, which covered literature reviews, requirement analysis, and

preliminary experimentation that led to the creation of the stated algorithms. In

addition, a prototype automated black-box web application vulnerability assessment

tool was conceived using Java programming language as well as Selenium and

Crawljax frameworks. An experimentation was conducted to quantitatively

benchmark the validity of the algorithm using twelve test-beds, composed of

vulnerable web-based applications, and eight existing automated black-box web

application vulnerability assessment tools. The experimental results showed there was

an improvement of test coverage by 14.35% and a reduction of false negative by 64%.

In conclusion, the enhancements made using the proposed algorithms have improved

the automated web application vulnerability assessment test coverage and reduced the

false negatives.

vi



ABSTRAK

Pada masa kini, penilaian kerantauan aplikasi web secara automatik telah

diguna dengan meluas untuk memendekkan kitaran hayat ujian penembusan web

aplikasi. Malangnya, dalam persekitaran ujian kotak hitam di mana kod web aplikasi

tidak boleh dicapai, penilaian kerantauan aplikasi web secara automatik cenderung

untuk menghasilkan negatif palsu. Kajian ini telah dilaksanakan untuk memperbaiki

kelemahan dalam penilaian kerantauan aplikasi web secara automatik untuk

mengurangkan masalah liputan ujian dan negatif palsu. Dalam kajian ini, tiga

penambahbaikan telah dibangunkan untuk menangani masalah. Peningkatan pertama

melibatkan penambahbaikan penyelesaian pengiktirafan aplikasi berasaskan web

semasa menggunakan algoritma yang diciptakan untuk mengisi borang web dan

penjanaan input. Penambahbaikan yang kedua mengandungi penambahbaikan

penyelesaian penilaian kerantauan semasa dengan penciptaan algoritma yang

melaksanakan analisa berorientasikan laluan pelaksanaan. Penambahbaikan terakhir

mengandungi penambahbaikan penyelesaian pengesanan kerantauan dengan

algoritma yang melaksanakan analisa aliran data berasaskan laluan pelaksanaan dan

teori set fuzzy. Kajian ini dilaksanakan berdasarkan kaedah penyelidikan penggunaan

di mana hasil daripada kajian literatur, analisis keperluan, dan eksperimen awal telah

membawa kepada ciptaan algoritma yang dinyatakan. Di samping itu, prototaip

penilaian kerantauan aplikasi web kotak hitam automatik disusun menggunakan

bahasa pengaturcaraan Java, serta kerangka Selenium and Crawljax. Kajian telah

dijalankan untuk menilai kesahan algoritma secara kuantitatif dengan menggunakan

dua belas ujian katil, terdiri daripada web aplikasi terdedah dan lapan alat penilaian

kerantauan aplikasi web kotak hitam automatik yang terkini. Hasil kajian

menunjukkan terdapat peningkatan ujian liputkan sebanyak 14.35% serta

mengurangkan negatif palsu sebanyak 64%. Kesimpulannya, penambahbaikan yang

dibuat menggunakan algoritma yang dicadangkan telah berjaya meningkatkan liputan

ujian penilaian kerantauan aplikasi web secara automatik dan mengurangkan negatif

palsu.

vii



TABLE OF CONTENTS

TITLE PAGE

DECLARATION iii

DEDICATION iv

ACKNOWLEDGEMENT v

ABSTRACT vi
ABSTRAK vii

TABLE OF CONTENTS ix

LIST OF TABLES xv

LIST OF FIGURES xvii

LIST OF ABBREVIATIONS xx

LIST OF SYMBOLS xxii

LIST OF APPENDICES xxvi

CHAPTER 1 INTRODUCTION 1

1.1 Area of Research 1

1.2 Research Background 3

1.3 Research Problem 5

1.4 Problem Statement 7

1.5 Research Aim 7

1.6 Research Question 7

1.7 Research Objectives 10

1.8 Research Scopes 10

1.9 Research Significant 11

1.10 Thesis Organisation 12

CHAPTER 2 LITERATURE REVIEW 15

2.1 The Web-based Application 15

2.2 Web-basedApplicationVulnerabilityAssessment 17

2.2.1 Penetration Testing 18

2.2.2 Web Application Penetration Testing 19

ix



2.2.3 Automates the Web Application

Penetration Testing 20

2.3 Automated Web Application Vulnerability

Assessment Tool 20

2.4 Automated Black-box Web Application

Vulnerability Assessment 22

2.4.1 Web-based Application

Reconnaissance 23

2.4.1.1 Hidden Web Crawling 25

2.4.1.2 Input Value Generation for

Hidden Web Crawling 27

2.4.1.3 Web-based Application

Events and Navigations

Modelling 28

2.4.1.4 State Change Inference 29

2.4.1.5 Web Application Crawling

Strategies 31

2.4.1.6 The Compilation of Existing

Web-based Application

Reconnaissance Solutions 33

2.4.2 Web-based Application Vulnerability

Assessment 35

2.4.2.1 Attack Vectors Vulnerability

Assessment 35

2.4.2.2 Attack Vectors Penetration 39

2.4.2.3 A Compilation of Existing

Web-based Application

Vulnerability Assessment

Approaches 42

2.4.3 Web-based Application Vulnerability

Detection 44

2.4.3.1 Web-based Application

Response Comparison 45

2.4.3.2 Security Rules Enforcement 47

x



2.4.3.3 Pattern Matching 49

2.4.3.4 The Hybrid Approach 50

2.4.3.5 The Compilation of

Vulnerability Detection

Approaches 50

2.5 Existing Automated Web Application

Vulnerability Assessment Quality 52

2.5.1 The Test-beds to Quantify Automated

Web Application Vulnerability

Assessment Tools Quality 54

2.5.2 The Metrics to Measure Automated

Web Application Vulnerability

Assessment Quality 56

2.5.3 Selection of Features: Test-beds,

Measurement Attributes and

Bench-marking Tools 59

2.6 The Web Vulnerabilities 67

2.6.1 SQL Injection 68

2.6.2 Cross-site Scripting 70

2.6.3 The Selection of Feature: The

Vulnerability 72

2.7 Literature Review Outcomes 73

2.7.1 Criticality of False Positive and False

Negative 76

2.7.2 The Research Gap 77

2.7.3 Requirements Analysis 78

2.8 Summary 81

CHAPTER 3 RESEARCHMETHODOLOGY 83

3.1 Introduction 83

3.2 The Research Framework 83

3.2.1 Investigation and Clarification 92

3.2.1.1 Literature Review 93

xi



3.2.1.2 Research Problem

Formulation 94

3.2.1.3 Research Gap Clarification 95

3.2.1.4 Requirement Analysis 95

3.2.1.5 Preliminary Experiment 96

3.2.2 Algorithms Design and Development 97

3.2.2.1 Algorithms Design 98

3.2.2.2 Prototype Development 99

3.2.3 Experimentation and Evaluation 100

3.2.3.1 The Virtual Web Application

Penetration Testing Lab 101

3.2.3.2 Research Findings

Documentation 102

3.3 Summary 102

CHAPTER 4 ENHANCEMENT OF WEB-BASED APPLICATION

RECONNAISSANCE ALGORITHM 105

4.1 Introduction 105

4.2 Automating the Web-based Application

Reconnaissance 105

4.3 Modern Web-based Application Properties 106

4.3.1 Modern Web-based Application

Contents 107

4.4 Web Application Execution Behaviours 116

4.4.1 The Input Function 119

4.4.2 The Inputs 121

4.5 Algorithm for Heuristic Form Filling 124

4.6 Algorithm for Value of Input Set Generation 127

4.7 Implementation of Reconnaissance Algorithm 129

4.7.1 Web-based Application Modelling 130

4.7.2 State Change Detection 130

4.7.3 Web Pages Crawling Strategy 134

4.8 Summary 135

xii



CHAPTER 5 ENHANCEMENT OF ALGORITHMS FOR

VULNERABILITY ASSESSMENT AND

VULNERABILITY DETECTION 137

5.1 Introduction 137

5.2 Automation of Vulnerability Assessment and

Vulnerability Detection 137

5.3 Program Path-Oriented Analysis 139

5.4 Execution Path-Oriented Analysis 140

5.4.1 The Heuristic Algorithm for

Vulnerability Assessment 146

5.5 The Applied Exploitation Technique 148

5.5.1 Attack library 150

5.6 Enhancement of Automated Vulnerability

Detection 156

5.7 Algorithm for Vulnerability Detection 159

5.7.1 Execution Path-Oriented Data Flow

Analysis 159

5.7.2 Fuzzy Set for Attack String Execution

Identification 161

5.8 The Adopted Technologies 164

5.9 Summary 164

CHAPTER 6 RESULTS AND DISCUSSIONS 165

6.1 Introduction 165

6.2 Experimentation to Benchmark the Algorithms 165

6.3 Test Coverage 167

6.3.1 Wivet Score 167

6.3.2 The Number of URLs 169

6.3.3 The Number of Web Pages 172

6.3.4 The Number of Directories or Files 175

6.3.5 The Number of Duplicated URLs 177

6.3.6 The Number of States 179

6.3.7 Authentication Mechanism Bypassing 180

6.4 Vulnerability Detection Rate 181

xiii



6.4.1 The number of cross-site scripting

vulnerabilities 182

6.4.2 The Number of False Positives 184

6.4.3 The Number of False Negatives 187

6.4.4 The Number of True Negatives 189

6.4.5 The Number of Duplicate

Vulnerabilities 191

6.5 Scanning Efficiency 193

6.6 Relationship Between Test Coverage and

Vulnerability Detection Rate 194

6.6.1 Importance of Web Application

Reconnaissance and Data Flow

Analysis 195

6.7 Limitations 195

6.8 Summary 197

CHAPTER 7 CONCLUSION AND FUTURE RESEARCH

DIRECTION 199

7.1 Introduction 199

7.2 Research Work Revisitation 199

7.3 Research Contributions 200

7.4 Future Works 202

7.4.1 Concurrent Automated Web

Application Vulnerability Assessment 202

7.4.2 False Negatives and False Positives

Further Reduction 203

7.4.3 Heuristic Web-based Application

Reconnaissance Solution 203

7.4.4 Dynamic Security Penetration 204

7.4.5 Heuristic Web Vulnerability Detection 204

REFERENCES 205

LIST OF PUBLICATIONS 311

xiv



LIST OF TABLES

TABLE NO. TITLE PAGE

Table 2.1 The activities in penetration testing methodology. 19

Table 2.2 The activities in penetration testing methodology. 55

Table 2.3 The activities in penetration testing methodology. 57

Table 2.4 The test-beds. 60

Table 2.5 The automated black-box web application vulnerability

assessment tools. 63

Table 2.6 The OWASP top 10 web application vulnerabilities of 2017

OWASP (2017). 67

Table 2.7 Requirements of automated black-box web application

vulnerability assessment by component. 80

Table 3.1 Objectives, activities, and deliverable of each research

phase. 86

Table 4.1 The subject of web element of text-area and web element

of form with an attribute type of checkbox, radio, and

submit. 112

Table 4.2 The subjects of web elements of HTML5. 115

Table 5.1 XSS attack payloads in existing attack libraries. 152

Table 6.1 The chosen automated black-box web application

vulnerability assessment tools. 166

Table 6.2 The capability of prototype and selected automated

black-box web application vulnerability assessment tools

in bypassing the authentication mechanism. 181

Table A.1 A Solutions to automate web application vulnerability

assessment in testing environment of black-box. 228

Table C.1 A Solutions to automate web application vulnerability

assessment in testing environment of black-box. 248

Table D.1 Normalized Levenshtein distance of DOM documents and

HTML tag sequences. 256

Table E.1 The existing research works validation approaches 266

xv



Table F.1 Prototype test coverage. 291

Table G.1 Prototype vulnerability detection rate. 299

Table G.2 The prototype scanning efficiency 308

xvi



LIST OF FIGURES

FIGURE NO. TITLE PAGE

Figure 2.1 The architecture differences between RIA and web-based

application Meier et al. (2009). 16

Figure 2.2 Automated web application vulnerability assessment

taxonomy. 21

Figure 2.3 The web-based application is a big black box. 23

Figure 2.4 The Hypercube Meta-model (Dincturk et al., 2014). 32

Figure 2.5 The existing web-based application reconnaissance

solutions. 34

Figure 2.6 Test Case Generation Algorithm (TCGA) input. 38

Figure 2.7 The summarization of web-based application vulnerability

assessment techniques. 43

Figure 2.8 A Summary of existing vulnerability detection solutions

for automated black-box web application vulnerability

assessment. 51

Figure 2.9 Robert Rsnake Hansen’s cross-site scripting taxonomy 71

Figure 2.10 The frequency the web-based application vulnerabilities

were studied. 72

Figure 2.11 The general architecture of automated black-box web

application vulnerability assessment. 74

Figure 3.1 The research framework. 84

Figure 3.2 The testing framework to benchmark automated web

application vulnerability assessment tool validity Antunes

and Vieira (2010); Fong et al. (2008); Tung et al. (2014) 101

Figure 3.3 The virtual web application penetration testing lab. 102

Figure 4.1 The distribution of web elements by HTML tag. 109

Figure 4.2 The distribution of subject of web element of f orm that its

attribute of type is a text box. 110

xvii



Figure 4.3 The distribution of subject to web element of textarea, as

well as web element of form that its attribute types are

radio, checkbox, and submit. 113

Figure 4.4 The distribution of subject for web element of select box. 114

Figure 4.5 The distribution of subjects of HTML5 web elements. 115

Figure 4.6 The relations among input function, input and subject. 124

Figure 4.7 Normalized Levenshtein’s edit distance of HTML tag

sequence and DOM documents of similar web pages. 131

Figure 4.8 Normalized Levenshtein’s edit distance of HTML tag

sequence and DOM document of almost similar web

pages. 132

Figure 4.9 Normalized Levenshtein’s edit distance of HTML tag

sequence and DOM document of dissimilar web pages. 133

Figure 4.10 The breadth-first tree traversing algorithm. 134

Figure 5.1 The working example: conventional web-based application

authentication scheme. 144

Figure 5.2 The computation steps of execution path simplification,

execution path decomposition and execution path

recomposition. 145

Figure 5.3 Execution path-oriented data flow analysis. 159

Figure 5.4 The relationship among variables of the attack string a,

attack consequence c, application state s, and attack vector

v. 163

Figure 6.1 Prototype’s Wivet score. 168

Figure 6.2 TheWivet score of prototype and selected automated black-

box web application vulnerability assessment tools. 168

Figure 6.3 The number of URLs reported by the prototype. 170

Figure 6.4 The number of URLs reported by the prototype. 171

Figure 6.5 The number of web pages visited by the prototype. 172

Figure 6.6 The number of web pages visited by the prototype and

existing black-box web application security scanners. 174

Figure 6.7 The number of directories or file reported by the prototype

and existing automated black-box web application

vulnerability assessment tools. 176

xviii



Figure 6.8 The number of duplicate URLs produced by the prototype

and chosen automated black-box web application

vulnerability assessment tools. 178

Figure 6.9 The number of states reported by the prototype and Scanner

2. 179

Figure 6.10 Cross-site scripting vulnerabilities successfully detected

by the prototype and automated black-box web application

vulnerability assessment tools. 183

Figure 6.11 The number of false positives reported by prototype and

selected automated black-box web application vulnerability

assessment tools. 186

Figure 6.12 The number of false negatives reported by the prototype and

selected automated black-box web application vulnerability

assessment tools. 188

Figure 6.13 The number of true negatives produced by prototype and

chosen automated black-box web application vulnerability

assessment tools. 190

Figure 6.14 The number of duplicate vulnerabilities produced by

prototype and selected automated black-box web

application vulnerability assessment tools. 192

Figure 6.15 Scanning efficiency of prototype and Scanner 2 194

xix



LIST OF ABBREVIATIONS

WWW - World Wide Web

ICT - Information and Communication Technology

DEP - Data Entry Point

RIA - Rich Internet Application

DoS - Denial-of-Service

PTES - Penetration Testing Execution Standard

PCI DSS - PCI Data Security Standard

SUT - System Under Test

LITE - Layout-based Extraction Technique

IKM - Information Knowledge Manager

AADT - Access Authorization Data Table

DDES - Double Duplication Elimination Strategy

JavaSye - Java Symbolic Execution Engine

OWASP - Open Web Application Security Project

WASC - Web Application Security Consortium

IDS - Intrusion Detection System

LCTS - Longest Common Tag Sequence

RKR-GST - Running Karp-Rabin Greedy String Tilling

WASSEC - Web Application Security Scanner Evaluation Criteria

SQL - Structure Query Language

HTML - HyperText Markup Language

XQuery - XML Query

XML - Extended Markup Langauge

URL - Uniform Markup Language

UTF - Unicode Transformation Format

mXSS - Mutation Cross-site Scripting

xx



XSS - Cross-site Scripting

LAN - Local Area Network

ACM - The Association of Computing

IEEEXplore - IEEE Xplore Digital Library

CSM - CyberSecurity Malaysia

Wivet - Web Input Vector Extractor Teasor

xxi



LIST OF SYMBOLS

T - DEP data type

Sa - A set of data entry points

An - Parameters of data entry points

Ti - Data entry points data type

C - Cookie

Sr - Cookie parameter

TG - Data entry point URL

N - Data entry point name

H - Data entry point hash value

V - Data entry point input value

M - A finite state machine

S,Q - A set of states

δ - A set of input functions∑
- The input to trigger web application event.

Io - The initial node in a finite state machine

G - A graph

V - A set of vertexes

E, e - A set of edges

I - An input

v - A vector

dompath - The DOM path to href link

action - The attribute to split href link by ‘/’

params - The form names and anchors

value - The value to input web form

delta(x) - The infinite section in a web application

HTTPrequest - The expected HTTP request

xxii



expectedcondition - The expected web application response

LCTSamount - The longest amount of a DOM document tag sequence

Tagamount - DOM document HTML tags

hi - A DOM document

coverage - The test coverage

length(hi) - The length of a DOM document

VD - The vulnerability detection rate

Vd - The number of vulnerability detected

Td - The total number of vulnerability presents

FPd - The number of false positive detected

FNd - The number of false negative detected

W D - The number of web pages visited

ST - The differences of initial and ending scanning time

Tend - The ending scanning time

Tinitial - The initial scanning time

TP - The number of true positives

TV - The total number of vulnerabilities in a test-bed

STP - The scanner specific true positive instance

STN - The scanner specific true negative instance

SFP - The scanner specific false positive instance

SFN - The scanner specific false negative instance

VTP - The vulnerability specific true positive instance

VTN - The vulnerability specific true negative instance

VFP - The vulnerability specific false positive instance

VFN - The vulnerability specific false negative instance

P - A web application

f (x)n - A finite set of input function

ψ - A transition function

w - The web page transition

xxiii



e - The web application event

x - An input value

links - The web element of data type link

f orms - The web element of data type web forms

options - The web element of data type option

textarea - The web element of data type textarea

buttons - The web element of data type button

Slink - A set of web element of data type link

Sform - A set of web element of data type form

Soption - A set of web element of data type option

Stextarea - A set of web element of data type textarea

Sbutton - A set of web element of data type button

H - An instance of web application execution behaviour

a - A user action on web application

id - The number of id of a node of a directed graph

name - The name of a node of a directed graph

elements - A set of candidate elements on a web page

DOM - The DOM document

strippedDOM - The DOM document with HTML tags only

tag - The web element HTML tag

type - The web element HTML type

attribute - The attributes belong a web element

Pi - A program path

epi - An execution path

/\C - The input constraint

Si - An application state in an execution path

targetvectori - An attack vector where attack payload is placed

relatedvectori - An attack vector where Innocent input is placed

R - The web application response

xxiv



ex - An instance of successful exploitation

y - The attack payload

f (y)n - An input function that accepts attack string

U - The universal set

m - The fuzzy set membership function

µa - The value of membership function of attack string

µb - The value of membership function of attack vector

µc - The value of membership function of application state

µd - The value of membership function of attack consequence

m(a) - The membership function of attack string

m(b) - The membership function of attack vector

m(c) - The membership function of application state

m(d) - The membership function of attack consequence

statei,Si - An instance of state

vi - An instance of attack vector

ai - An instance of attack string

ci - An instance of attack consequence

xxv



LIST OF APPENDICES

APPENDIX TITLE PAGE

Appendix A Existing Solutions of Automated Black-box Web Application

Vulnerability Assessment 227

Appendix B An Interest Study 245

Appendix C The Outcomes of Preliminary Experiment: The Data

Presentation of Data of Modern Web Applications 247

Appendix D The Analysis of State Change Detection 255

Appendix E The Existing Research Works Validation Approaches 265

Appendix F The Prototype Test Coverage 291

Appendix G The Prototype Vulnerability Detection Rate and Scanning

Efficiency 299

xxvi



CHAPTER 1

INTRODUCTION

1.1 Area of Research

These days, a compilation of technical documents called web-based

application, is no more a demonstration of a simple asset for information sharing, as it

was originally intended by its inventor, Sir Tim Bernes-Lee, in 1989. The maturity

and availability of fast-internet speeds, as well as the rapid growth of web-based

technology, have yielded widespread usage of web-based applications in fields such as

politics, education, and many more. Today, web-based applications is a ubiquitous

platform which helps people stay connected, as well aid in data sharing. This includes

leveraging web-based applications for business products or services promotion and

delivery. Therefore, modern web-based applications are always an attractive target for

intruders. In addition, the conventional Information and Communication Technology

(ICT) infrastructures such as network or web servers, in particular, web-based

applications, possess high accessibility, which is accessible by anyone, anywhere, and

anytime, 24/7. Moreover, OWASP report OWASP (2017) showed that modern

web-based applications tend to be much more susceptible to several vulnerabilities;

this includes injection-based vulnerabilities, broken authentication, sensitive data

exposure, XML external entities, broken access control, security misconfiguration,

cross-site scripting, insecure deserialization, and usage of the component with known

vulnerabilities. Thus, vulnerable web-based applications are usually the gateway to

gain access to organization protected infrastructures, or data.

Conventionally, an attack is launched through the injection of malicious data

onto web-based application data entry points (DEPs), to compromise web-based

application confidentiality, integrity, or availability. Consequently, the web-based

application’s defensive mechanisms always plays a crucial role in defending

web-based applications against attacks by preventing malicious data from entering

1



web-based application DEPs. Unfortunately, writing a solid defensive mechanism is

tedious and error-prone, as the combination of data that can be possibly accepted by a

web-based application, DEP, is always vast in number (Jovanovic et al., 2006).

Therefore, besides implementing countermeasures such as input sanitization

functions, it is essential to have web-based application security assessed during, and

after the development phase.

Typically, test engineers assess web-based application security via the

injection of predefined attack strings onto web-based application DEPs, which

compromises web-based application confidentiality, integrity, or availability for

identification of security loopholes (Black, 2011; Bathia et al., 2011; Palsetia et al.,

2016). To assess web-based application security, practitioners have introduced

miscellaneous black-box, white-box, and grey-box testing techniques. Related

black-box testing techniques dynamically analyse web-based application execution

behaviours for vulnerability detection. The white-box testing techniques inspect a

web-based application’s codes for defects. The grey-box testing technique is a

combination of both black-box and white-box testing techniques (Moonen, 2011; Liu

et al., 2012). Existing well-known web-based application security assessment

techniques have included fuzzing, code review, penetration testing, just to name a few

(Liu et al., 2012; Avramescu et al., 2013).

However, the manual web-based application vulnerability assessment is

time-consuming, error-prone, and tedious, as a human being tends to make mistakes.

Henceforth, practitioners have invented, designed, and developed algorithms to

automate the web-based application vulnerability, using the power of computation

(Holm et al., 2013; Awang and Manaf, 2013).The outcome of this automation process

is the automated web-based application vulnerability assessment tools, which have

helped automate web-based application vulnerability assessment, by simulating test

engineer actions by penetrating web-based application DEPs with selected attack

strings. This compromises web-based application DEP security in order for security

loophole identification. The vulnerability detection is achieved through the inspection

of web-based application responses towards an attack string (Black, 2011; ÐURIĆ,

2014; Kaushik and Singh, 2013). Presently, the tool has been widely used in

2



web-based application penetration testing to automate the testing phase of the

vulnerability assessment.

The web-based application codes may or may not reachable during the

automated web application vulnerability assessment. To meet the challenges of

assessing web-based application security in testing environments of black-boxes and

white-boxes, the automated white-box and black-box web application vulnerability

assessment was invented. The automated white-box web application vulnerability

assessment parses web-based application codes, performs information or data flow

analysis on web-based application codes for security loopholes identification. On the

other hand, the automated black-box web application vulnerability assessment

dynamically analyses web application execution behaviours toward the malicious data

for the same purpose of vulnerability detection. Besides this, there is also a hybrid

solution, which integrates the white-box and black-box testing techniques to achieve

better scanning efficiency, test results, as well as test coverage (Vieira et al., 2009;

Tung et al., 2014; Ben Jaballah and Kheir, 2016).

1.2 Research Background

Although the automation of web application vulnerability assessment shortens

the testing life-cycle, this allows parallel testing, as well as enables test engineers

to focus on tasks that require manual testing. However, the current state-of-the-art

contains limitations of the false positives and false negatives. The false positive is the

fake vulnerability, that gets reported, while the false negative, is the benign vulnerability

which was not successfully detected (Doupé et al., 2012; Gol and Shah, 2015; Vieira

et al., 2009).

According to the research outcomes of Fonseca et al. (2014b); Baral (2011);

Antunes and Vieira (2014, 2017); Wang et al. (2010); Rahman et al. (2017), false

positive tends to be yielded by automated white-box web application vulnerability

assessment. In the opposite, automated black-box web application vulnerability

assessment tends to produce the false negative. Between the two limitations, false

positives are much worse than the false negatives. False positives cost test enginners

3



extra time and effors for fake vulnerability elimination. However, false negatives

create the confusion. The false negative misleads the test engineer into mistreating a

web-based application security by putting the vulnerable web application

continuously expose to intruder attacks (Díaz and Bermejo, 2013; Yeo, 2013; Suto,

2010). This is despite the fact that invention of the hybrid solution was intended to

mitigate the related limitations of the false positives and false negatives.

Unfortunately, in the testing environment of black-boxes, and in the event that

web-based application codes are not reachable, the present hybrid solution will have

behaved as another automated black-box web application vulnerability assessment,

with the same unresolved limitations of false positives and false negatives. This

elaborates the phenomena of why existing hybrid solutions are barely able to replace

automated black-box web application vulnerability assessments (Tripp et al., 2013;

Medeiros et al., 2014). Consequently, this research has made the choice of enhancing

the state-of-the-art automated black-box web application vulnerability assessment, for

mitigating the limitations of the false negatives. Besides that, this research also

covered the research issues of test coverage, as it was noted that there is a close

relationship between the two attributes.

The state-of-the-art automated black-box web application vulnerability

assessment is language independent. However, without code accessibility, there exists

challenges to include every web-based application content into testing. This including

to systematically test the web-based application’s security, as well as to locate the

security loopholes. Therefore, algorithms which provide solutions for web-based

application reconnaissance, attack vector security assessment, as well as vulnerability

assessments, have been widely invented by practitioners to automate web-based

application vulnerability assessment in the testing environment of black-boxes.

During the automated black-box web application vulnerability assessment, the

reconnaissance solution systematically crawls web-based applications to retrieve and

include web-based application contents into automated web application vulnerability

assessments, with web-based application DEPs discovery being the main priority.

Subsequently, the solutions for attack vectors security assessment plants attack strings

into web-based application DEPs for compromising web-based application

confidentiality, integrity, and availability. Lastly, the solutions for vulnerability

detection inspects web-based application responses for vulnerability detection.

4



Consequently, in an automated black-box web application vulnerability assessment,

there usually exists three critical features, which are web-based application

reconnaissance, attack vector security assessment, and web-based application

vulnerability detection (Aliero and Ghani, 2015; Balduzzi et al., 2011; Chen and Wu,

2010; Makino and Klyuev, 2015; Rocha et al., 2012; Vithanage and Jeyamohan,

2016).

The automated black-box web application vulnerability assessment has

historically failed in crawling the modern web-based application, to include target

web-based application web contents for automated vulnerability assessments

(Choudhary et al., 2012; Benjamin et al., 2010; Benedikt et al., 2002; Muñoz and

Villalba, 2015; Barbosa and Freire, 2007; Raghavan and Garcia-Molina, 2000; Wang

et al., 2010). Besides this, the present state-of-the-art also possesses limitations for

systematically testing modern web-based applications, which continuously expand in

both complexity and size. This includes producing solutions to assess attack vector

security, as well as to detect successful exploitation for vulnerability detection.

Consequently, the current state-of-the-art solutions have always failed to include web

content into testing with vulnerabilities which are typically are missed (Khoury et al.,

2011a,b; Dao and Shibayama, 2010; Antunes and Vieira, 2017). In addition to that,

the default heterogeneous nature of the modern web-based application makes the

web-based application a complicated target. The integration of modern web

technologies have improved the modern-based web application’s responsiveness,

performance, and functionality. However, this evolution also increased the difficulty

of automating the web application vulnerability assessment. Thus, the quick

pavement for the web-based application technology advancement also caused the

current state-of-the-art of automated web application vulnerability assessment to

come to terms of fast elimination.

1.3 Research Problem

The current state-of-the-art of automated black-box web application

vulnerability assessment suffers from limitations of test coverage and false negatives.

The literature review, as presented in Chapter 2, shows that web-based application

5



reconnaissance solutions, such as those proposed by Huang and Lee (2005); Duchene

et al. (2013); Fung et al. (2014) have delivered the necessary solutions for hidden web

crawling. However, these solutions usually ignore the considerations of web-based

application contexts and semantics. Consequently, the current proposed

reconnaissance solutions are only capable of reaching a minor percentage of the

hidden web contents. Successes which had been achieved under current situations

have included test input generation, web semantic extraction, as well as form inputs

for web-based application authentication scheme bypassing, as well as for navigation

and event triggering. Unfortunately, current suggested web-based application

reconnaissance solutions rely too much on the manual, or random approaches which

tend to fail to meet practitioner’s expectations. These manual approaches negatively

affect the scanning performance and experiences, through iterative disrupting of the

crawling process, prompting test engineers for manual web input. On the other hand,

random approaches are always inaccurate, in the sense that executed computation

steps are too easily discarded, or ignored through the implemented defensive

mechanisms. Thus, the existing web-based reconnaissance solutions usually possess

test coverage issues due to many web-based application contents which are untested

(Khoury et al., 2011a; Duchene et al., 2013; Tripp et al., 2013).

On the other hand, current solutions for vulnerability assessment still heavily

rely on the traditional approaches of the capture-and-replay sequence, which is highly

randomised. The solution performs random point-and-shoot approaches to have the

attacker’s vectors security assessed, while incorporating brute force techniques of

fault injection, and fuzzing to penetrate the attacker’s vector security. Practitioners

have produced the necessary countermeasures such search-based testing techniques,

genetic algorithms, learning-based algorithms, and perturbation techniques, just to

name a few, to improve the quality of brute force mechanisms, however, the approach

of assessing the attacker’s vector security has received less attention. It usually

remains randomised, and often does not consider the web-based application’s context

during the automated black-box web application vulnerability assessment. Thus, the

inclusion of the discovered attacker’s vectors into the automated black-box web

application vulnerability assessment is not guaranteed (Doupé et al., 2012; Alata

et al., 2013; Antunes and Vieira, 2014; Dao and Shibayama, 2010).

6



Lastly, there is a vulnerability detection solution to inspect web-based

application responses, using the conventional pattern matching and anomaly detection

technique for vulnerability detection. Unfortunately, these vulnerability detection

solutions are too conservative. The existence of specific keyword or anomaly does not

necessarily mean that there are security loopholes in the assessment web-based

application. Moreover, without the acknowledgement of the relationship between the

source and sink, current vulnerability detection solutions often fail to locate these

security loopholes (Dao and Shibayama, 2010; Antunes and Vieira, 2014).

1.4 Problem Statement

The literature review outcomes, in coming Chapter 2, show that there are

limitations in the current web-based application reconnaissance, vulnerability

detection, and vulnerability assessment solutions for the automated black-box web

application vulnerability assessment. The combination of these weaknesses have

negatively affected the present state-of-the-art of automated black-box web application

vulnerability assessment capability. This includes the introduction of research

problems pertaining to test coverage and false negatives.

1.5 Research Aim

The research problems associated with test coverage and false negatives have

sabotaged the usefulness of automated black-box web application vulnerability

assessments. Therefore, this research aims to produce the necessary countermeasures

to mitigate these limitations, to improve the state-of-the-art’s test coverage and false

negatives.

1.6 Research Question

Limitations in the current web-based application reconnaissance, vulnerability

assessment and detection solutions are factors which contribute to the issues of test

coverage and false negatives. Thus, this research mainly seeks to answer the research

7



question of exploring hiddenweb content, aswell as assessing theweb-based application

security for security loopholes detection. The research’s main research question is

presented below.

How to heuristically and automatically assess and explore modern web-based

application contents without concerns the issues of code accessibility?

This main research question covers the aspect of how to produce the solutions,

or the algorithms, for performing the necessary heuristic web-based application

reconnaissance in the test environment’s black-box. Besides this, the main research

question also covers the necessary aspects of investigating the answers of how to

assess modern web-based application attack vector securities, as well as to detect

security loopholes in the test environment’s black-box.

The production of desired algorithms requires this research work to clarify the

default nature of modern web-based applications and web-based application’s

vulnerability, which includes defining the test approaches for locating the security

loopholes. This is investigated from the perspective of intruders, which will help to

answer the research question on how to manage web exploitation for revealing

security loopholes revealing. This yields the following five sub-research questions:

(a) What is a modern-based application?

This sub-research question investigates theweb-based application’s state-of-the-

art. The study covers the investigation of modern web-based application architectures

and its deployment. Section 2.2 of Chapter 2 presents the answer to this research

question.

(b) What is web-based application vulnerability or security loopholes?

This sub-research question investigates the default nature of web vulnerability

or security loopholes, to help create effective algorithms for vulnerability or security

loophole detection. The activity also includes an examination of the latest web-based

8



application vulnerability statistic reports for vulnerability trends discovery. The study

and answer to this sub-research question is available in Section 2.8 of Chapter 2.

Moreover, this sub-research question also enables this research work to investigate the

state-of-the-art for automated black-box web application vulnerability assessments, as

presented in Section 2.6 of Chapter 2.

(c) How to penetrate web-based application security?

This sub-research question defines the web-based application exploitation,

which leads to studying of the state-of-the-art for automated black-box web

application’s vulnerability assessment and its algorithms. By focusing on web

exploitation and vulnerability assessment, this helps to produce new security

assessment solutions. This relevant study is found in Section 2.5 of Chapter 2.

(d) What is the object to be tested in automated black-box web applications?

This sub-research question investigates current reconnaissance techniques of

automated black-box web application vulnerability assessments. The answer to this

sub-research question defines objects to be scanned in the automated black-box web

application vulnerability assessment for security loophole detection. The relevant study

is found in Section 2.4 of Chapter 2.

(e) How external entities relate to web-based application exploitation,

vulnerability detection, and vulnerability assessment?

This sub-research question investigates relationships between external entities,

web exploitation and vulnerability. Automation of web-based application exploitation,

vulnerability detection, and vulnerability assessment requires valid interaction between

the external entities, and the target web-based application. Thus, this research work

provides a means to study and investigate the corresponding relationship. The relevant

study is found in Section 4.3.1 of Chapter 4.

9



1.7 Research Objectives

The objectives of this research work are to mitigate research problems of test

coverage and false negatives of the automated black-box web application vulnerability

assessment, which includes:

(a) To enhance current web-based application reconnaissance solutions with

algorithms that perform heuristic form filling and input generation.

(b) To enhance current vulnerability assessment solutions with algorithm that

perform the proposed execution path-oriented vulnerability assessment.

(c) To enhance current vulnerability detection solutionswith algorithm that perform

the proposed execution path-oriented data flow analysis and fuzzy testing.

1.8 Research Scopes

To maintain the sustainability of this research work, the following research

scopes were defined:

(a) This research work addresses limitations of test coverage and false negatives of

automated black-box web application vulnerability assessment only.

The limitation of false negatives is severe in automated black-box web

application vulnerability assessments, of which this research problem places

vulnerable web-based application exposure to deal with attacks. Moreover, there is a

close relationship between the two attributes of test coverage and false negatives. The

higher the test coverage, the lower the number of false negatives. Consequently, this

research considers both attributes of test coverage and false negatives only. The

improvements brought by this research work benefits communities by providing a

state-of-the-art solution with precise test results. Unfortunately, this research will not

cover other attributes such as scanning efficiency. In addition to that, this research

work also includes web-based applications without considering other web

components, such as web servers, databases, or web browsers. Web browsers,

10



however, will be used to simulate the web browsing environment for automating the

web-based application’s vulnerability assessment in the testing environment of the

black-box.

(b) This research work considers cross-site scripting vulnerability as an attribute

for bench-marking purpose only.

This research work does not have the intention to study the web-based

application’s vulnerability. Moreover, it is nearly impossible to include every

vulnerability in this single study. Consequently, this research work uses web-based

application vulnerability of cross-site scripting for bench-marking purposes only.

Cross-site scripting was chosen for two reasons. Firstly, the current detection rate of

the cross-site scripting is still low compared to its competitor with a SQL injection.

Secondly, the cross-site scripting vulnerability usually affects the web-based

application’s security only, without harming other web components such as the web

server or database. In this research work, a cross-site scripting attack library was used

to penetrate the web-based application’s security, and cross-site scripting detection

rate was measured to benchmark the proposed algorithms.

(c). This research does not considers the SilverLight and Flash technologies.

The introduction of web technologies such as HTML5, CSS 3, and JavaScript

ES 6 have successfully replaced conventional technologies such as Adobe Flash and

Microsoft SilverLight. It delivers the necessary solutions for developing responsive

and dynamic web-based applications, but with more speed. Moreover, the support for

such technologies as Microsoft SilverLight and Flash will end by 2020. Consequently,

this research work has chosen to exclude these technologies.

1.9 Research Significant

Overall, this research work has delivered the automated black-box web

application vulnerability assessment’s state-of-the-art, modern web-based

application’s architecture, as well as the existing research trends. Besides this, the

11



research has also invented the algorithms to improve the existing web-based

application’s reconnaissance, vulnerability assessment, and vulnerability detection

solutions for mitigating limitations of test coverage and false negatives.

Enhancement of the web-based reconnaissance solution with the invented

algorithms for heuristic form filling algorithms and input generation algorithms

successfully includes the micro hidden contents into testing. The invented

reconnaissance algorithm will be discussed in Chapter 4.

Besides this, the enhancement of the vulnerability assessment solution with the

invented execution path-oriented analysis algorithm successfully achieves much more

complete testing. The invented vulnerability assessment algorithm will be discussed in

Chapter 5.

Lastly, the enhancement of vulnerability detection solutions with the invented

execution path-oriented data flow analysis algorithm and the fuzzy algorithm has

improved the cross-site scripting detection rate. The invented vulnerability detection

algorithm will be discussed as well in Chapter 5.

1.10 Thesis Organisation

Overall, this thesis comprises of seven chapters.

Chapter 1 presents the research area of interest, which covers the research

objectives, research scopes, research questions, research aims, research significance,

the background of the study, as well as the problem statement.

Chapter 2 will present the research trends, patterns and the state-of-the-art of the

automated black-box web application’s vulnerability assessment. Besides this, Chapter

2 also illustrates the related research works related to the automated black-box web

application’s vulnerability assessment, and the present research gap.

12



Chapter 3 will present this research work’s research methodology, which was

designed to enhance the state-of-the-art for the automated black-box web application’s

vulnerability assessment using the applied research method. The designed research

methodology consists of three research phases: investigation and clarification, design

and development, as well as experimentation and validation.

Chapter 4 will present preliminary experiments that were conducted to

investigate the requirements of the automated black-box web application’s

vulnerability assessment. Chapter 4 also presents the enhancements made for the

web-based application’s reconnaissance.

Chapter 5 will present enhancements made for the web-based application’s

vulnerability assessment and vulnerability detection solutions.

Chapter 6 will present and discuss the validity of the enhancements made for

the the state-of-the-art automated black-box web application vulnerability assessment.

Finally, Chapter 7 will conclude this thesis with an overall presentation of the

research work’s contributions, and proposals for future research works.

13



REFERENCES

(2019). WebGoat 8.0. Contribute to WebGoat/WebGoat development by creating an

account on GitHub. Retrievable at https://github.com/WebGoat/WebGoat, original-

date: 2015-03-06T14:02:02Z.

A.A.Puntambekar (2010). Data Structures. Technical Publications. ISBN 978-81-

8431-774-9. Google-Books-ID: 2lvbJjTITuMC.

Acunetix (2018a). acublog news. Retrievable at http://testaspnet.vulnweb.com/.

Acunetix (2018b). acuforum forums. Retrievable at http://testasp.vulnweb.com/.

Acunetix (2018c). Home of Acunetix Art. Retrievable at http://testphp.vulnweb.com/.

Acunetix (2018d). SecurityTweets - HTML5 test website for Acunetix Web Vulnerability

Scanner. Retrievable at http://testhtml5.vulnweb.com/#/popular.

Akrout, R., Alata, E., Kaaniche, M. and Nicomette, V. (2014). An automated black box

approach for web vulnerability identification and attack scenario generation. Journal

of the Brazilian Computer Society. 20(1), 4.

Alata, E., Kaâniche, M., Nicomette, V. and Akrout, R. (2013). An automated approach

to generate web applications attack scenarios. In Dependable Computing (LADC),

2013 Sixth Latin-American Symposium on. April. Rio de Janeiro, Brazil: IEEE,

78–85.

Alexa (2018). alexa top site - Google Scholar. Retrievable at https://scholar.google.

com/scholar?hl=en&as_sdt=0%2C5&q=alexa+top+site&btnG=.

Ali, A. B. M., Abdullah, M. S. and Alostad, J. (2011). SQL-injection vulnerability

scanning tool for automatic creation of SQL-injection attacks. Procedia Computer

Science. 3, 453–458.

Aliero, M. S. and Ghani, I. (2015). A component based SQL injection vulnerability

detection tool. In Software Engineering Conference (MySEC), 2015 9th Malaysian.

December. Kuala Lumpur, Malaysia: IEEE, 224–229.

Alsaleh, M., Alomar, N., Alshreef, M., Alarifi, A. and Al-Salman, A. (2017).

Performance-Based Comparative Assessment of Open Source Web Vulnerability

Scanners. Security and Communication Networks. 2017.

205

https://github.com/WebGoat/WebGoat
http://testaspnet.vulnweb.com/
http://testasp.vulnweb.com/
http://testphp.vulnweb.com/
http://testhtml5.vulnweb.com/#/popular
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=alexa+top+site&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=alexa+top+site&btnG=


Alssir, F. and Ahmed, M. (2012). Web security testing approaches: comparison

framework. In Proceedings of the 2011 2nd International Congress on Computer

Applications and Computational Science. September. Berlin, Heidelberg: Springer,

163–169.

Andrew, K. (2009). Peruggia. Retrievable at https://sourceforge.net/projects/peruggia/.

Antunes, N., Laranjeiro, N., Vieira, M. and Madeira, H. (2009). Effective detection of

SQL/XPath injection vulnerabilities in web services. In Services Computing, 2009.

SCC’09. IEEE International Conference on. September. Bangalore, India: IEEE,

260–267.

Antunes, N. and Vieira, M. (2009a). Comparing the effectiveness of penetration

testing and static code analysis on the detection of sql injection vulnerabilities in

web services. In Dependable Computing, 2009. PRDC’09. 15th IEEE Pacific Rim

International Symposium on. November. Shanghai, China: IEEE, 301–306.

Antunes, N. and Vieira, M. (2009b). Detecting SQL injection vulnerabilities in

web services. In Dependable Computing, 2009. LADC’09. Fourth Latin-American

Symposium on. September. Joao Pessoa, Brazil: IEEE, 17–24.

Antunes, N. and Vieira, M. (2010). Benchmarking vulnerability detection tools for web

services. In Web Services (ICWS), 2010 IEEE International Conference on. July.

Miami, FL, USA: IEEE, 203–210.

Antunes, N. andVieira, M. (2011). Enhancing penetration testingwith attack signatures

and interface monitoring for the detection of injection vulnerabilities in web services.

In Services Computing (SCC), 2011 IEEE International Conference on. July.

Washington, DC, USA: IEEE, 104–111.

Antunes, N. and Vieira, M. (2012). Defending against web application vulnerabilities.

Computer. 45(2), 66–72.

Antunes, N. and Vieira, M. (2014). Penetration testing for web services. Computer.

47(2), 30–36.

Antunes, N. and Vieira, M. (2017). Designing vulnerability testing tools for web

services: approach, components, and tools. International Journal of Information

Security. 16(4), 435–457.

206

https://sourceforge.net/projects/peruggia/


Appelt, D., Nguyen, C. D., Briand, L. C. and Alshahwan, N. (2014). Automated testing

for SQL injection vulnerabilities: an input mutation approach. In Proceedings of

the 2014 International Symposium on Software Testing and Analysis. July. San Jose,

CA, USA: ACM, 259–269.

Ast, P., Kapfenberger, M. and Hauswiesner, S. (2008). Crawler approaches and

technology. [online]. Graz University of Technology, Styria, Austria, 2008.

Auronen, L. (2002). Tool-based approach to assessing web application security.

Helsinki University of Technology. 11, 12–13.

Avancini, A. and Ceccato, M. (2012). Towards a Security Oracle Based on Tree Kernel

Methods. JIMSE 2012, 1.

Avancini, A. and Ceccato, M. (2013). Comparison and integration of genetic

algorithms and dynamic symbolic execution for security testing of cross-site scripting

vulnerabilities. Information and Software Technology. 55(12), 2209–2222.

Avramescu, G., Bucicoiu, M., Rosner, D. and Tapus, N. (2013). Guidelines for

discovering and improving application security. In Control Systems and Computer

Science (CSCS), 2013 19th International Conference on. May. Bucharest, Romania:

IEEE, 560–565.

Awang, N. F. and Manaf, A. A. (2013). Detecting Vulnerabilities in Web Applications

UsingAutomatedBlackBox andManual PenetrationTesting. InAdvances in Security

of Information and Communication Networks. (pp. 230–239). Springer.

Balduzzi, M., Egele, M., Kirda, E., Balzarotti, D. and Kruegel, C. (2010). A solution

for the automated detection of clickjacking attacks. In Proceedings of the 5th ACM

Symposium on Information, Computer and Communications Security. April. Beijing,

China: ACM, 135–144.

Balduzzi,M., Gimenez, C. T., Balzarotti, D. andKirda, E. (2011). AutomatedDiscovery

of Parameter Pollution Vulnerabilities in Web Applications. In NDSS. February. San

Diego, California.

Baral, P. (2011). Web application scanners: a review of related articles [Essay]. IEEE

Potentials. 30(2), 10–14.

207



Barbosa, L. and Freire, J. (2007). An adaptive crawler for locating hidden-web entry

points. In Proceedings of the 16th international conference on World Wide Web.

May. Banff, Alberta, Canada: ACM, 441–450.

Bathia, P., Beerelli, B. R. and Laverdière, M.-A. (2011). Assisting programmers

resolving vulnerabilities in Java web applications. Advanced Computing, 268–279.

Bau, J., Bursztein, E., Gupta, D. and Mitchell, J. (2010). State of the art: Automated

black-box web application vulnerability testing. In Security and Privacy (SP), 2010

IEEE Symposium on. May. Berkeley/Oakland, CA, USA: IEEE, 332–345.

Bazzoli, E., Criscione, C., Maggi, F. and Zanero, S. (2014). XSS Peeker: A

Systematic Analysis of Cross-site Scripting Vulnerability Scanners. arXiv preprint

arXiv:1410.4207.

Ben Jaballah, W. and Kheir, N. (2016). A Grey-Box Approach for Detecting Malicious

User Interactions in Web Applications. In Proceedings of the 2016 International

Workshop on Managing Insider Security Threats. October. Vienna, Austria: ACM,

1–12.

Benedikt, M., Freire, J. and Godefroid, P. (2002). VeriWeb: Automatically testing

dynamic web sites. In In Proceedings of 11th International World Wide Web

Conference (WW W’2002. January. US: Citeseer.

Benjamin, K., Bochmann, G. v., Jourdan, G.-V. and Onut, I.-V. (2010). Some

modeling challenges when testing rich internet applications for security. In Software

Testing, Verification, and Validation Workshops (ICSTW), 2010 Third International

Conference on. April. Montreal, QC, Canada: IEEE, 403–409.

Bennetts, S. (2013). Owasp zed attack proxy. AppSec USA.

Bergholz, A. and Childlovskii, B. (2003). Crawling for domain-specific hidden web

resources. InWeb Information Systems Engineering, 2003. WISE 2003. Proceedings

of the Fourth International Conference on. Dec. Rome, Italy, Italy: IEEE, 125–133.

Berners-Lee, T. (1989). Tim berners-lee. Retrieved from Internet Pioneers website:

http://www. ibiblio. org/pioneers/lee. html.

Biggs, N. (2002). Discrete Mathematics. OUP Oxford. ISBN 978-0-19-850717-8.

Google-Books-ID: Mj9gzZMrXDIC.

208



Black, P. E. (2011). Counting bugs is harder than you think. In Source Code Analysis

and Manipulation (SCAM), 2011 11th IEEE International Working Conference on.

September. Williamsburg, VA: IEEE, 1–9.

Botella, J., Legeard, B., Peureux, F. and Vernotte, A. (2014). Risk-based vulnerability

testing using security test patterns. In International Symposium On Leveraging

Applications of Formal Methods, Verification and Validation. October. Imperial,

Corfu, Greece: Springer, 337–352.

Bozic, J., Simos, D. E. and Wotawa, F. (2014). Attack pattern-based combinatorial

testing. In Proceedings of the 9th International Workshop on Automation of Software

Test. Aug. ancouver, BC, Canada: ACM, 1–7.

Bozic, J. and Wotawa, F. (2013). XSS pattern for attack modeling in testing. In

Proceedings of the 8th International Workshop on Automation of Software Test.

May. San Francisco, CA, USA: IEEE Press, 71–74.

Browne, P. S. (1972). Computer security: a survey. ACM SIGMIS Database: the

DATABASE for Advances in Information Systems. 4(3), 1–12.

Cardwell, K. (2016). Building Virtual Pentesting Labs for Advanced Penetration

Testing. Packt Publishing Ltd. ISBN 978-1-78588-495-5. Google-Books-ID:

SKbWDQAAQBAJ.

Charikar, M. S. (2002). Similarity Estimation Techniques from Rounding Algorithms.

InProceedings of the Thiry-fourth Annual ACMSymposium on Theory of Computing.

STOC ’02. May. New York, NY, USA: ACM. ISBN 978-1-58113-495-7, 380–388.

doi:10.1145/509907.509965. Retrievable at http://doi.acm.org/10.1145/509907.

509965.

Chell, D., Erasmus, T., Colley, S. and Whitehouse, O. (2015). The mobile application

Hacker’s handbook. John Wiley & Sons.

Chen, J.-M. (2013). A Crawler Guard for Quickly Blocking Unauthorized Web Robot.

In Cyberspace Safety and Security. (pp. 1–13). Springer.

Chen, J.-M. and Wu, C.-L. (2010). An automated vulnerability scanner for injection

attack based on injection point. In Computer Symposium (ICS), 2010 International.

December. Tainan, Taiwan: IEEE, 113–118.

209

http://doi.acm.org/10.1145/509907.509965
http://doi.acm.org/10.1145/509907.509965


Choudhary, S., Dincturk, M. E., Bochmann, G. V., Jourdan, G.-V., Onut, I. V. and

Ionescu, P. (2012). Solving some modeling challenges when testing rich internet

applications for security. In Software Testing, Verification and Validation (ICST),

2012 IEEE Fifth International Conference on. April. Montreal, QC, Canada: IEEE,

850–857.

Choudhary, S., Dincturk, M. E., Mirtaheri, S. M., von Bochmann, G., Jourdan, G.-V.

and Onut, I.-V. (2014). Model-Based Rich Internet Applications Crawling:" Menu"

and" Probability" Models. J. Web Eng. 13(3&4), 243–262.

Consortium, W. W. W. (1995). W3C HTML home page.

Dao, T.-B. and Shibayama, E. (2009). Idea: Automatic Security Testing for Web

Applications. Engineering Secure Software and Systems, 180–184.

Dao, T.-B. and Shibayama, E. (2010). Coverage Criteria for Automatic Security Testing

of Web Applications. In ICISS. December. Gandhinagar, India: Springer, 111–124.

Dawes, R. (2011). OWASP WebScarab Project. Retrieved December. 16, 2011.

Díaz, G. and Bermejo, J. R. (2013). Static analysis of source code security: Assessment

of tools against SAMATE tests. Information and software technology. 55(8), 1462–

1476.

Deepa, G. and Thilagam, P. S. (2016). Securing web applications from injection

and logic vulnerabilities: Approaches and challenges. Information and Software

Technology. 74, 160–180.

Deepa, G., Thilagam, P. S., Khan, F. A., Praseed, A., Pais, A. R. and Palsetia, N. (2018).

Black-box detection of XQuery injection and parameter tampering vulnerabilities in

web applications. International Journal of Information Security. 17(1), 105–120.

Dessiatnikoff, A., Akrout, R., Alata, E., Kaâniche, M. and Nicomette, V. (2011). A

clustering approach for web vulnerabilities detection. In Dependable Computing

(PRDC), 2011 IEEE 17th Pacific Rim International Symposium on. December.

Pasadena, CA, USA: IEEE, 194–203.

Dincturk, M. E., Jourdan, G.-V., Bochmann, G. V. and Onut, I. V. (2014). A model-

based approach for crawling rich internet applications. ACMTransactions on theWeb

(TWEB). 8(3), 19.

210



Djuric, Z. (2013). A black-box testing tool for detecting SQL injection vulnerabilities.

In Informatics and Applications (ICIA), 2013 Second International Conference on.

September. Lodz, Poland: IEEE, 216–221.

Doupé, A. (2016). WackoPicko vulnerable website.

Doupé, A., Cavedon, L., Kruegel, C. and Vigna, G. (2012). Enemy of the State: A

State-AwareBlack-BoxWebVulnerability Scanner. InUSENIX Security Symposium,

vol. 14. August. Bellevue, WA.

Doupé, A., Cova, M. and Vigna, G. (2010). Why Johnny can’t pentest: An analysis

of black-box web vulnerability scanners. In International Conference on Detection

of Intrusions and Malware, and Vulnerability Assessment. July. Bonn, Germany:

Springer, 111–131.

Druin, J. (2012). Mutillidae: Brute Force Page Names using Burp-Suite Intruder.

Retrieved June. 30, 2013.

Duchene, F., Rawat, S., Richier, J.-L. and Groz, R. (2013). LigRE: Reverse-engineering

of control and data flowmodels for black-box XSS detection. In Reverse Engineering

(WCRE), 2013 20th Working Conference on. October. Koblenz, Germany: IEEE,

252–261.

Duchene, F., Rawat, S., Richier, J.-L. and Groz, R. (2014). KameleonFuzz:

evolutionary fuzzing for black-box XSS detection. In Proceedings of the 4th ACM

conference on Data and application security and privacy. March. San Antonio,

Texas, USA: ACM, 37–48.

Dukes, L., Yuan, X. and Akowuah, F. (2013). A case study on web application security

testing with tools and manual testing. In Southeastcon, 2013 Proceedings of IEEE.

April. Jacksonville, FL, USA: IEEE, 1–6.

Edmundson, A., Holtkamp, B., Rivera, E., Finifter, M., Mettler, A. and Wagner,

D. (2013). An empirical study on the effectiveness of security code review. In

International Symposium on Engineering Secure Software and Systems. February.

Paris, France: Springer, 197–212.

Engebretson, P. (2013). The Basics of Hacking and Penetration Testing: Ethical

Hacking and Penetration Testing Made Easy. Elsevier. ISBN 978-0-12-411641-2.

Google-Books-ID: 69dEUBJKMiYC.

211



Faheem, M. (2012). Intelligent crawling of Web applications for Web archiving. In

Proceedings of the 21st International Conference on World Wide Web. July. Berlin,

Germany: ACM, 127–132.

Ferrucci, F., Sarro, F., Ronca, D. and Abrahao, S. (2011). A crawljax based

approach to exploit traditional accessibility evaluation tools for AJAX applications.

In Information technology and innovation trends in organizations. (pp. 255–262).

Springer.

Fong, E., Gaucher, R., Okun, V., Black, P. E. and Dalci, E. (2008). Building a test

suite for web application scanners. In Hawaii International Conference on System

Sciences, Proceedings of the 41st Annual. January. Waikoloa, HI, USA: IEEE,

478–478.

Fong, E. and Okun, V. (2007). Web application scanners: definitions and functions. In

System Sciences, 2007. HICSS 2007. 40th Annual Hawaii International Conference

on. January. Waikoloa, HI, USA: IEEE, 280b–280b.

Fonseca, J., Seixas, N., Vieira, M. and Madeira, H. (2014a). Analysis of field data on

web security vulnerabilities. IEEE transactions on dependable and secure computing.

11(2), 89–100.

Fonseca, J., Vieira, M. and Madeira, H. (2007). Testing and comparing web

vulnerability scanning tools for SQL injection and XSS attacks. In Dependable

Computing, 2007. PRDC 2007. 13th Pacific Rim International Symposium on.

December. Melbourne, Qld., Australia: IEEE, 365–372.

Fonseca, J., Vieira, M. and Madeira, H. (2009). Vulnerability & attack injection for

web applications. In Dependable Systems & Networks, 2009. DSN’09. IEEE/IFIP

International Conference on. June. Lisbon, Portugal: IEEE, 93–102.

Fonseca, J., Vieira, M. and Madeira, H. (2014b). Evaluation of web security

mechanisms using vulnerability & attack injection. IEEE Transactions on

Dependable and Secure Computing. 11(5), 440–453.

Foundation, C. S. a. P. (2019). Vulnerable Java based Web Application. Contribute to

CSPF-Founder/JavaVulnerableLab development by creating an account on GitHub.

Retrievable at https://github.com/CSPF-Founder/JavaVulnerableLab, original-date:

2015-01-07T11:11:46Z.

212

https://github.com/CSPF-Founder/JavaVulnerableLab


Fraternali, P., Rossi, G. and Sánchez-Figueroa, F. (2010). Rich internet applications.

IEEE Internet Computing. 14(3), 9–12.

Frauenfelder, M. (2004). Sir Tim Berners-Lee: He created the Web. Now he’s working

on Internet 2.0. Technology Review (October), 40–45.

Fu, X. and Qian, K. (2008). SAFELI: SQL injection scanner using symbolic execution.

In Proceedings of the 2008 workshop on Testing, analysis, and verification of web

services and applications. July. Seattle, Washington: ACM, 34–39.

Fung, A. P., Wang, T., Cheung, K. W. and Wong, T. Y. (2014). Scanning of real-world

web applications for parameter tampering vulnerabilities. In Proceedings of the 9th

ACM symposium on Information, computer and communications security. June.

Kyoto, Japan: ACM, 341–352.

Galán, E., Alcaide, A., Orfila, A. and Blasco, J. (2010). A multi-agent scanner to

detect stored-XSS vulnerabilities. In Internet Technology and Secured Transactions

(ICITST), 2010 International Conference for. November. London, UK: IEEE, 1–6.

Ghafari, M., Shoja, H. and Amirani, M. Y. (2012). Detection and prevention of data

manipulation from client side in web applications. In Trust, Security and Privacy

in Computing and Communications (TrustCom), 2012 IEEE 11th International

Conference on. June. Liverpool, UK: IEEE, 1132–1136.

Giralte, L. C., Conde, C., De Diego, I. M. and Cabello, E. (2013). Detecting denial of

service by modelling web-server behaviour. Computers & Electrical Engineering.

39(7), 2252–2262.

Godefroid, P., Kiezun, A. and Levin, M. Y. (2008). Grammar-basedWhitebox Fuzzing.

In Proceedings of the 29th ACM SIGPLAN Conference on Programming Language

Design and Implementation. PLDI ’08. June. New York, NY, USA: ACM. ISBN

978-1-59593-860-2, 206–215. doi:10.1145/1375581.1375607. Retrievable at http:

//doi.acm.org/10.1145/1375581.1375607.

Godefroid, P., Levin, M. Y. and Molnar, D. (2012). SAGE: Whitebox Fuzzing for

Security Testing. Commun. ACM. 55(3), 40–44. ISSN 0001-0782. doi:10.1145/

2093548.2093564. Retrievable at http://doi.acm.org/10.1145/2093548.2093564.

213

http://doi.acm.org/10.1145/1375581.1375607
http://doi.acm.org/10.1145/1375581.1375607
http://doi.acm.org/10.1145/2093548.2093564


Gol, D. and Shah, N. (2015). Detection of web appication vulnerability based on RUP

model. In Recent Advances in Electronics & Computer Engineering (RAECE), 2015

National Conference on. February. Roorkee, India: IEEE, 96–100.

Gross, J. L., Yellen, J. and Zhang, P. (2013). Handbook of Graph Theory, Second

Edition. CRCPress. ISBN978-1-4398-8018-0. Google-Books-ID: cntcAgAAQBAJ.

Grossman, J. (2007). XSS Attacks: Cross-site scripting exploits and defense. Syngress.

Halfond, W. G., Choudhary, S. R. and Orso, A. (2011). Improving penetration testing

through static and dynamic analysis. Software Testing, Verification and Reliability.

21(3), 195–214.

Hasegawa, Y. (2005). UTF-7 XSS cheat sheet. retrieved at, 2.

Hazel, J. J., Valarmathie, P. and Saravanan, R. (2015). Guarding web application with

multi-Angled attack detection. In Soft-Computing and Networks Security (ICSNS),

2015 International Conference on. Feb. Coimbatore, India: IEEE, 1–4.

He, Y., Xin, D., Ganti, V., Rajaraman, S. and Shah, N. (2013). Crawling deep web entity

pages. In Proceedings of the sixth ACM international conference on Web search and

data mining. February. Rome, Italy: ACM, 355–364.

Heiderich, M., Schwenk, J., Frosch, T., Magazinius, J. and Yang, E. Z. (2013). mxss

attacks: Attacking well-secured web-applications by using innerhtml mutations. In

Proceedings of the 2013 ACM SIGSAC conference on Computer & communications

security. November. Berlin, Germany: ACM, 777–788.

Holm, H., Ekstedt, M. and Sommestad, T. (2013). Effort estimates on web application

vulnerability discovery. In System Sciences (HICSS), 2013 46th Hawaii International

Conference on. March. Wailea, Maui, HI, USA: IEEE, 5029–5038.

Holm, H., Sommestad, T., Almroth, J. and Persson,M. (2011). A quantitative evaluation

of vulnerability scanning. Information Management & Computer Security. 19(4),

231–247.

Huang, J. C. (2007). Path-oriented program analysis. Cambridge University Press.

Huang, Y.-W., Huang, S.-K., Lin, T.-P. and Tsai, C.-H. (2003). Web application security

assessment by fault injection and behavior monitoring. In Proceedings of the 12th

international conference on World Wide Web. May. Budapest, Hungary: ACM,

148–159.

214



Huang, Y.-W. and Lee, D. T. (2005). Web Application Security—Past, Present, and

Future. In Computer Security in the 21st Century. (pp. 183–227). Springer.

Huang, Y.-W., Tsai, C.-H., Lee, D. T. and Kuo, S.-Y. (2004a). Non-detrimental web

application security scanning. In Software Reliability Engineering, 2004. ISSRE

2004. 15th International Symposium on. November. Saint-Malo, Bretagne, France:

IEEE, 219–230.

Huang, Y.-W., Tsai, C.-H., Lin, T.-P., Huang, S.-K., Lee, D. T. and Kuo, S.-Y. (2005).

A testing framework for Web application security assessment. Computer Networks.

48(5), 739–761.

Huang, Y.-W., Yu, F., Hang, C., Tsai, C.-H., Lee, D.-T. andKuo, S.-Y. (2004b). Securing

web application code by static analysis and runtime protection. In Proceedings of

the 13th international conference on World Wide Web. May. New York, NY, USA:

ACM, 40–52.

Huiyao, A., Yang, S., Tao, Y., Hui, L., Peng, Z. and Jun, Z. (2014). A New

Architecture of Ajax Web Application Security Crawler with Finite-State Machine.

InCyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), 2014

International Conference on. Oct. Shanghai, China: IEEE, 112–117.

Hydara, I., Sultan, A. B. M., Zulzalil, H. and Admodisastro, N. (2015). Current state

of research on cross-site scripting (XSS)–A systematic literature review. Information

and Software Technology. 58, 170–186.

Imperva (2017). The State of Web Application Vulnerabilities in

2017| Imperva. Retrievable at https://www.imperva.com/blog/2017/12/

the-state-of-web-application-vulnerabilities-in-2017/.

Ipeirotis, P. G., Agichtein, E., Jain, P. and Gravano, L. (2006). To search or to crawl?:

towards a query optimizer for text-centric tasks. In Proceedings of the 2006 ACM

SIGMOD international conference onManagement of data. June. Chicago, IL, USA:

ACM, 265–276.

ISO, I. (2010). IEEE, Systems and Software Engineering–Vocabulary. IEEE computer

society, Piscataway, NJ.

J, B. (1999). Bach: Risk and requirements-based testing - Google Scholar.

Retrievable at https://scholar.google.com/scholar_lookup?title=Risk%20and%

215

https://www.imperva.com/blog/2017/12/the-state-of-web-application-vulnerabilities-in-2017/
https://www.imperva.com/blog/2017/12/the-state-of-web-application-vulnerabilities-in-2017/
https://scholar.google.com/scholar_lookup?title=Risk%20and%20Requirements-Based%20Testing&author=J..%20Bach&journal=Computer&volume=32&issue=6&pages=113-114&publication_year=1999
https://scholar.google.com/scholar_lookup?title=Risk%20and%20Requirements-Based%20Testing&author=J..%20Bach&journal=Computer&volume=32&issue=6&pages=113-114&publication_year=1999
https://scholar.google.com/scholar_lookup?title=Risk%20and%20Requirements-Based%20Testing&author=J..%20Bach&journal=Computer&volume=32&issue=6&pages=113-114&publication_year=1999


20Requirements-Based%20Testing&author=J..%20Bach&journal=Computer&

volume=32&issue=6&pages=113-114&publication_year=1999.

Jason, S. and Dan, T. (2006). Paros Proxy | TestingSecurity.com. Retrievable at

http://www.testingsecurity.com/paros_proxy.

Jovanovic, N., Kruegel, C. andKirda, E. (2006). Pixy: A static analysis tool for detecting

web application vulnerabilities. In Security and Privacy, 2006 IEEE Symposium on.

June. Berkeley/Oakland, CA, USA: IEEE, 1–6.

Kals, S., Kirda, E., Kruegel, C. and Jovanovic, N. (2006). Secubat: a web vulnerability

scanner. In Proceedings of the 15th international conference on World Wide Web.

May. Edinburgh, Scotland: ACM, 247–256.

Kaushik, M. and Singh, G. (2013). A STUDY OF TESTING TECHNIQUES FOR

WEB APPLICATIONS.

Khoury, N., Zavarsky, P., Lindskog, D. and Ruhl, R. (2011a). An analysis of black-box

web application security scanners against stored SQL injection. In Privacy, Security,

Risk and Trust (PASSAT) and 2011 IEEE Third Inernational Conference on Social

Computing (SocialCom), 2011 IEEE Third International Conference on. October.

Boston, MA, USA: IEEE, 1095–1101.

Khoury, N., Zavarsky, P., Lindskog, D. and Ruhl, R. (2011b). Testing and assessing

web vulnerability scanners for persistent SQL injection attacks. In Proceedings of

the First International Workshop on Security and Privacy Preserving in e-Societies.

June. Beirut, Lebanon: ACM, 12–18.

Klein, A. (2002). Cross site scripting explained. Sanctum White Paper, 1–7.

Klein, A. (2005). DOM based cross site scripting or XSS of the third kind. http://www.

webappsec. org/projects/articles/071105. shtml.

Kosuga, Y., Kono, K., Hanaoka, M., Hishiyama, M. and Takahama, Y. (2007).

Sania: Syntactic and semantic analysis for automated testing against sql injection.

In Computer Security Applications Conference, 2007. ACSAC 2007. Twenty-Third

Annual. December. Miami Beach, FL, United States: IEEE, 107–117.

Kozina, M., Golub, M. and Groš, S. (2009). A method for identifying Web

applications. Int. J. Inf. Secur. 8(6), 455. ISSN 1615-5262, 1615-5270. doi:

216

https://scholar.google.com/scholar_lookup?title=Risk%20and%20Requirements-Based%20Testing&author=J..%20Bach&journal=Computer&volume=32&issue=6&pages=113-114&publication_year=1999
https://scholar.google.com/scholar_lookup?title=Risk%20and%20Requirements-Based%20Testing&author=J..%20Bach&journal=Computer&volume=32&issue=6&pages=113-114&publication_year=1999
https://scholar.google.com/scholar_lookup?title=Risk%20and%20Requirements-Based%20Testing&author=J..%20Bach&journal=Computer&volume=32&issue=6&pages=113-114&publication_year=1999
https://scholar.google.com/scholar_lookup?title=Risk%20and%20Requirements-Based%20Testing&author=J..%20Bach&journal=Computer&volume=32&issue=6&pages=113-114&publication_year=1999
http://www.testingsecurity.com/paros_proxy


10.1007/s10207-009-0092-3. Retrievable at https://link.springer.com/article/10.

1007/s10207-009-0092-3.

Lebeau, F., Legeard, B., Peureux, F. andVernotte, A. (2013). Model-based vulnerability

testing for web applications. In Software Testing, Verification and Validation

Workshops (ICSTW), 2013 IEEE Sixth International Conference on. March.

Luxembourg, Luxembourg: IEEE, 445–452.

Legeard, B., Gupta, S., Schoch, J.-P. and Wilkinson, J. S. (2017). Software Testing

Industrialization: A Model-Based Testing Perspective. Wiley. ISBN 978-0-470-

93951-2.

Lei, L., Jing, X., Minglei, L. and Jufeng, Y. (2013). A Dynamic SQL injection

vulnerability test case generation model based on the multiple phases detection

approach. In Computer Software and Applications Conference (COMPSAC), 2013

IEEE 37th Annual. July. Kyoto, Japan: IEEE, 256–261.

Levenshtein, V. I. (1965). Binary codes capable of correcting deletions, insertions and

reversals. Doklady. Akademii Nauk SSSR. 163(4), 845–848.

Li, N., Xie, T., Jin, M. and Liu, C. (2010). Perturbation-based user-input-validation

testing of web applications. Journal of Systems and Software. 83(11), 2263–2274.

Li, X., Si, X. and Xue, Y. (2014). Automated black-box detection of access control

vulnerabilities in web applications. In Proceedings of the 4th ACM conference on

Data and application security and privacy. March. San Antonio, Texas, USA: ACM,

49–60.

Li, X., Yan, W. and Xue, Y. (2012). SENTINEL: securing database from logic flaws

in web applications. In Proceedings of the second ACM conference on Data and

Application Security and Privacy. September. Lyon, France: ACM, 25–36.

Liu, B., Shi, L., Cai, Z. and Li, M. (2012). Software vulnerability discovery techniques:

A survey. InMultimedia Information Networking and Security (MINES), 2012 Fourth

International Conference on. November. Nanjing, China: IEEE, 152–156.

Liu, L., Su, G., Xu, J., Zhang, B., Kang, J., Xu, S., Li, P. and Si, G. (2017). An

Inferential Metamorphic Testing Approach to Reduce False Positives in SQLIV

Penetration Test. In Computer Software and Applications Conference (COMPSAC),

2017 IEEE 41st Annual, vol. 1. July. Turin, Italy: IEEE, 675–680.

217

https://link.springer.com/article/10.1007/s10207-009-0092-3
https://link.springer.com/article/10.1007/s10207-009-0092-3


Livshits, V. B. (2004). Findings security errors in Java applications using lightweight

static analysis. In Computer Security Applications Conference, Tucson, AZ. July.

Baltimore, MD, 2.

Loh, P. K. K. and Subramanian, D. (2010). Fuzzy classification metrics for scanner

assessment and vulnerability reporting. IEEE Transactions on Information Forensics

and security. 5(4), 613–624.

Lounis, O., Guermeche, S. E. B., Saoudi, L. and Benaicha, S. E. (2014). A new

algorithm for detecting SQL injection attack in Web application. In Science and

Information Conference (SAI), 2014. Aug. London, UK: IEEE, 589–594.

Makino, Y. and Klyuev, V. (2015). Evaluation of web vulnerability scanners.

In Intelligent Data Acquisition and Advanced Computing Systems: Technology

and Applications (IDAACS), 2015 IEEE 8th International Conference on, vol. 1.

September. Warsaw, Poland: IEEE, 399–402.

McAllister, S., Kirda, E. and Kruegel, C. (2008). Leveraging user interactions for

in-depth testing of web applications. In Raid, vol. 8. September. Cambridge, MA,

USA: Springer, 191–210.

McCune, R. (2019). Contribute to raesene/bWAPP development by creating an account

on GitHub. Retrievable at https://github.com/raesene/bWAPP, original-date: 2015-

09-17T12:46:24Z.

Medeiros, I., Neves, N. F. and Correia, M. (2014). Automatic detection and correction

of web application vulnerabilities using data mining to predict false positives. In

Proceedings of the 23rd international conference on World wide web. April. Seoul,

Korea: ACM, 63–74.

Meier, J. D., Hill, D., Homer, A., Jason, T., Bansode, P., Wall, L., Boucher Jr,

R. and Bogawat, A. (2009). Microsoft application architecture guide. Microsoft

Corporation.

Mesbah, A., Bozdag, E. and Van Deursen, A. (2008). Crawling Ajax by inferring user

interface state changes. In Web Engineering, 2008. ICWE’08. Eighth International

Conference on. July. Yorktown Heights, NJ, USA: IEEE, 122–134.

Monga, M., Paleari, R. and Passerini, E. (2009). A hybrid analysis framework for

detectingweb application vulnerabilities. InProceedings of the 2009 ICSEWorkshop

218

https://github.com/raesene/bWAPP


on Software Engineering for Secure Systems. May. Vancouver, BC, Canada: IEEE

Computer Society, 25–32.

Moonen, L. (2011). Static Analysis for Software Verification.

Muñoz, F. R. and Villalba, L. J. G. (2015). Web from preprocessor for crawling.

Multimedia Tools and Applications. 74(19), 8559–8570.

Myers, G. J., Sandler, C. and Badgett, T. (2011). The Art of Software Testing. John

Wiley & Sons. ISBN 978-1-118-13315-6. Google-Books-ID: GjyEFPkMCwcC.

Negara, N. and Stroulia, E. (2012). Automated acceptance testing of javascript web

applications. In Reverse Engineering (WCRE), 2012 19th Working Conference on.

Oct. Kingston, ON, Canada: IEEE, 318–322.

Nguyen-Tuong, A., Guarnieri, S., Greene, D., Shirley, J. and Evans, D. (2005).

Automatically hardening web applications using precise tainting. Security and

Privacy in the Age of Ubiquitous Computing, 295–307.

Orchard, D. (2006). [Editorial Draft] State in Web application design. Retrievable at

https://www.w3.org/2001/tag/doc/state.html.

OWASP, T. (2017). Application Security Risks-2017, Open Web Application Security

Project (OWASP).

Palsetia, N., Deepa, G., Khan, F. A., Thilagam, P. S. and Pais, A. R. (2016). Securing

native XMLdatabase-drivenweb applications fromXQuery injection vulnerabilities.

Journal of Systems and Software. 122, 93–109.

Parvez, M., Zavarsky, P. and Khoury, N. (2015). Analysis of effectiveness of black-

box web application scanners in detection of stored SQL injection and stored XSS

vulnerabilities. In Internet Technology and Secured Transactions (ICITST), 2015

10th International Conference for. Dec. London, UK: IEEE, 186–191.

Patil, S., Marathe, N. and Padiya, P. (2016). Design of efficient web vulnerability

scanner. In Inventive Computation Technologies (ICICT), International Conference

on, vol. 2. Aug. Coimbatore, India: IEEE, 1–6.

Pellegrino, G., Tschürtz, C., Bodden, E. and Rossow, C. (2015). jÄk: Using Dynamic

Analysis to Crawl and Test Modern Web Applications. In International Workshop

on Recent Advances in Intrusion Detection. November. Kyoto, Japan: Springer,

295–316.

219

https://www.w3.org/2001/tag/doc/state.html


Pennington, W., Grossman, J., Stone, R. and Pazirandeh, S. (2013). Using fuzzy

classification models to perform matching operations in a web application security

scanner.

Pérez, P. M., Filipiak, J. and Sierra, J. M. (2011). LAPSE+ static analysis security

software: Vulnerabilities detection in java EE applications. Future Information

Technology, 148–156.

Raghavan, S. and Garcia-Molina, H. (2000). Crawling the hidden web. Technical

report. Stanford.

Rahman, T. F. A., Buja, A. G., Abd, K. and Ali, F. M. (2017). SQL Injection Attack

Scanner Using Boyer-Moore String Matching Algorithm. JCP. 12(2), 183–189.

Razzaq, A., Anwar, Z., Ahmad, H. F., Latif, K. and Munir, F. (2014a). Ontology for

attack detection: An intelligent approach to web application security. computers &

security. 45, 124–146.

Razzaq, A., Latif, K., Ahmad, H. F., Hur, A., Anwar, Z. and Bloodsworth, P. C.

(2014b). Semantic security against web application attacks. Information Sciences.

254, 19–38.

Reshef, E., El-Hanany, Y., Raanan, G. and Tsarfati, T. (2007). System for determining

web application vulnerabilities.

Riancho, A. (2013). w3af. Retrieved June. 30, 2013.

Rick, H. (2012). The Penetration Testing Execution Standard. Retrievable at http:

//www.pentest-standard.org/index.php/Main_Page.

Rocha, D., Kreutz, D. and Turchetti, R. (2012). A free and extensible tool to detect

vulnerabilities in web systems. In Information Systems and Technologies (CISTI),

2012 7th Iberian Conference on. June. Madrid, Spain: IEEE, 1–6.

Rocha, T. S. and Souto, E. (2014). ETSSDetector: a tool to automatically detect Cross-

Site Scripting vulnerabilities. In Network Computing and Applications (NCA), 2014

IEEE 13th International Symposium on. Aug. Cambridge, MA, USA: IEEE, 306–

309.

Ruse, M. E. (2013). Model checking techniques for vulnerability analysis of Web

applications.

220

http://www.pentest-standard.org/index.php/Main_Page
http://www.pentest-standard.org/index.php/Main_Page


Sadeghian, A., Zamani, M. and Manaf, A. A. (2013). A Taxonomy of SQL

Injection Detection and Prevention Techniques. In 2013 International Conference on

Informatics and Creative Multimedia. September. Kuala Lumpur, Malaysia, 53–56.

doi:10.1109/ICICM.2013.18.

Salas, M. I. P. and Martins, E. (2014). Security testing methodology for vulnerabilities

detection of xss in web services and ws-security. Electronic Notes in Theoretical

Computer Science. 302, 133–154.

Saleh, A. Z. M., Rozali, N. A., Buja, A. G., Jalil, K. A., Ali, F. H. M. and Rahman,

T. F. A. (2015). A method for web application vulnerabilities detection by using

boyer-moore string matching algorithm. Procedia Computer Science. 72, 112–121.

Schanes, C., Hübler, A., Fankhauser, F. andGrechenig, T. (2013). Generic Approach for

Security Error Detection Based on Learned System Behavior Models for Automated

Security Tests. In Software Testing, Verification and ValidationWorkshops (ICSTW),

2013 IEEE Sixth International Conference on. March. Luxembourg, Luxembourg:

IEEE, 453–460.

Scott, D. and Sharp, R. (2002). Abstracting Application-level Web Security. In

Proceedings of the 11th International Conference on World Wide Web. WWW ’02.

May. NewYork, NY, USA: ACM. ISBN 978-1-58113-449-0, 396–407. doi:10.1145/

511446.511498. Retrievable at http://doi.acm.org/10.1145/511446.511498.

Security Standards Council (2017). Information Supplement: Penetration

Testing Guidance. Retrievable at https://www.pcisecuritystandards.org/documents/

Penetration-Testing-Guidance-v1_1.pdf.

Shahriar, H. and Zulkernine, M. (2009). Automatic testing of program security

vulnerabilities. In Computer Software and Applications Conference, 2009.

COMPSAC’09. 33rd Annual IEEE International, vol. 2. July. Seattle, WA, USA:

IEEE, 550–555.

Shang, K. andHossen, Z. (2013). Applying fuzzy logic to risk assessment and decision-

making. Casualty Actuarial Society, Canadian Institute of Actuaries, Society of

Actuaries, 1–59.

221

http://doi.acm.org/10.1145/511446.511498
https://www.pcisecuritystandards.org/documents/Penetration-Testing-Guidance-v1_1.pdf
https://www.pcisecuritystandards.org/documents/Penetration-Testing-Guidance-v1_1.pdf


Shay, C. (2017). The Prices vs. Features of Web Application

Vulnerability Scanners. Retrievable at http://www.sectoolmarket.com/

price-and-feature-comparison-of-web-application-scanners-unified-list.html.

Shklar, L. and Rosen, R. (2009). Web Application Architecture: Principles,

Protocols and Practices. Wiley. ISBN 978-0-470-51860-1. Google-Books-ID:

gcHJQwAACAAJ.

Sima, C., Kelly, R., Millar, S., Raboud, R., Sullivan, B., Sullivan, J. and

Tillery, D. (2006). Interactive web crawling. Retrievable at http://www.

google.com/patents/US20060282494, u.S. Classification 709/200; International

Classification H04L9/00, H04L29/06, H04L9/32; Cooperative Classification

H04L63/20, H04L63/12; European Classification H04L63/12, H04L63/20.

Sima, C., Millar, S., Kelly, R., Sullivan, B., Sullivan, G. and Tillery, D. (2010).

Integrated crawling and auditing of web applications and web content.

Simos, D. E., Kleine, K., Ghandehari, L. S. G., Garn, B. and Lei, Y. (2016). A

Combinatorial Approach to Analyzing Cross-Site Scripting (XSS) Vulnerabilities

in Web Application Security Testing. In IFIP International Conference on Testing

Software and Systems. October. Graz, Austria: Springer, 70–85.

Singh, A. K. and Roy, S. (2012). A network based vulnerability scanner for detecting

SQLI attacks in web applications. In Recent Advances in Information Technology

(RAIT), 2012 1st International Conference on. March. Dhanbad, India: IEEE, 585–

590.

Singh, A. K. and Tiwari, L. (2011). Vulnerability Assessment and penetration

Testing. In National Conference on Information & Communication Technology

(NCICT–2011), ISBN. September. Lyon, France, 978–93.

Spett, K. (2005). Cross-site scripting. SPI Labs. 1, 1–20.

Su, Z. and Wassermann, G. (2006). The essence of command injection attacks in

web applications. In ACM SIGPLAN Notices, vol. 41. January. Charleston, South

Carolina, USA: ACM, 372–382.

Subramanian, D., Le, H. T., Loh, P. K. K. and Premkumar, A. B. (2010). Quantitative

Evaluation of Related Web-Based Vulnerabilities. In Secure Software Integration

222

http://www.sectoolmarket.com/price-and-feature-comparison-of-web-application-scanners-unified-list.html
http://www.sectoolmarket.com/price-and-feature-comparison-of-web-application-scanners-unified-list.html
http://www.google.com/patents/US20060282494
http://www.google.com/patents/US20060282494


and Reliability Improvement Companion (SSIRI-C), 2010 Fourth International

Conference on. June. Singapore, Singapore: IEEE, 118–125.

Surribas, N. (2006). Wapiti, web application vulnerability scanner/security auditor.

URL: http://wapiti. sourceforge. net.

Suto, L. (2007). Analyzing the effectiveness and coverage of Web application security

scanners. San Francisco, October.

Suto, L. (2010). Analyzing the accuracy and time costs of web application security

scanners. San Francisco, February.

Sutton, M., Greene, A. and Amini, P. (2007). Fuzzing: Brute Force Vulnerability

Discovery. Pearson Education. ISBN 978-0-321-68085-3. Google-Books-ID:

DPAwwn7QDy8C.

Takanen, A., Demott, J. D. and Miller, C. (2008). Fuzzing for software security testing

and quality assurance. Artech House.

Tatli, E. s. and Urgun, B. (2017). WIVET—Benchmarking Coverage Qualities of Web

Crawlers. The Computer Journal. 60(4), 555–572.

Tetskyi, A., Kharchenko, V. and Uzun, D. (2018). Neural networks based choice of

tools for penetration testing of web applications. In 2018 IEEE 9th International

Conference on Dependable Systems, Services and Technologies (DESSERT). May.

Kiev, Ukraine: IEEE.

Thomé, J., Gorla, A. and Zeller, A. (2014). Search-based security testing of web

applications. In Proceedings of the 7th International Workshop on Search-Based

Software Testing. November. Williamsburg, VI, USA: ACM, 5–14.

Tian-yang, G., Yin-Sheng, S. and You-yuan, F. (2010). Research on software security

testing. World Academy of science, engineering and Technology. 70, 647–651.

Tripp, O., Pistoia, M., Cousot, P., Cousot, R. and Guarnieri, S. (2013). Andromeda:

Accurate and Scalable Security Analysis of Web Applications. In FASE, vol. 7793.

March. Rome, Italy: Springer, 210–225.

Tung, Y.-H., Tseng, S.-S., Shih, J.-F. and Shan, H.-L. (2013). A cost-effective approach

to evaluating security vulnerability scanner. InNetwork Operations andManagement

Symposium (APNOMS), 2013 15th Asia-Pacific. September. Hiroshima, Japan:

IEEE, 1–3.

223



Tung, Y.-H., Tseng, S.-S., Shih, J.-F. and Shan, H.-L. (2014). W-VST: A Testbed

for Evaluating Web Vulnerability Scanner. In Quality Software (QSIC), 2014 14th

International Conference on. October. Dallas, TX, USA: IEEE, 228–233.

ÐURIĆ, Z. (2014). WAPTT-Web Application Penetration Testing Tool. Advances in

Electrical and Computer Engineering. 14(1).

Utting, M. and Legeard, B. (2010). Practical Model-Based Testing: A Tools Approach.

Elsevier. ISBN 978-0-08-046648-4.

Valiente, G. (2013). Algorithms on Trees and Graphs. Springer Science & Business

Media. ISBN 978-3-662-04921-1. Google-Books-ID: rOmpCAAAQBAJ.

van der Loo, F. (2011). Comparison of penetration testing tools for web applications.

PhD Thesis. Master’s thesis, University of Radboud, Netherlands.

van Eyk, E., van Leeuwen, W., Larson, M. A. and Hermans, F. (2014). Performance of

near-duplicate detection algorithms for Crawljax. Citeseer.

VanRijsbergen, C. J. (1979). Information retrieval. dept. of computer science, university

of glasgow. URL: citeseer. ist. psu. edu/vanrijsbergen79information. html. 14.

Veracode (2015). Four Out of Five Applications Written in Web Scripting Languages

Fail OWASP Top 10 Upon First Assessment. Retrievable at http://www.veracode.

com/.

Vernotte, A., Dadeau, F., Lebeau, F., Legeard, B., Peureux, F. and Piat, F. (2014).

Efficient detection of multi-step cross-site scripting vulnerabilities. In International

Conference on Information Systems Security. December. Hyderabad, India: Springer,

358–377.

Vieira, M., Antunes, N. and Madeira, H. (2009). Using web security scanners to detect

vulnerabilities in web services. In Dependable Systems & Networks, 2009. DSN’09.

IEEE/IFIP International Conference on. June. Lisbon, Portugal: IEEE, 566–571.

Vithanage, N. M. and Jeyamohan, N. (2016). WebGuardia-an integrated penetration

testing system to detect web application vulnerabilities. InWireless Communications,

Signal Processing and Networking (WiSPNET), International Conference on. March.

Chennai, India: IEEE, 221–227.

W3C (2018). Browser Statistics. Retrievable at https://www.w3schools.com/browsers/

default.asp.

224

http://www.veracode.com/
http://www.veracode.com/
https://www.w3schools.com/browsers/default.asp
https://www.w3schools.com/browsers/default.asp


Wang, S., Gong, Y., Chen, G., Sun, Q. and Yang, F. (2013). Service vulnerability

scanning based on service-oriented architecture in Web service environments.

Journal of Systems Architecture. 59(9), 731–739.

Wang, X., Wang, L., Wei, G., Zhang, D. and Yang, Y. (2010). Hidden web crawling

for SQL injection detection. In Broadband Network and Multimedia Technology

(IC-BNMT), 2010 3rd IEEE International Conference on. January. Beijing, China:

IEEE, 14–18.

Wassermann, G. and Su, Z. (2008). Static detection of cross-site scripting

vulnerabilities. In Proceedings of the 30th international conference on Software

engineering. May. Leipzig, Germany: ACM, 171–180.

Wei, K., Muthuprasanna, M. and Kothari, S. (2006). Preventing SQL injection attacks

in stored procedures. In Software Engineering Conference, 2006. Australian. April.

Sydney, NSW, Australia: IEEE, 8–pp.

Weidman, G. (2014). Penetration testing: a hands-on introduction to hacking. No

Starch Press.

WhiteHat (2017). 2017 Application Security Statistics Report - WhiteHat Security.

Retrievable at https://www.whitehatsec.com/resources-category/premium-content/

web-application-stats-report-2017/.

Xiong, P., Stepien, B. and Peyton, L. (2009). Model-based penetration test framework

for web applications using TTCN-3. E-Technologies: Innovation in an Open World,

141–154.

Yang, J.-M., Cai, R., Wang, Y., Zhu, J., Zhang, L. and Ma, W.-Y. (2009). Incorporating

site-level knowledge to extract structured data from web forums. In Proceedings of

the 18th international conference on World wide web. April. Madrid, Spain: ACM,

181–190.

Yang, X., Chen, Y., Zhang, W. and Zhang, S. (2011). Exploring injection prevention

technologies for security-aware distributed collaborative manufacturing on the

Semantic Web. The International Journal of Advanced Manufacturing Technology.

54(9), 1167–1177.

Yeo, J. (2013). Using penetration testing to enhance your company’s security.Computer

Fraud & Security. 2013(4), 17–20.

225

https://www.whitehatsec.com/resources-category/premium-content/web-application-stats-report-2017/
https://www.whitehatsec.com/resources-category/premium-content/web-application-stats-report-2017/


Zalewski, M., Heinen, N. and Roschke, S. (2011). Skipfish-web application security

scanner. URL: http://code. google. com/p/skipfish/(visited on 06/03/2012).

226


	COVER PAGE
	PSZ FORM
	SUPERVISOR(S) DECLARATION
	COOPERATION DECLARATION
	TITLE PAGE
	 DECLARATION
	 DEDICATION
	 ACKNOWLEDGEMENT
	 ABSTRACT
	 ABSTRAK
	 TABLE OF CONTENTS
	 LIST OF TABLES
	 LIST OF FIGURES
	 LIST OF ABBREVIATIONS
	 LIST OF SYMBOLS
	
	
	Area of Research
	Research Background
	Research Problem
	Problem Statement
	Research Aim
	Research Question
	
	Research Scopes
	Research Significant
	Thesis Organisation

	
	The Web-based Application
	Web-based Application Vulnerability Assessment
	Penetration Testing
	Web Application Penetration Testing
	Automates the Web Application Penetration Testing

	Automated Web Application Vulnerability Assessment Tool
	Automated Black-box Web Application Vulnerability Assessment
	Web-based Application Reconnaissance
	Web-based Application Vulnerability Assessment
	Web-based Application Vulnerability Detection

	Existing Automated Web Application Vulnerability Assessment Quality 
	The Test-beds to Quantify Automated Web Application Vulnerability Assessment Tools Quality
	The Metrics to Measure Automated Web Application Vulnerability Assessment Quality
	Selection of Features: Test-beds, Measurement Attributes and Bench-marking Tools

	The Web Vulnerabilities
	SQL Injection
	Cross-site Scripting
	The Selection of Feature: The Vulnerability

	Literature Review Outcomes
	Criticality of False Positive and False Negative
	The Research Gap
	Requirements Analysis

	Summary

	
	Introduction
	The Research Framework
	Investigation and Clarification
	Algorithms Design and Development
	Experimentation and Evaluation

	Summary

	
	Introduction
	Automating the Web-based Application Reconnaissance
	Modern Web-based Application Properties
	Modern Web-based Application Contents

	Web Application Execution Behaviours
	The Input Function
	The Inputs

	Algorithm for Heuristic Form Filling
	Algorithm for Value of Input Set Generation
	Implementation of Reconnaissance Algorithm
	Web-based Application Modelling
	State Change Detection
	Web Pages Crawling Strategy

	Summary

	ENHANCEMENT OF ALGORITHMS FOR VULNERABILITY ASSESSMENT AND VULNERABILITY DETECTION
	Introduction
	Automation of Vulnerability Assessment and Vulnerability Detection
	Program Path-Oriented Analysis
	Execution Path-Oriented Analysis
	The Heuristic Algorithm for Vulnerability Assessment

	The Applied Exploitation Technique
	Attack library

	Enhancement of Automated Vulnerability Detection
	Algorithm for Vulnerability Detection
	Execution Path-Oriented Data Flow Analysis
	Fuzzy Set for Attack String Execution Identification

	The Adopted Technologies
	Summary

	RESULTS AND DISCUSSIONS
	Introduction
	Experimentation to Benchmark the Algorithms
	Test Coverage
	Wivet Score
	The Number of URLs
	The Number of Web Pages
	The Number of Directories or Files
	The Number of Duplicated URLs
	The Number of States
	Authentication Mechanism Bypassing

	Vulnerability Detection Rate
	The number of cross-site scripting vulnerabilities
	The Number of False Positives
	The Number of False Negatives
	The Number of True Negatives
	The Number of Duplicate Vulnerabilities

	Scanning Efficiency
	Relationship Between Test Coverage and Vulnerability Detection Rate
	Importance of Web Application Reconnaissance and Data Flow Analysis

	Limitations
	Summary

	CONCLUSION AND FUTURE RESEARCH DIRECTION
	Introduction
	Research Work Revisitation
	Research Contributions
	Future Works
	Concurrent Automated Web Application Vulnerability Assessment
	False Negatives and False Positives Further Reduction
	Heuristic Web-based Application Reconnaissance Solution
	Dynamic Security Penetration
	Heuristic Web Vulnerability Detection


	REFERENCES
	LIST OF PUBLICATIONS



