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ABSTRACT

W hite matter lesions (WML) are frequently associated with neuronal 

degeneration in ageing and can be an important indicator of stroke, multiple sclerosis, 

dementia and other brain-related disorders. W M L can be readily detected on Magnetic 

Resonance Imaging (MRI), but manual delineation of lesions by neuroradiologists 

is a time consuming and laborious task. Furthermore, MRI intensity scales are 

not standardised and do not have tissue-specific interpretation, leading to WML 

quantification inaccuracies and difficulties in interpreting their pathological relevance. 

Numerous studies have shown tremendous advances in W ML segmentation, but flow 

artefact, image noise, incomplete skull stripping and inaccurate W M L classification 

continue to yield False Positives (FP) that have limited the reliability and clinical 

utility of these approaches. The present study proposed a new MRI intensity 

standardisation and clustered texture feature method based on the K-means clustering 

algorithm. Enhanced clustered texture features and histogram features were constructed 

based on the proposed standardisation method to significantly reduce FP through a 

Random Forest algorithm. Subsequently, a local outlier identification method further 

refined the boundary of W M L for the final segmentation. The method was validated 

with a test set of 32 scans (279 images), with a significant correlation coefficient 

(R=0.99574, p-value < 0.001) between the proposed method and manual delineation 

by a neuroradiologist. Furthermore, comparison against three state-of-the-art methods 

for the 32 scans demonstrated that the proposed method outperformed five of seven 

well-known evaluation metrics. This improved specificity in W M L segmentation may 

thus improve the quantification of clinical W M L burden to assess for correlations 

between W ML load and distribution with neurodenegerative disease.
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ABSTRAK

Lesi Jirim Putih (WML) sering dikaitkan dengan degenerasi neuron dalam 

penuaan dan boleh menjadi petunjuk penting bagi strok, sklerosis berganda, demensia 

dan kecelaruan lain yang berkaitan dengan otak. W M L boleh dikesan dengan mudah 

dengan Pengimejan Resonans Magnetik (MRI), tetapi penentuan lesi secara manual 

oleh ahli neuroradiologi adalah tugas yang sukar dan memakan masa. Selain itu, 

skala intensiti MRI yang tidak diseragamkan dan tidak mempunyai tisu tafsiran yang 

khusus akan membawa kepada ketidaktepatan kuantifikasi W ML dan kesulitan dalam 

menafsirkan patologi berkaitannya. Banyak kajian telah menunjukkan kemajuan 

yang besar dalam segmentasi WML, tetapi artifak aliran, hingar imej, pengasingan 

tengkorak yang tidak lengkap dan klasifikasi W M L yang tidak tepat terus menghasilkan 

Positif-Palsu (FP) yang membatasi kebolehpercayaan dan utiliti klinikal pendekatan- 

pendekatan tersebut. Kajian ini mengusulkan kaedah penstabilan intensiti MRI baru 

dan kaedah ciri tekstur berkumpulan berdasarkan algoritma pengumpulan K-purata. 

Ciri-ciri tekstur yang dipertingkatkan dan ciri histogram yang dibina berdasarkan 

kaedah penstabilan telah dicadangkan untuk mengurangkan FP secara signifikan 

melalui algoritma Random Forest. Seterusnya, kaedah pengenalpastian luar tempatan 

menapis sempadan W M L untuk memperoleh segmentasi akhir. Kaedah ini telah 

disahkan dengan set ujian 32 imbasan (279 imej), dengan pekali korelasi yang 

signifikan (R = 0.99574, nilai-p < 0.001) antara kaedah yang dicadangkan dengan 

manual yang digariskan oleh ahli neuroradiologi. Tambahan pula, perbandingan 

terhadap tiga kaedah yang terkini untuk 32 imbasan menunjukkan bahawa kaedah 

yang dicadangkan mengatasi lima daripada tujuh metrik penilaian terkenal. Ini 

meningkatkan kekhususan segmentasi WML, justeru akan menyenangkan kuantifikasi 

W M L klinikal untuk menilai hubungkait di antara jum lah W M L dan pengedaran dengan 

penyakit neurodenegeratif.

vii



TABLE OF CONTENTS

TITLE PAGE

DECLARATION iii

ACKNOWLEDGEMENT v

ABSTRACT vi

ABSTRAK vii

TABLE OF CONTENTS viii

LIST OF TABLES xii

LIST OF FIGURES xiv

LIST OF ABBREVIATIONS xviii

LIST OF SYMBOLS xxi

LIST OF APPENDICES xxiv

CHAPTER 1 INTRODUCTION 1

1.1 Overview 1

1.2 Research background 2

1.3 Research statement 5

1.4 Research objectives 6

1.5 Contributions of the study 7

1.6 Research overview 7

1.7 Research scope and limitation 9

1.8 Thesis organisation 10

CHAPTER 2 LITERATURE REVIEW 13

2.1 Introduction 13

2.2  Computer aided detection and diagnosis system

for W M L load quantification 14

2.3 Pre-processing 15

2.4 Algorithms of automatic white matter lesion

segmentation 18

2.4.1 FLAIR histogram threshold approaches 25

2.4.2 Supervised learning approaches 28

viii



2.4.3 Supervised learning approaches 32

2.5 False positive elimination 39

2.6 Discussion 40

2.7 Summary 42

CHAPTER 3 RESEARCH METHODOLOGY 45

3.1 Introduction 45

3.2 Research framework of study 46

3.3 Medical dataset preparation 48

3.3.1 Dataset A - Validation of proposed

intensity standardisation method 48

3.3.2 Dataset B - Validation of proposed

W M L segmentation and false positive 

elimination method 49

3.4 Ground truth and training dataset preparation 49

3.5 Operational research procedure for proposed

approach 50

3.5.1 Image preprocessing and W ML detec

tion 51

3.5.2 M odel-based level set skull stripping 52

3.5.3 N3 inhomogeneity correction 54

3.5.4 Fuzzy C-mean for brain tissues classifi

cation 56

3.5.5 Trimmed mean outlier detection 58

3.5.6 Random forest classifier 59

3.5.7 Adaptive landmark-based on regional

brain tissue information for MRI 

standardisation method 61

3.5.8 Cluster-based texture feature and LOF

scheme for W M L segmentation 64

3.6 Performance measurement and evaluation 6 6

3.7 Summary 69

ix



CHAPTER 4 ADAPTIVE LANDMARK-BASED ON REGIONAL 

BRAIN TISSUE INFORMATION FOR MRI STAN

DARDISATION METHOD 71

4.1 Introduction 71

4.2 Adaptive brain regional landmark based MRI

intensity standardisation 71

4.2.1 Preprocessing 72

4.2.2 The proposed MR intensity standardis

ation 72

4.2.2.1 Training step 73

4.2.2.2 Transformation Step 74

4.3 Result 76

4.3.1 Quantitative evaluation 77

4.3.2 Qualitative evaluation 84

4.4 Discussion 87

4.5 Summary 89

CHAPTER 5 FALSE POSITIVE ELIMINATION USING 

CLUSTER-BASED TEXTURE ANALYSIS AND 

LOCAL OUTLIER FACTOR SCHEME TO IMPROVE 

WHITE MATTER LESION SEGMENTATION 91

5.1 Introduction 91

5.2 Proposed False Positive lesions detection by using 

Random Forest classifier and K-means cluster-

based texture analysis 92

5.3 Proposed W ML segmentation by using local

outlier factor 98

5.4 Results 101

5.4.1 Top rank methods and recent works of

the state-of-the-art 1 0 2

5.4.2 Quantitative results 104

5.4.3 Qualitative results 115

5.5 Discussion 125

5.6 Summary 127

x



CHAPTER 6 CONCLUSION 129

6.1 Introduction 129

6.2 Research findings 130

6.3 Contributions to Knowledge 131

6.3.1 Computer sciences perspective 131

6.3.2 Health-care perspective 131

6.4 Future work 132

REFERENCES 133

LIST OF PUBLICATIONS 147

xi



LIST OF TABLES

TABLE NO.

Table 2.1 

Table 2.2

Table 2.2

Table 2.2

Table 2.2

Table 2.2

Table 2.2

Table 2.3

Table 2.3

Table 2.3

Table 3.1

Table 4.1 

Table 4.2

TITLE

The common evaluation metric.

Summary of evaluation results from the methods described in 

the review.

Summary of evaluation results from the methods described in 

the review.(Continued)

Summary of evaluation results from the methods described in 

the review.(Continued)

Summary of evaluation results from the methods described in 

the review.(Continued)

Summary of evaluation results from the methods described in 

the review.(Continued)

Summary of evaluation results from the methods described in 

the review.(Continued)

Summary of false positive reduction methods described in the 

review.

Summary of false positive reduction methods described in the 

review. (Continued)

Summary of false positive reduction methods described in the 

review. (Continued)

The seven evaluation metrics are chosen from the conventional 

and well know evaluation parameter presented in MICCAI 

challenge and literature.

Average coefficient of variation, comparison before and after 

intensity standardisation among histogram normalisation, 

decile-based standardisation and the proposed method (mean 

± SD).

Average Kullback-Leibler divergence, comparison of differ

ence in image distribution before and after the standardisation 

process, use of histogram normalisation, decile-based 

standardisation and proposed method (mean ± SD)

xii

PAGE

2 0

2 0

2 1

2 2

23

24

25

36

37

38

69

81

82



83

93

97

98

1 0 0

107

113

113

114

114

Average W M L texture features delineated by experience 

radiologist computed using a GLCM  approach, comparison 

before and after intensity standardisation among histogram 

normalisation, decile-based standardisation and proposed 

method (mean ± SD).

Discrete probabilities p(g i) of grey levels gi, with i = 0, N  -  

1(L = 8192), in an standardised image.

Discrete probabilities Prob(i, j ) of grey level co-occurrence 

matrix for distance d is (Ax = 1, Ay = 0), with N is number of 

cluster used in an image of lesion.

Comparison 10-fold cross-validation for false positive 

detection using four supervised algorithms based on input 

histogram intensity and cluster-based texture features.

Four of set parameters used to validate and determine the best 

range of MinPts.

Agreement measures for Dice Index, Jaccard Index, 

Positive Predictive Value, True Positive Rate, False Positive 

Rate, Volume Difference, and Average Symmetric Surface 

Difference between automatic and ground truth.

Lesion based FPR for mild, moderate and severe lesion 

volumes computed based on ground truth compared to 

proposed method and three other automatic methods.

DI for mild, moderate and severe lesion volumes for proposed 

method and three other automatic methods.

PPV for mild, moderate and severe lesion volumes calculated 

based on ground truth compared to proposed method and three 

other automatic methods.

VD for mild, moderate and severe lesion volumes calculated 

based on ground truth compared to proposed method and three 

other automatic methods.

xiii



LIST OF FIGURES

FIGURE NO. TITLE PAGE

Figure 1.1 FLAIR MR Images (axial view) on 1.5T MRI scans. Arrows

indicate the presence of lesions. 3

Figure 1.2 The overview of proposed research flow. 8

Figure 2.1 Graphical scheme of the box-plot method with trim mean

approach introduced by Ong et al. (2012). The outliers and 

extreme outliers are determined using the Box and W hisker 

plot using the intensity distribution of the GM and W M voxels.

Hence, the W ML is detected based on extreme outlier value 

and then W M L segmented based on adaptive thresholding 

using outlier value. Reproduced from Ong et al. (2012). 27

Figure 2.2 Features used for the kNN classification as suggested

by Steenwijk et al. (2013), They include 3D-FLAIR 

intensity (A),MNI-normalised spatial coordinate x (B), spatial 

coordinate y (C), spatial coordinate z (D), 3D-T1 intensity 

(E), pCSF (F), pGM (G), and pWM (H). Reproduced 

from Steenwijk et al. (2013). 30

Figure 2.3 An overview of the segmentation method proposed by Simos

etal. (2013): A) skull-stripped and bias field-corrected FLAIR 

image and B) fit a 3-class context-sensitive GMM based on 

(A). Subsequently, a threshold to the W MH class probability 

map, obtains C) an initial lesion segmentation. D) A post

processing step removes false positive in the (C); the removed 

false positive in read; the final W M L segmentation in blue. 

Reproduced from Simos et al. (2013). 34

Figure 3.1 Overview of research framework. 47

Figure 4.1 An overview of the proposed MR Intensity standardisation

method using landmark-based approach. 72

Figure 4.2 A pair of landmark [P1i, P 2i] constructed from a histogram

based on the outlier detection approach. 73

xiv



Figure 4.3 Intensity standardisation scale constructed using a landmark-

based approach. 75

Figure 4.4 Image intensity distribution of each subject before (row (a))

and after (row (b)) standardisation. The first, second and third 

column are the base-year, 1-year and 2-year follow-up study. 79

Figure 4.5 Coefficient of variation of all standardised FLAIR M R Images

from each subject with their 3-year follow-up study. 81

Figure 4.6 Kullback-Leibler(KL) divergence of all standardised FLAIR

MR Images from each subject with their 3-year follow-up 

study. 82

Figure 4.7 Pearson’s correlation coefficient of four texture features of

W M L compared to each standardisation method. (a) is present 

the correlation of GLCM correlation texture feature before 

and after standardisation, (b) is describes the correlation of 

GLCM energy texture feature before and after standardisation,

(c) refer to the correlation of GLCM contrast texture feature 

before and after standardisation. Meanwhile, (d) is present the 

correlation of GLCM homogeneity texture feature before and 

after standardisation. 84

Figure 4.8 Individual slices from four different studies acquired using

FLAIR sequence with variable lesion load. 85

Figure 4.9 Intensity distribution generated from J, K, L, and M of

individual image slices in Figure 4.8. (a) Image intensity 

distribution before the standardisation process. (b) Image 

intensity distribution after the proposed standardisation 

process. (c) Image intensity distribution after decile-based 

standardisation process. (d) Image intensity distribution after 

histogram normalisation process. 8 6

Figure 5.1 Geometrical relationship of GLCM computed based on

distance d = 1 and 4 angle 6  where 6  = 0°, 45°, 90° and 

135°. 95

Figure 5.2 The optima k value of K-means and quantile method

determined in the 1 0  fold cross validation experiment using 

the training dataset. 96

xv



98

1 0 1

1 0 2

105

105

106

108

108

109

1 1 0

1 1 1

1 1 1

1 1 2

The heat map of accuracy generated by RF algorithm by 

applying parameters number of depth and number of tree. 

reach-distk(p1, o), reach-distk(p2, o) and reach-distk(p3, o), 

for k=4.

W M L load for 32 subjects computed based on the 

neuroradiologist delineation and automatic segmentation. 

Correlation of W M L loads between automatic methods and 

ground truth for 32 subjects.

Correlation of W M L loads between automatic methods and 

ground truth for 31 subjects (excluded one severe case with 

lesion load >20 mL).

Box-plot of the W M L loads segmented from the TMOD, SLS, 

LPA and the proposed method for the 32 subjects.

Box-plot of the dice index results from the TMOD, SLS, LPA 

and the proposed method for W M L segmentations of the 32 

subjects.

Line plot of the dice index results from the TMOD, SLS, 

LPA and proposed method for W M L segmentation of the 32 

subjects.

Line plot of the Jaccard index results from the TMOD, SLS, 

LPA and proposed method for W M L segmentation of the 32 

subjects.

Line plot of the PPV results from the TMOD, SLS, LPA and 

proposed method for W M L segmentation of the 32 subjects. 

Box-plot of the lesion based on FPR results from the TMOD, 

SLS, LPA and the proposed method for W M L segmentation 

of the 32 subjects.

Line plot of the voxel based on FPR results from the TMOD, 

SLS, LPA and proposed method for W M L segmentation of 

the 32 subjects.

Line plot of the VD results from the TMOD, SLS, LPA and 

proposed method for W M L segmentation of the 32 subjects.

xvi



1 1 2

117

118

119

1 2 0

1 2 1

1 2 2

123

124

126

Box-plot of the lesion based on TPR results from the TMOD, 

SLS, LPA and the proposed method for W M L segmentation 

of the 32 subjects.

Segmented W M L is superimposed on top of FLAIR image for 

the severe case study (> 20mL).

Qualitative segmentation results by (a) the neuroradiologist 

and performance of (b) proposed method, (c) TMOD, (d) 

LGA, (e) LPA presented in 3D axial view based on the severe 

case study in Figure 5.17.

Segmented W M L is superimposed on top of FLAIR image for 

the moderate case study (5mL-15mL).

Qualitative segmentation results by (a) the neuroradiologist 

and performance of (b) proposed method, (c) TMOD, (d) 

SLS, (e) LPA can be visualised in 3D axial view based on the 

moderate case study in Figure 5.19.

Segmented W M L is superimposed on top of FLAIR image for 

the mild case study (< 5mL).

Qualitative segmentation results by (a) the neuroradiologist 

and performance of (b) proposed method, (c) TMOD, (d) 

SLS, (e) LPA can be visualised in 3D axial view based on the 

mild case study in Figure 5.21.

Segmented W M L is superimposed on top of FLAIR image for 

the extreme mild case study (< 1mL).

Qualitative segmentation results by (a) the neuroradiologist 

and performance of (b) proposed method, (c) TMOD, (d) 

SLS, (e) LPA can be visualised in 3D axial view based on the 

extreme mild case study in Figure 5.23.

Spider net plot of all evaluation metrics as mentioned in 

Table 5.5.

xvii



LIST OF ABBREVIATIONS

Acc -  Accuracy

AD -  Average Distance

ASD -  Average Symmetric Surface Distance

BET -  Brain Extraction Tool

BSE -  Brain Surface Extractor

CAVASS -  Computer Aided Visualization and Analysis Software System

CT -  Computed Tomography

CV -  Coefficient of Variation

DICOM -  Digital Imaging and Communication in Medicine

DI -  Dice Index

DSI -  Dice Similarity Index

EF -  Extra Fraction

EM -  Expectation Maximization

FCM -  Fuzzy C-Mean

FLAIR -  Fluid Attenuated Inversion Recovery

FN -  False Negative

FNR -  False Negative Rate

FP -  False Positive

FPR -  False Positive Rate

FWHM -  Full W idth at H alf Maximum

GLCM -  Gray Level Co-occurrence Matrix

GPGPU -  General Purpose Computing on Graphics Processing Units

HU -  Houndsfield Unit

HMC -  Hidden Markov Chain

ICBM -  International Consortium for Brain Mapping

xviii



ICC -  Intraclass Correlation Coefficient

IOI -  Intensity of Interest

IQR -  Inter Quartile Range

JI -  Jacard Index

KL -  Kullback-Leibler

kNN -  k-Nearest Neighbor

Lin -  Corresponding Linear Coefficient

LOF -  Local Outlier Factor

LPA -  Lesion Prediction Algorithm

NAWM -  Normal Appearing W hite Matter

MAE -  Mean Absolute Error

MICCAI -  Medical Image Computing and Computer Assisted Intervention

MRI -  Magnetic Resonance Imaging

MRF -  Markov Random Field

MS -  Multiple Sclerosis

OF -  Overlap Fraction

OSR -  Over Segment Rate

PD -  Proton Density

PPV -  Positive Predictive Value

R -  Correlation Coefficient

RF -  Random Forest

SLS -  SALEM-LS

SPM -  Statistical Parametric Mapping

SVM -  Support Vector Machine

TL -  Trimmed Likelihood

TMOD -  Trimmed Mean Outlier Detection

xix



TN - True Negative

TNR - True Negative Rate

TP - True Positive

TPR - True Positive Rate

TTPs - Tissue Type Priors

T1-W - T1-Weighted

T2-W - T2-Weighted

USR - Under Segment Rate

VD - Volume Different

W ML W hite M atter Lesion

xx



LIST OF SYMBOLS

0 -  Zero level set

0(x, y) -  Level set

Fcurv -  M orphological smoothing force

Fimg -  Brain surface attraction force

Imax -  Local maximum of intensity

M A X  -  Maximum elements of an array

M IN  -  Minimum elements of an array

u -  Measured signal

u -  True signal reflex from tissue

f  -  Function of the unknown shading signal

n -  Gaussian noise

u -  Independent variable of U distribution

V -  Independent variable of V  distribution

f  -  Independent variable of F  distribution

U -  Probability densities of u

V  -  Probability densities of u

F  -  Probability densities of f

w  -  Smoothing parameter

F * -  Complex conjugate of the Fourier transform of F

-  Fuzzy membership function of a voxel in coordinate i, j  with k 

constant value of fuzziness

Ci -  Number of cluster centroids

f  -  Outlier

F3 -  Extreme outlier

Q\ -  25 percentile of the voxel distribution

xxi



Q3

T

T

0 k

n

Pci

Pcr

Pli

P2i

VFLAIR

gi(x ; y ) 

L 1 

L 2 

Hi

Pbe fore

Pa fter

Im gbe fore 

Im gafter 

Fbe fore 

Fa fter

P(g)

Pr ob(i , j )

75 percentile of the voxel distribution

Standard deviation

Mean

Threshold parameter 

A set of random features vector of k 

Number of elements

Local minimum point at the left side of distribution

Local minimum point at the right side of distribution

Left landmark constructed from a histogram based on the 

outlier detection approach

Right landmark constructed from a histogram based on the 

outlier detection approach

Volume image of the FLAIR MR sequence

Intensity function in two dimensions

Landmark 1 (left) of a standard intensity scale

Landmark 2 (right) of a standard intensity scale

Histogram of i preprocessed brain image slice

The probability intensity distribution before image 

standardisation

The probability intensity distribution after image 

standardisation

The image slice before standardisation process

The image slice distribution after standardisation process

The feature extracted before standardisation process

The feature extracted slice distribution after standardisation 

process

Discrete probabilities of gray levels image intensity 

Discrete probabilities of gray level co-occurrence matrix

xxii



a  -  Training data

S  -  Testing data

d(oa,p a) -  Nearest distances in between oa voxel intensity to p a voxel

intensity

M inP tsa -  Minimum number of voxel intensity under training dataset

ir  d  -  Local reachability distances

R  -  Pearson correlation

* -  A statistical significance level of 0.05, where p-value < 0.05

** -  A statistical significance level of 0.01, where p-value < 0.01

* * *  -  A statistical significance level of 0.001, where p-value < 0.001

Vol (Sauto) -  Volume of W M L segmented by automated method

V ol(G T ) -  Volume of W M L delineated by neurologist

BP(Sauto) -  Boundary point of W M L extracted by automated method

B P (G T ) -  Boundary point of W M L identified by neurologist

± -  Plus or minus indicates a choice of two possible number

xxiii



APPENDIX

Appendix A

LIST OF APPENDICES 

TITLE

W M L Segmentation performance based on Local Outlier 

Factor Scheme

PAGE

149

xxiv



CHAPTER 1

INTRODUCTION

1.1 Overview

W hite M atter Lesion (WML) are the region of the dead cell in the white matter 

tissue areas of the brain. W M L are commonly known as white matter change, white 

matter hyperintensity or Leukoaraiosis. They are generally developed and found in the 

brain of elderly people. The ageing population is growing rapidly worldwide and the 

number of people over 65 years old or older is expected to triple to nearly 1.5 billion 

by 2050. This figure is about 16% of the population worldwide (WHO, 2011).

Many clinical research studies have shown that W M L are predictors of several 

brain diseases. They included Multiple Sclerosis (MS) (Bagley et al., 1999; He et al., 

2009; Werring et al., 2000), Vascular dementia (Cavalieri et al., 2010; Debette and 

Markus, 2010; Diniz et al., 2013; M ortamais et al., 2014; Peters and Dichgans, 2010), 

Ischemic strokes (Debette and Markus, 2010; Yamauchi et al., 2002), and Alzheimer’s 

disease (Cavalieri et al., 2010; Diniz et al., 2013; McAleese et al., 2017; Park et al.,

2010). These research studies have also shown that W ML are one of the leading 

cause of later-life depression, gait disorders, cognitive decline and mild cognitive 

impairment which often happen in the elderly population (Diniz et al., 2013; Launer, 

2004; M ortamais etal., 2014; O ’Sullivan, 2008; Silbert etal., 2008; Vesely andRektor,

2016). Coincidentally, mobility impairment and hypertension are the most common 

compared to other chronic diseases; and disability have been reported in WHO (2011).

In a recent analysis, it has been estimated that about 27 to 36 million older 

population worldwide are suffering from Dementia and Alzheimer disease (WHO,

2011). Until today, no robust test has been able to predict these chronic diseases on 

elderly people. Therefore, assessment of W M L load could be a fast and effective channel 

used to detect neurological disorders in the early stage. These lesions can be detected 

and diagnosed by noninvasive imaging techniques such as magnetic resonance imaging
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in several pulse sequences. They are T1-Weighted (T1-W), T2-Weighted (T2-W), Fluid 

Attenuated Inversion Recovery (FLAIR) and Proton Density (PD). Specifically, FLAIR 

sequence shows that W ML are hyperintensed (bright) voxels that are different in 

appearance from the adjacent cerebrospinal fluid. Due to the prominence and easy 

visibility of the W M L (Appenzeller et al., 2008), FLAIR sequence is a prominent 

sequence preferred by neuro-radiologists to detect WML. However, manual assessment 

or visual score assessment of W M L could be a painful and tedious process for a neuro

radiologist. This is mainly because it requires evaluation of twenty to hundreds of 

image slices of cranial images from a particular sequence per subject. Hence, WML 

assessment using automatic computation to quantify white matter lesion load is the 

preferred choice of a neuro-radiologist.

1.2 Research background

White matter lesions are abnormal tissues which occur in white matter. They 

indicate the damage of the myelin sheath that surrounds the axon of a neurone. W hen 

signals transited by axon is interrupted, the process is named as neurodegeneration 

and also known as demyelination. This results in several brain disorders such as 

Vascular dementia, multiple sclerosis, ischemic strokes and Alzheimer’s disease. The 

characteristics of white matter lesions vary in shape, size and distribution. They are 

usually detected and visualised as a brighter (hyperintensity) region in white matter 

region on FLAIR images as shown in Figure 1.1

The visual assessment of white matter lesions is usually performed by 

experienced neuroradiologists to identify and locate the WML; and subsequently, rate 

their severity or measure lesion load. To date, there are two common approaches that 

have been used in assessments by current clinical practice; (a) visual scoring assessment 

and (b) quantitative measurements.

Visual scoring assessment rates the severity of white matter lesions on the MRI 

with bare eyes. Many visual scoring methods have been proposed in the literature. 

It is found that the most well-known visual scoring methods are the Scheltens scale 

(Scheltens et al., 1993), the Fazekas scale (Fazekas et al., 1987) and the age-related 

white matter changes (ARWMC) scale (Wahlund et al., 2001). The advantage of using

2



Figure 1.1 FLAIR MR Images (axial view) on 1.5T MRI scans. Arrows indicate the 
presence of lesions.
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visual scoring method is it is easy to be implemented and the approaches do not require 

high computational performance computer-aided analysis in the assessment process. In 

a recent study, the assessment of W M L can be evaluated by Fazekas visual rating scale 

without influent by stroke lesions in the subjects at risk of developing stroke during 

follow-up as reported by Hernandez et al. (2013). However, visual assessment often 

shows a high variation of intra- and inter-reader agreement. It becomes challenging 

when it is applied on a longitudinal cohort study of elderly people. Several difficulties 

of visual scoring methods have been reported by Enzinger et al. (2007):

1. The result of visual scoring such as reproducibility, sensitivity and specificity 

are highly dependent on the specific visual scoring scale.

2. The scoring exercised by the neuroradiologist is different from that in various 

medical institutions. Hence, result used for comparison is very subjective for 

large scale W ML progression studies.

3. A trained neuroradiologist is required to perform visual scoring manual with 

bare eyes, which is a laborious, painful and tedious process.

Besides the visual scoring assessment, W M L load quantification is the approach 

preferred by clinicians. Quantification refers to the sum of the voxel that is indicated 

in W M L region and associated with image calibration value to determine the WML 

load (mL). In fact, the automation of the lesion quantification process consists of 

varying levels, from fully manual segmentation, to semi-automated and fully automatic 

W M L detection and segmentation. The fully manual segmentation typically requires 

an observer to outline the W M L region manually by using the annotation tool provided 

in the image analysis software package. Semi-automated W M L detection refers to the 

manual detection involving artificial intelligent techniques to segment the W M L region, 

where they often require a “seed” of W M L location that is detected by an observer and 

let the algorithm to segment W M L region. The fully automated W M L segmentation 

often does not require human intervention; their implementation is much complicated 

and requires advance artificial intelligent techniques such as machine learning.

W hite matter lesions assessment such as visual scoring approach remains a 

labour intensive and tedious work for radiologists. The visual assessment is the most
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common method of approach that is often applied in clinical practice due to the simple 

implementation. However, interpretation of visual scoring is very subjective since the 

judgement of the lesion shape, size and its distribution varies from one radiologist 

to another. Therefore, the scores given by different radiologists are considered as 

variables. This becomes an important question to perform large scale clinical studies, 

and it may not be practical to perform visual scoring assessment. Therefore, automatic 

examination of white matter lesions using computation is the preferred choice of a 

radiologist. The automated solution can fast detect and quantify the white matter 

lesions accurately. Up to now, the automatic lesion segmentation and quantification 

using computation approach suffers from several drawbacks. Details of the elaboration 

of these drawbacks using existing methods will be discussed in Chapter 2 . It is pertinent 

to mention here that many exisitng approaches either need minimal human intervention 

to eliminate false positive, or they are not effective in reducing the false positive lesion 

because simple morphology operations are performed.

1.3 Research statement

Several challenges have been identified and addressed to improve white matter 

lesion segmentation results. First, it is difficult to determine tissue intensity range 

between white matter lesions and healthy brain due to the lack of standardisation 

of MRI intensities. Second, MR image artefact and inaccurate white matter lesion 

segmentation produce many false positive lesions. Third, the edge of white matter 

lesions is fuzzy and diffused. It makes it complicated to differentiate between voxels of 

white matter and white matter lesions. Therefore, a challenge for automated approaches 

to a segment between the voxels of healthy tissues and white matter lesion, furthermore 

to reduce false positive.

Based on the statement above, the research questions that need to be addressed

are:

1. W hat is the suitable method to accurate and sensitive to W M L segmentation on 

MRI that has been evaluated with the dataset from multicentre?

2. It is difficult to determine tissue intensity range between white matter lesions 

and healthy brain due to the lack of standardisation of MRI intensities. How
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to standardise the image intensity range on MRI to improve the classification 

results that caused by the intra-scan and inter-scan image intensity variations 

due to the MRI instrumentation?

3. Image artefact and inaccurate white matter lesion segmentation by TMOD 

method produce many false positive lesions. Hence, how can the proposed 

cluster-based texture feature and histogram intensity feature to classify them 

into (False Positive) FP and WML?

4. The edge of white matter lesions is fuzzy and diffused. It makes it difficult to 

differentiate between voxels of white matter and white matter lesions. Can the 

proposed LOF scheme able to address this problem?

5. How can the performance of proposed W ML segmentation be evaluated by the 

quantitative and qualitative method?

1.4 Research objectives

Quantification of white matter lesions loaded by manual delineation is time

consuming and labour intensive to neuro-radiologists. In addition, bare eyes and

delineation by hand on fuzzy and diffused white matter lesion is challenging and tedious.

This study proposes an automatic white matter lesion segmentation and quantification

system. Therefore, the objectives of the study are listed as follows:

1. To propose an image intensity standardisation method to improve the accuracy 

of W M L detection.

2. To propose a new cluster-based grey-level co-occurrence matrix (GLCM) 

texture feature to identify true positive (white matter lesions) and eliminate 

false positive (incomplete skull stripping region, FLAIR artefact, and image 

noise).

3. To propose an accurate white matter lesion boundary delineation by using Local 

Outlier Factor (LOF) scheme.

4. To validate the proposed method using benchmark method and evaluation 

metrics compare to gold standards (neuroradiologist delineation).
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1.5 Contributions of the study

Three significant expected contributions can be concluded in this research study:

1. Delivering an automatic intensity standardisation algorithm to standardise MRI 

intensity scale adaptively for different subjects and its different time points 

especially for large scale W M L analysis study.

2. Developing cluster-based texture feature and standardising image intensity 

feature to identify tiny lesions (true positive) and MRI artefact (false positive) 

accurately.

3. Implementing an automated white matter lesion segmentation using voxels 

based on local outlier detection technique.

1.6 Research overview

The research methodology of this research study focuses on the proposed 

W M L detection and segmentation method. The method is implemented based on new 

enhanced standardisation intensity features and clustered texture features to identified as 

WML. The boundary of W M L is further determined based on LOF scheme. Figure 1.2 

present the overview of the conducted research.
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Figure 1.2 The overview of proposed research flow.

T1-w sequence and FLAIR sequence of MRI are used as inputs for the proposed 

method. They are obtained from the clinical study of the protective effects of palm 

vitamin E tocotrienols on brain white matter (Gopalan et al., 2014). Both of the 

sequences are first pre-processed with the in-homogeneity correction to reduce Field 

inhomogeneity artifact (Sled et al., 1998). FLAIR sequence is the preferred imaging 

sequence used to detect and visualise the white matter lesions by radiologists. This 

is mainly because voxel of white matter lesion appearances are the brightest and also 

known as hyper-intensity compared to voxels of healthy brain tissue (grey matter and 

white matter). However, the additional voxels such as skull and optic nerves also 

appear in hyper-intensity voxels. Hence, skull stripping process is required to obtain 

brain voxels. T1-w is the suitable sequences used to prepare skull stripping image data 

proposed by Zhuang et al. (2006) since it provides promising contrast between hard 

and soft tissues. Thus, T1-w is used as input for skull stripping process. Extracted 

brain voxel and its regions are then used as a mask to FLAIR sequence to obtain brain 

only voxels. They are further used to detect and segment white matter lesions.
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Additionally, the lack of intensity standardisation on MRI has often caused 

difficulty when operating with the supervised learning approach to detect and segment 

white matter lesions. Hence, a new intensity standardisation on MRI is proposed. 

Details of the proposed method is described in Chapter 3 . In general, the approach 

applies the W M L detection method proposed by Ong et al. (2012) to detect the potential 

white matter lesions (hyperintensity region). The detected hyperintensity region is used 

as an input to compute the cluster-based texture feature and standardise image intensity 

feature. These proposed features are used to further classify the true positive lesion 

and false positive lesion using random forest algorithm. Random forest is preferred in 

the study because it has been validated and reliable performance compared with ten 

different classification method in segmenting W ML as reported by (Dadar et al., 2017) 

recently. The details of the proposed algorithm will be further discussed in Chapter 4 . 

The proposed method is robust and efficient to W M L segmentation and identify false 

positive that consists of incomplete skull stripped data, noise artefact of MRI and 

imaging artefact (Bailey, 2007) such as peri-ventricular flow  artefact. Subsequently, 

the region boundary of all true positive of the lesion will be redefined with Local 

outlier factor scheme. Thus, the output of this step is the final segmented WML. The 

proposed methods are validated with MR image datasets obtained from Tocotrienols 

and Neuroprotection study (Gopalan et al., 2014).

Lastly, qualitative and quantitative analysis is performed in image detection and 

segmentation evaluation. It is crucial to review the quality output as the outcome images 

will explain the illustration of experimental results. Moreover, a quantitative analysis 

of the various evaluation metrics is proposed to evaluate the dissimilarity and accuracy 

of ground truth and segmented WML. For the qualitative analysis, the binary output 

of segmented W M L by proposed methods was superimposed on top of an original 2D 

image for visual agreement purpose. Also, three dimensional W M L and brain were 

reconstructed to understand the overview of segmentation and false positive reduction 

performance.

1.7 Research scope and limitation

The proposed method is aimed to reduce white matter lesion segmentation and 

false positive from brain MR images. The sequence of the MR modality used in this
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study is limited to 2-Dimensional axial resolution T1-W and FLAIR sequence. 16-bit 

DICOM image with matrix 512x512 voxels will be only used in this study. Besides, 

the use of longitudinal W M L dataset not taken into consideration in the current study 

although W ML is a progressive brain disorder. The JAVA programming language and 

Matlab scripting language have been chosen used to develop the proposed method to 

speed up the implementation of the research work. The limitation of the study is the 

proposed MR intensity standardisation method was only employed on brain extracted 

dataset. Also, the proposed cluster-based texture features using random forest algorithm 

successfully addressed the differentiation of voxels between the FP and white matter 

lesions, it has not addressed the challenges faced when differentiating white matter 

lesions from the cortical grey matter on FLAIR, due to low contrast between normal 

grey matter and white matter hyperintensities on FLAIR. This becomes particularly 

important when segmenting white matter hyperintensities that are located in subcortical 

and juxtacortical white matter as opposed to the hyperintensities in the areas further 

away from the cortical grey matter such as periventricular and deep white matter.

1.8 Thesis organisation

This thesis is organised according to the work involved in the proposed 

automated W M L segmentation and false positive elimination method.

Chapter 1 presents the objective of the studies by reviewing the research area and 

the research background. The scope, limitation, contribution of research and research 

overview are also highlighted.

Chapter 2 presents an intensive review of the literature in the field of white 

matter lesion segmentation and their false positive elimination approach. A critical 

discussion on the advantages and disadvantages of different types of automated WML 

segmentation approaches is put forward.

Chapter 3 explains the research methodology that consist of data preparation, 

research framework, research operational procedure, principal and theoretical 

background of the proposed algorithms applied in this W M L segmentation study.
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