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Abstract. Wells turbine is an important component in the oscillating water column (OWC) 
system. Thus, many researchers tend to improve the performance via experiment or 
computational fluid dynamics (CFD) simulation, which is cheaper. As the CFD method becomes 
more popular, the lack of evidence to support the parameters used during the CFD simulation 
becomes a big issue. This paper aims to review the CFD models applied to the Wells turbine for 
the OWC system. Journal papers from the past ten years were summarized in brief critique. As 
a summary, the FLUENT and CFX software are mostly used to simulate the Wells turbine flow 
problems while SST k- turbulence model is the widely used model. A grid independence test 
is essential when doing CFD simulation. In conclusion, this review paper can show the research 
gap for CFD simulation and can reduce the time in selecting suitable parameters when involving 
simulation in the Wells turbine.  

1. Introduction 

Ocean energy is among the primary sources of renewable energy other than Solar, Wind, Hydroelectric, 
Biomass, Geothermal [1]. Under ocean energy, wave energy is considered energy with a high potential 
as a renewable energy, but it is mainly untapped [2]. The main benefit of wave energy is having high 
energy density [3], high source availability [4], high load factor [3], source predictability compared to 
other renewable energy sources [3] and environmentally friendly [3]–[5]. A machine that absorbs wave 
energy and converts it into useful energy is called a wave energy converter (WEC).  
 The oscillating water column (OWC) is a wave energy converter (WEC) system with a simple 
working principle but has good efficiency. When the wave is at the crest, water will go into the water 
chamber and increase the water column. This water column will push and compress the air in the air 
chamber. The compressed air located in the air chamber then will push the blade at the air turbine, thus 
generating power. This is called exhalation process. Meanwhile, for the inhalation process, as the wave 
is at a trough, the water column will decrease, and the air will expand again. Even though the air is 
expanded, there will be no reverse rotation of the blade turbine, as it was designed to move only in one 
direction. This cycle is repeated continuously as wave crest and trough and will generate power. There 
are several types of turbines used in this OWC system.  
 The air turbine is the heart of the OWC system. Wells and Impulse turbines are the most common 
turbines used to compare to the cross-flow, Savonius [6], Hanna [7], or even Denniss-Auld [8] types. 
Although the operational flow range of the impulse turbine is wider than the Wells turbine, its peak 
efficiency hardly exceeds about 50 %, the main reason why the study focused more on the Wells turbine 
[8].  
 The early development of the Wells turbine created by Arthur Alan Wells in 1976 was based on the 
researchers’ experiments, which was considered time and cost-consuming. Thus, in brief, this paper 
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summarises that the time taken to select appropriate parameters in doing future CFD simulations can be 
reduced. 
 

2. Wells Turbine 

Wave energy converter can be divided into several types as shown in Figure 1. Includes fixed structure, 
floating, submerged, and floating structure with concentration i.e. wave dragon. All these types of WECs 
described have the unique advantage of producing the same function and purpose. Figure 2 shows the 
typical arrangement of the OWC system with the working principle of the system [6]. Inside the air 
chamber contains a very important device in a WEC which is a turbine. The Wells turbine as shown in 
Figure 3(a) was placed at the hub which is connected to a shaft. This shaft is responsible for rotating the 
generator to generate the power output. The Wells turbine was placed in an enclosure casing. The turbine 
can only rotate in one direction regardless of the air oscillating flow direction. This is due to the 
symmetrical blade profile used in the Wells turbine. The symmetrical blade profile usually belongs to 
the NACA 00XX series.  

 
Figure 1. The various wave energy technologies [9] 
 

 
Figure 2. Typical schematic of an OWC wave energy 
converter [10] 

 
 Several types of Wells turbines were investigated by the researchers [8], [11]–[14]. The simplest is 
the single-plane Wells turbine as shown in Figure 3(a). This type of turbine just has one set of Wells 
turbines on one plane. The other type of Wells turbine is a biplane Wells turbine, which means that the 
turbine is arranged in two planes. Wells turbine with guide vanes is another type of Wells turbine as 
shown in Figure 3(b). The guide vanes can be placed for single plane and biplane Wells turbine. As for 
the biplane Wells turbine, the guide vanes can be placed in the outer or intermediate direction of the 
turbine. The biplane with both turbines moving in different directions is called a contra-rotating Wells 
turbine. The least concerned Wells turbine is the self-pitching Wells turbine, which means that the 

WEC 

Oscillating water 

column 

Overtopping 

Oscillating bodies 

Fixed Structure: PICO, LIMPET, 

Sakata, Mutriku 

Floating: Mighty Whale, Ocean 

Energy, Sperboy, Oceanlinx 

Submerged: AWS, WaveRoller, 

Oyster 

Floating: Aquaboy, IPS Buoy, 

FO3, Wavebob, PowerBouy, 

Pelamis, PS Frog, SEAREV 

Fixed Structure: TAPCHAN, SSG 

Floating: Wave Dragon 

Inhalat

ion 
Exhalat

ion 
Turbin

e 

Turbin

e 



ARUS 2021
Journal of Physics: Conference Series 2053 (2021) 012013

IOP Publishing
doi:10.1088/1742-6596/2053/1/012013

3

 

 

 

 

 

 

turbine does not have a fixed pitch angle, but the angle is set free to follow the direction of the oscillating 
flow. The fundamental theory for each of these types was mentioned briefly by Falcão and Gato [11]. 

 
(a) 

 

 
    (b)  

Figure 3. (a) Standard single plane Wells turbine [15] and 
(b) single plane Wells turbine with guide vanes [16] 

  
 Optimizing the Wells turbine is focused on the blade of the Wells turbine. There are eight important 
parameters in optimizing the Wells turbine which are the blade profile (thickness ratio), blade solidity, 
blade pitch angle, blade end plate, blade aspect ratio, blade sweep, blade tip clearance and blade tip ratio 
[17]. According to Das, Halder, and Samad, blade solidity and tip clearance are the most important 
parameters among the many parameters that influence the performance of the Wells turbine [6].  
 The main concern of optimizing the Wells turbine is to maximize the performance of the turbine. 
Power output, flow rate, operational range, efficiency and pressure drop are the main parameters used 
as an indicator for Wells turbine performance [17]. These factors relate to each other. Thus, the most 
important parameter should be focused on when designing and optimizing the Wells turbine. In most 
cases, having a wide operating range is preferable compared to the efficiency of the turbine [6].  
 
3.Methodology 

Journals on CFD simulation on the air and hydraulic Wells turbine in the past ten years have been 
selected. Theses and reports were not considered in the selection. From the selected journals, the 
turbulence model used with the corresponding Reynolds number together with the number of elements 
used during the simulation are tabulated in Table 1. The mesh and type of topology used during the 
simulation were placed at the last column of Table 1.  
  

4. Discussion 
Before running CFD simulation in the software, important settings should be incorporated into the 
software. These settings are important and essential to obtain accurate and correct results. Table 1 shows 
the settings used in the simulation by the researchers. The table consists of the year with reference, the 
turbulence model used in their CFD simulation, Reynolds number obtained for the simulation, number 
of elements, and mesh or topology used in the simulation. A brief review on each of the setting is 
mentioned in the next sub-section. 
 

Table 1. Simulation internal setting used by the researchers. 
Year [Ref] Turbulence Model Reynolds Number No of Elements Mesh / Topology  
2010 [18] R k–ε  0.74 × 105, 4.41 × 105 295,500 ST, HX, OG  
2011 [19] R k–ε  0.68 × 105, 4.41 × 105 295,500 ST, HX, OG 
2011 [20] 
 

R k–ε  2.4 x 105 2,120 
60,000* 
80,000* 
119,000 

NA 

2011 [21] SST k- NA 4,000,000 ST, HX, MB 
     

Wells turbine 

Guide vanes 
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Year [Ref] Turbulence Model Reynolds Number No of Elements Mesh / Topology  
2012 [22] 
 

R k–ε  NA 735,540* 
834,000 
933,000 
1,032,000 
1,131,540* 

ST, HX, OG, HG 

2012 [23] 
 

R k–ε  NA 1,236,576* 
1,534,016  

ST 

2012 [24] R k–ε*, RNG k–ε, SST k- NA 424,686 ST, HX 
2013 [25] R k–ε NA 1,194,320* ST, HX 
2014 [26] SST k- 5 x 105 1,800,000 ST, OG 
2014 [27] 
 

R k–ε  2.4 x 105 2,120 
60,000* 
80,000* 
119,000 

NA 

2014 [28] SST k- 4.5 x 105 1,800,000 ST, OG 
2014 [29] R k–ε*, SST k-, S-A 6 x 104 - 2 x 105 312,951 ST 
2014 [30] SST k- NA 1,425,044 ST, HX 
2015 [31] SST k- NA 1,368,000  ST, HX, MB 
2015 [32] SST k- NA 764,416 

1,424,016* 
1,589,250 
1,784,000 

ST, HX 

2016 [33] 
 
 

k–ε, R k–ε*, SST k-,  
R k–ε# 

2.9 x 105 410,000 
500,000* 
530,000 

HM 

2016 [34] SST k- 1.3 x 105 - 3.1 x 105 1,000,000 ST, CG, HG, MB 
2016 [35] k–ε, S-A* 2.2 x 105 3,000,000 PD 
2016 [36] SST k- 4 × 105, 8 × 105 1,300,000 ST, HX 
2017 [37] 
 

SST k- NA 1,200,000 
1,600,000* 
2,200,000 
5,400,000 

UT 

2017 [38] k- ε, S-A, SST k-, -Re* 0.8×105, 1.5×105 1,000,000 ST, CG, HG, MB 
2017 [39] 
 

k–ε, SST k-* 5.2×105 

 
1,200,000 
1,600,000* 
2,100,000 

UT 

2017 [40] 
 

SST k- 5.2×105 

 
400,000 
600,000* 
800,000 

UT 

2017 [41] R k-ε NA 2,580,800  UT, TX 
2017 [42] S-A NA 1,964,000 ST, CG, HG, MB 
2017 [43] SST k- 1.3×105, 3.1×105 1,000,000 ST, CG, HG, MB 
2017 [44] 
 

R k-ε NA 266,756 
990,204 
1,571,704* 

1,755,876 

ST, OG, HG 

2017 [45] 
 

R k-ε NA 799,594 
941,732 
1,114,358 
1,307,852 
1,550,154* 

ST, OG, HG 

2018 [46] 
 

SST k- 1 × 105 24,500 
35,000* 
45,500  
700,000 
1,000,000*  

CG, HG 
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1,300,000 
2018 [47] R k-ε NA 1,400,000 UT, HX 
2018 [48] 
 

R k-ε NA 1,440,182 
2,113,775 
2,580,800* 
3,470,241 
4,057,831 

UT, TX 

2018 [49] SST k- 5.33 x 105 1,045,600 
1,460,250*  
1,530,200 
1,730,500 
1,946,000 
2,323,453 

ST, MB 

2018 [50] SST k- NA 90,000* ST, CG, MB 
2018 [51] S-A NA 2,800,000 

3,500,000 
UT 

2018 [52] 
 

SST k- NA 764,416 
1,424,016 

2,646,936 

ST 

2018 [53] SST k- 2 x 105 1,000,000 ST, HG, CG, MB 
2018 [54] 
 

SST k- NA 218,000 

307,000* 

481,000 

UT, TX 

2018 [55] 
 

SST k- NA 140,000 

260,000 

340,000* 

480,000 

UT 

2019 [56] 
 
 

SST k- NA 1,200,000 
1,600,000* 
2,200,000 
5,400,000 

UT 

2019 [57] 
 

SST k- NA 1,110,000 
2,540,000* 
5,770,000 

UT, TX  

2019 [58] 
 

SST k- 6.5 x 105 - 6.6 x 105 2,413,000* 
4,406,000 
10,495,000 

UT 

2020 [59] 
 

SST k- 5.25 x 105 - 5.43 x 105  1,600,000 
3,700,000* 
7,000,000 
14,100,000 

UT  

Turbulence Model: Standard k–ε (k–ε), Realizable k–ε (R k–ε), Shear stress transport k- (SST k-), Re-
Normalization Group k–ε (RNG k–ε), Spalart-Allmaras (S-A), Menter transitional model (-Re).  
Mesh:  Unstructured (UT), Structured (ST), Hybrid-Mesh (HM), Hexahedral (HX), Tetrahedral (TX), Polyhedral 
(PD). Topology: O-Grid (OG), H-Grid (HG), C-Grid (CG), Multi-Block (MB). NA – Not Available, # - 
nonstandard wall function, * - used in the final simulation. 
 
4.1 Turbulence model 

Selecting the suitable turbulence model for simulation is important. An unsuitable turbulence model 
may lead to overprediction or underprediction of the results. Based on Table 1, 15 papers used R k–ε as 

the turbulence model corresponding to 36 %, while about 23 papers (55 %) used SST k-, three papers 
used the S-A model and one paper used -Re. 
 Using previous data from other researchers, Mohamed et al. [6] used R k–ε. The previous researcher 

compared k–ε, RNG k–ε, R k–ε, SST k- and RSM with experimental data. Čarija et al. [24] suggested 
that the R k–ε model is the best fit for experimental work compared to RNG k–ε and SST k- models. 
While Shehata et al. [29] concluded that R k–ε is the best model compared to SST k- and S-A; however, 
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the results between R k–ε and SST k- is similar, and R k–ε uses less computing time compared to SST 

k-. In this simulation, grid-independent test was not done. Cui and Hyun [33] also concluded that R 
k–ε is the best model compared to k–ε, SST k- and R k–ε with nonstandard wall function and SST k-
 giving the highest deviation from the experimental results. The author mentioned the grid-independent 
test, but the outcome of the simulation was not mentioned in detail.  
 In contrast, Ghisu et al. [34] mentioned that SST k- was chosen as the turbulence model based on 
the previous simulation) compared with several models. The researcher will use the same model for 
their future works [53]. Ghisu, Puddu, and Cambuli [38] suggested that -Re is the best model compared 
to k- ε, S-A, and SST k-. They stated that this is because the Reynolds number for the simulation is 
under transition period and not in turbulence period.  
 Hu, Li, and Wei [35] compared between S-A and k–ε model. They concluded that the S-A model 
predicts better than the k–ε model. But it should be known that grid independence was not done in this 

study. Later they used this model for another research [51]. Mahboubidoust and Ramiar [42] also used 
S-A as the turbulence model by using the findings by Torresi et al. [60]. 
 Most of the early simulation studies that used SST k- as the turbulence model stated that this model 
is widely used in turbomachine CFD simulations [26], [28], [30], [61], [62]. Gratton et al. [46] used the 
findings by Torresi et al. [63] to use SST k- as the turbulence model, while Nazeryan and Lakzian [49] 
found that simulation using SST k- as the turbulence model is in good agreement with the experimental 
data. This finding is the same with Halder, Samad, and Thévenin [39]. Das and Samad [58], [59] using 
SST k- based on research by Douvi [64] stated that this turbulence model is suitable for NACA aerofoil 
simulation.  
 In conclusion, SST k- is the best turbulence model for use in the Wells turbine CFD simulation, 
which was supported by Douvi’s [51] research on NACA aerofoil and comparison data from simulation 
and experiment [39], [49]. S-A turbulence model is also in good agreement with simulation and 
experimental data. However, this model fails to predict stall point [65]. Another good model that can be 
used is R k–ε. This model also produces results in line with the experimental results. It should be 
considered that the flow of the model should exceed the critical Reynolds number so that the model can 
predict the result precisely [38]. 
 
4.2 Reynolds Number 
Calculating Reynolds number is very crucial in CFD simulations. Knowing Reynolds number can 
differentiate the flow whether it is laminar, transition, or turbulent flow. Takao et al. stated that the 
critical Reynolds number is 4 x 105 [66]. Thus, a simulation with a Reynolds number bigger than 4 x 105 
is suitable for the turbulence model. Table 1 shows that some of the researchers did not mention the 
value of the Reynolds number in their simulations. 
 Meanwhile, some researchers have flow in transition mode, but they used the turbulence model in 
their simulation, which may be why some of the turbulence model results differ between researchers. 
Ghisu et al. [38] also stated this in their research that had transition flow, and their transition model fit 
well with the results compared to the turbulence models. To differentiate the flow between transition 
and turbulence, the critical Reynolds number should be compared. But, up-to-date, only Takao et al. 
stated the value of critical Reynolds number [66] as 4 x 105. As Reynolds numbers is an important factor 
in CFD simulation, the critical Reynolds number in simulating Wells turbine is considered as one of the 
research gaps as no other research was done after Takao et al. [66] in 2006. This parameter is important 
as the newly suggested value of the critical Reynolds number can be lower or even higher than the value 
suggested by Takao et al. [66], which can lead to different output. 
 
4.3 Grid Independence test 
Another important test when dealing with CFD simulation is the grid independence test. This test is 
done to minimize the influence of grid size on the CFD simulation results [67]. As shown in Table 1, 
few researchers did not run the grid independence test in their research, giving some degree of ambiguity 
in their CFD simulation results. In the past few years, most of the researchers included the test in their 
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simulation. There are also some researchers [50] that included this test in their research but did not 
document it properly. 
 Even though this test is important, there is still no a standardized test method or procedure to run the 
test [68]. Three common methods used in this test are the grid resolution method, general Richardson 
extrapolation method and grid convergence index [69]. In the reviewed paper, most of the tests used 
were based on the grid resolution method and only Das and Samad [58] used the grid convergence index 
method. 
 
4.4 Meshing and topology 

As for meshing, no researcher mentioned any advantages between the structured and unstructured or 
otherwise, as the meshing can be used according to suitability. It should be noted that despite the 
unstructured mesh being able to handle complex geometries, it requires higher computational time 
compared to structured mesh [70]. In general, structured mesh can be considered as sufficient to handle 
Wells turbine blade CFD simulation. Hybrid meshing can be used to compromise the advantages and 
disadvantages of structured and unstructured meshing.  
 It is common to use structured meshing with Hexahedral and unstructured meshing with Tetrahedral. 
Polyhedral meshing is the least concern meshing type. Only researcher that using Star-CCM+ used this 
meshing. No specific advantages are known in using this meshing. As for topology, in some complex 
geometry or to tackle critical parts of the simulation, the multi-block should be used together with O-
Grid, H-Grid, or C-Grid. This can increase the result accuracy of the main concerning region.  
 
5. Conclusion  
In summary, 42 journal papers related to CFD simulation on Wells turbine were briefly summarised. 
FLUENT and CFX software were recommended to be used to simulate the Wells turbine flow problem 
with SST k- turbulence model. In order to avoid discrepancies in that result, Reynolds number of the 
flow should be higher than the critical Reynolds number, 4 x 105. Grid independence test is a must to 
reduce the error in the result. There is no specific recommendation for meshing and topology, as there 
is no significant improvement between structed and unstructured meshing. However, the capability of 
the computer should be considered when dealing with unstructured mesh.  
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