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ABSTRACT 

The mismatch between elastic modulus of metal implants and bones which is 

also known as stress shielding, remains an unresolved issue. Porous metals are one of 

the most effective ways of reducing stiffness mismatches and achieving stable long-

term fixation via full bone in-growth. In this work, porous SS316L is produced using 

the foam replication technique. The samples were each produced with different 

compositions of SS316L powders and sintered at various sintering parameters 

including the sintering temperature, sintering time, heating rate and cooling rate. 

Scanning electron microscopy (SEM) was used to characterise the microstructure 

while a compression test was used to determine the mechanical properties of the 

samples. The physical properties including porosity and density were measured 

according to the Archimedes principles. The biocompatibility test showed that the 

porous SS316L produced, exhibited no cytotoxicity reactivity. Furthermore, the 

optimisations of the sintering parameters were performed using the Taguchi method. 

The optimised porosity of porous SS316L prepared by ball milling method was 

85.44% and achieved using sintering time of 60 minutes,  sintering temperature of 

1200C, heating rate of 1C/min, SS316L composition of 60 wt% and cooling rate of 

1C/min. Whereas, for samples prepared by mechanical stirring method, the optimum 

porosity was 79.46% and occurred for the samples sintered within 60 minutes at 

1200C of sintering temperature, with the cooling and heating rates of 1C/min and 

2C/min respectively, and prepared with 70 wt% of SS316L composition. In addition, 

porous SS316L prepared by ball milling method with modulus of elasticity of 0.08 

GPa was obtained by using optimum sintering temperature of 1250C, sintering time 

of 60 minutes, heating rate of 2C/min, SS316L composition of  65 wt% and cooling 

rate of  1C/min. Whereas, the modulus of elasticity of 0.05 GPa for porous SS316L 

prepared by mechanical stirring method was obtained by using the optimum cooling 

rate of 5C/min, sintering temperature of 1200C, sintering time of 120 minutes, 

SS316L composition of 70 wt% and heating rate of 0.5C/min respectively. Following 

optimisation, the porous SS316L produced was found to have attractive mechanical 

and physical properties much like human bone. Notwithstanding, this included 

interconnected and open porosity in the range of 79.46 to 85.44 %, density in the range 

of 1.53-1.76 g/cm3, pore size in the range of 247–470 µm, modulus of elasticity in the 

range of 0.05-0.08 GPa, yield strength in the range of 0.52–0.82 MPa and compression 

strength in the range of 35.87-64.43 MPa.  
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ABSTRAK 

Perbezaan modulus elastik antara bahan implan dan tulang yang juga dikenali 

sebagai kesan perisai tegasan merupakan masalah yang masih belum selesai. Logam 

berbusa adalah salah satu pendekatan yang berkesan untuk menangani masalah ini 

supaya ia sesuai untuk aplikasi jangka panjang melalui pertumbuhan tulang 

sepenuhnya. Dalam kajian ini, SS316L berbusa telah dihasilkan dengan menggunakan 

teknik replikasi Poliurethena (PU) berbusa. Sampel dihasilkan dengan komposisi 

serbuk SS316L yang berbeza, dan disinter pada pelbagai parameter persinteran 

termasuk suhu persinteran, masa persinteran, kadar pemanasan dan kadar penyejukan. 

Pengimbasan mikroskop elektron (SEM) digunakan untuk mengkaji mikrostruktur 

manakala ujian mampatan dijalankan untuk menentukan sifat-sifat mekanik sampel. 

Ciri-ciri fizikal iaitu keliangan dan ketumpatan diukur menggunakan prinsip 

Archimedes. Ujian biokompatibiliti telah menunjukkan bahawa SS316L berbusa yang 

dihasilkan tidak menunjukkan reaktiviti sitotoksik. Selain itu, pengoptimuman 

parameter persinteran dilakukan dengan menggunakan kaedah Taguchi. Keliangan 

optimum untuk SS316L berbusa yang disediakan dengan kaedah pengisaran bebola 

adalah 85.44% dan diperoleh dengan menggunakan masa persinteran selama 60 minit 

pada suhu 1200°C dengan kadar pemanasan 1°C/min, disediakan dengan komposisi 

SS316L sebanyak 60 wt% serta disejukkan dengan kadar penyejukan pada 1C/min. 

Manakala untuk sampel yang disediakan dengan kaedah pengadukan mekanikal, 

keliangan optimum adalah 79.46% dan dicapai setelah disinter selama 60 minit pada 

suhu 1200°C, dengan kadar penyejukan dan pemanasan masing-masing pada 1°C/min 

dan 2°C/min, dan disediakan dengan komposisi SS316L sebanyak 70 wt%. Di 

samping itu, SS316L berbusa yang disediakan dengan kaedah pengisaran bebola 

dengan modulus keanjalan optimum, 0.08 GPa diperoleh dengan menggunakan suhu 

persinteran pada 1250C, masa persinteran selama 60 minit, kadar pemanasan pada 

2C/min, komposisi SS316L sebanyak 65 wt% dan dengan kadar penyejukan pada 

1°C/min. Manakala modulus keanjalan optimum, 0.05 GPa untuk SS316L berbusa 

yang disediakan oleh kaedah pengadukan mekanikal pula diperoleh dengan 

menggunakan kadar penyejukan optimum pada 5°C/min, suhu persinteran pada 

1200°C, masa persinteran selama 120 minit, komposisi SS316L sebanyak 70 wt% dan 

kadar pemanasan pada 0.5°C/min. Selepas pengoptimuman, SS316L berbusa yang 

dihasilkan didapati mempunyai sifat mekanikal dan fizikal yang hampir sama dengan 

tulang manusia. Walau bagaimanapun ini termasuk keliangan terbuka yang saling 

berkait dalam lingkungan 79.46-85.44%, ketumpatan di antara 1.53 -1.76 g/cm3, saiz 

liang di antara 247-470 μm, modulus keanjalan di antara 0.05-0.08 GPa, kekuatan alah 

di antara 0.52-0.82 MPa dan kekuatan mampatan dalam lingkungan 35.87-64.43 MPa. 
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CHAPTER 1 

INTRODUCTION 

1.1 Research Background 

The mechanical failure of the human body can often be repaired by the surgical 

implantation of synthetic replacement parts called biological implants. Numerous 

researches have been conducted over time by the clinicians and engineers to study the 

physical and mechanical properties of all types of human bones and implants to treat 

various injuries involving bone replacement. The success of bone replacement with 

implant depends on many factors such as physical and mechanical properties of the 

implant material, biocompatibility between a human body with the implant material, 

patient's health condition and expertise of the surgeon who performs the surgery. At 

present, the implant material is only able to survive and work well within the human 

body for about 12 to 15 years. This condition causes re-surgery is needed to monitor 

the condition of the implant, the patient's health and to replace the implant. Re-surgery 

and replacement of the implants will involve additional cost to the patient. The cause 

of the failure of an implant is varies, including the mechanical, chemical, 

biocompatibility, implant design, surgery, tribology and so forth [1]. 

Since 1940s, experts from various fields including science, engineering, and 

medicine have introduced several new processing methods, design concepts, and 

surgical techniques. Although the 20th century saw many inventions and advances in 

the development of biomaterials with its own characteristics, however, to date, there 

is still no implant material that exactly matches the composition, structure, and 
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property of any part of the human body. In addition, in recent years, nanotechnology, 

biomimetic, and tissue engineering concepts have rapidly developed and became a 

new boundary in the development of nanoscale biomaterials [2].  

The use of metals as biomedical implants primarily stainless steel, Co-based 

alloys, Ti and its alloys to replace damaged or failed tissue has begun since the early 

1900s. Stainless steel is the first metal implant used successfully in the field of surgery. 

However, the elastic modulus of stainless steel and Co-Cr alloys is higher than that of 

the natural bone which is about ten times larger, resulting in some complications of 

mechanical instability and the structure between the implants and hose tissues. The 

elastic modulus of Ti and its alloy is found to be about five times larger than the natural 

bone. If a stiffer implant is inserted into hard tissues (eg, Bones), the bones will 

undergo a reduced mechanical stress which gradually leads to bone absorption. 

Therefore, this phenomenon is known as a "stress shielding effect" that leads to the 

death of bone cells [3]. Therefore, low stiffness cellular metals have been produced to 

overcome this problem. 

In the 1970s, the use of porous materials with open pore structure as bone 

implant has been introduced. Accordingly, this open pore structure promotes the 

integration of both bones and blood vessels and overcomes the large elastic modulus 

difference between the bones and the implants. Additionally, porous metals are able to 

reach similar strength with cancellous bone because of this porous structure. Thus, 

porous metals have attracted significant attention among medical researchers all over 

the world due to these unique properties [4].  

In order to replace the cancellous bone, there are basically some features that 

need to be fulfilled by the metal implants  which include of having interconnected 

pores about 30-90% with a pore size in the range of 100-600 μm to provide space for 

cell migration and new tissue in-growth, and a low Young modulus that similar to the 

cancellous bone, <3 GPa [5].  
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1.2 Problem Statement 

 There are two types of orthopedic implants which are temporary implant and 

permanent implant. Plates and screws are examples of the temporary implant. While 

for a permanent implant, it usually involved with knees, shoulders, spine, hips, fingers 

and feet replacements. In the case of a permanent implant, it is very important to ensure 

that the bonding between the implant material and the living tissue is strong enough 

and safe. This strong bonding can be achieved through the tissue in-growth within the 

open and interconnected pores of the implant materials [6]. However, the current metal 

implant still has some weaknesses. First, the bonding strength is still not high enough 

and needs to be improved. Second, the large difference of elastic modulus between the 

bone and implant should be reduced.  

 Figure 1.1 shows the elastic modulus of most materials that currently used 

for biomedical applications. From this diagram, it is clearly shows that the elastic 

modulus of cancellous and cortical bone is very low compared to the elastic modulus 

of metal implants, especially in the case of stainless steel. This will cause stress 

shielding to occur on the interface that will affect the long-term stability of the implant 

[7]. This stress shielding problem still remains as an issue of attention among 

researchers around the world. In fact, the use of porous materials as implant materials 

also attracts researchers' interest and attention as a very effective method to reduce 

excessive stiffness and modulus of elasticity to achieve long-term stability. The elastic 

modulus of porous metal implants can be modified to match the human bone and thus 

help prevent the effect of stress shielding on the bones and implants. In addition, 

porous metal can provide space for bone ingrowth to achieve biological fixation. 
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Figure 1.1: Elastic modulus of currently used materials for biomedical application 

[8] 

Nowadays, there are several metallic implants that have been replaced by 

ceramic and polymer implants due to their superior biocompatibility properties 

compared to metallic implants. However, for implants that require high strength and 

durability, the use of metallic implants is very essential. Until now, stainless steel grade 

316L, cobalt alloys, pure commercial titanium and Ti-6Al-4V alloys are the most 

widely used metallic biomaterials for implant devices. These materials possess high 

corrosion resistance, biocompatibility, and good mechanical properties, especially 

titanium and titanium alloys [1]. However, titanium and titanium alloys are more 

expensive than stainless steel and have lower wear resistance than the others. In 

addition, compared to Ti and Co-Cr alloys, SS316L have the longest history of 

applications in biomedical implant and have a good workability, fracture toughness, 

low cost and easy availability [9, 10]. In fact, the successful of stainless steel 316L 

application as an implant material in human life has been proven for a long time.  

 

Porous materials can be produced through various fabrication method. 

However, choosing the appropriate manufacturing process is very important since the 

pore distribution, size, shape and volume porosity of the porous material produced 

depends on the type of fabrication method used. It is known that, the pore structure of 

the cancellous bone is open and interconnected. Therefore, fabrication methods that 

can produce such open and interconnected pore structure need to be identified. Among 
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all the fabrication methods, foam replication method is one of the methods that is 

capable of producing a porous structure similar to the cancellous bone and has been 

widely used for decades [4, 7]. This method initially used to produce porous ceramic 

materials, but has been used to produce porous metals in 1966. Foam replication is a 

very economical powder metallurgical method for producing porous materials with 

open and interconnected pores, and also with a unique combination of properties that 

is suitable for various applications. In general, this fabrication method involves three 

main processing steps. The polyurethane (PU) sponge will be immersed and coated 

with metal slurry first. Then, the polyurethane sponge will be removed thermally and 

finally, the debinded metal structure will be sintered. Thus, it is possible to fully 

transform the open and interconnected pores of PU foam into open and interconnected 

pores of the porous metal. In principle, the fabrication process using this method seems 

quite simple, but to obtain the pore structure without any defects and with optimum 

properties, every single processing step needs to be done properly [4, 7]. The using of 

the appropriate metal composition during the preparation of the metal slurry and the 

parameters involved during the sintering process will affect the structure and 

properties of the porous metal produced. To date, there has been limited 

comprehensive research that studies the parameters involved in each processing step 

for the fabrication of porous SS316L with open and interconnected pores using foam 

replication methods especially for applications as biomedical implants. Therefore, this 

study was conducted to identify the optimum SS316L compositions and sintering 

parameters which can produce SS316L with porous structure and properties that match 

the cancellous bone [4, 7]. 

1.3 Research Objectives 

The primary aim of the research is to develop porous SS316L for biomedical 

applications by using the foam replication method. The objectives of the research are: 

i. To develop porous SS316L by the foam replication method.  

ii. To analyze the physical and mechanical properties of the porous SS316L 

produced.  
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iii. To characterize the microstructure and morphology of porous SS316L 

produced. 

iv. To evaluate the biocompatibility of porous SS316L. 

v. To optimize the sintering parameters based on robust parameter design. 

1.4 Scope of the study 

The SS316L slurry was produced by mixing in a planetary ball mill and a 

mechanical stirrer. Polyurethane foam was used as a template while polyethylene 

glycol (PEG) and methylcellulose (CMC) were used as a binder. The composition of 

the SS316L powder was varied from 40 wt% to 70 wt%, and the sintering process was 

conducted at 1200C, 1250C and 1300C at the different sintering time of 60 minutes, 

90 minutes and 120 minutes respectively. The heating rate was also varied from 

0.5C/min, 1C/min and 2C/min. These sintering parameters have been optimized by 

using a robust parameter design, and the Taguchi method which involves reducing the 

variation in a process by improving the robustness of the control factor to the noise 

factor. The objective of the method was to produce a high-quality product at low cost 

to the manufacturer. 

The characterization of the SS316L foam produced after sintering has been 

carried out by using SEM and EDX to investigate the microstructure, pore shape and 

size, the elements and composition. Also, other physical and mechanical testing carried 

out included density, porosity, and compression tests. In-vitro testing analyzed the 

biocompatibility of the SS316L foam as implanted material. 

1.5 Significance of Research 

For the implant applications, stainless steels remain popular because they are 

readily available, are acquired at a low cost and exhibit excellent fabrication properties. 
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Although the biocompatibility of 316L stainless steel is lower than CoCrMo and 

titanium alloys, it is still the most widely material used in a variety of surgical devices 

and for short-term implants due to cost savings. Porous SS316L which has comparable 

properties with natural bone can be produced by the foam replication method, and the 

problems related to stress shielding can be readily overcome or at least minimized. 

Notably, this porous SS316L implant will be one the best alternative and also 

beneficial to the multitude of people receiving implants, especially in developing 

countries to obtain treatment at an affordable cost. 

1.6 Thesis Outline 

The structure of each chapter for this thesis outlined as follows. Chapter 1 

presents the research background, problem statement, objectives of the study, scope of 

the study, and arrangement of the thesis.  

Chapter 2 discusses and explains what constitutes biomedical implants, the 

specific properties of natural bones, and the applications of porous materials that are 

used for biomedical implants. This is then followed by an explanation regarding the 

techniques used for producing porous materials which focus on the foam replication 

method. The stainless-steel properties, the application of stainless steel as implant 

materials and the processes applied in the previous works to produce stainless steel 

foam is also included in this study. The parameters involved during the sintering 

process are further discussed, and finally, the theory and method for the Taguchi 

analysis are described.  

The explanation for all raw materials and the equipment used in this study are 

presented in Chapter 3. Additionally, specific information regarding the preparation of 

the samples and the international standards employed in testing the samples are also 

discussed. The details of the parameters studied and analyzed by the Taguchi 

experimental design are also described in this chapter. 
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The results and discussions of the physical and mechanical properties of porous 

stainless steel 316L produced by the foam replication method, the microstructural 

analysis, biocompatibility test and optimization by the Taguchi method are next 

presented in Chapter 4. Finally, Chapter 5, which presents the results and findings 

which are summarised along with suggestions for future work.
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