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ABSTRACT

The particle filter provides numerical approximation to a nonlinear filtering 
problem, especially during signal or data transmission. In a heterogeneous 
environment, reliable state estimation is a critical issue due to the unbalanced particle 
distribution called sample degeneracy and impoverishment. To address such a 
problem, sequential implementation resampling (SIR) considers the cause and 
environment of every specific resampling task decision. However, SIR only 
considers the cause and environment in a specific situation, which cannot generates 
reliable state estimation during filtering process. Apart from that, the developed SIR 
may suffer with unbalanced memory usage, which is reflected in the overall 
consumed system memory and time. Therefore, this research designed a resampling 
scheme that generates reliable state estimation and balances the resampling memory 
usage during particle filtering. To achieve this aim, an adaptive memory and particle 
sequential implementation resampling (AMPSIR) scheme was designed for different 
sample impoverishment environments, introduced three enhanced schemes to ensure 
reliable final state estimation and balanced theresampling memory allocation. The 
first scheme was the adaptive noise and sample size special strategies resampling 
(ANSSSR), which combined resampling task from three different types of special 
strategies resampling, and then reduced state estimation error in different situations 
in high sample impoverishment. Secondly, the scheme known as adaptive noise and 
sample size sequential implementation resampling (ANSSIR) combined resampling 
tasks from three different types of sequential implementation resampling, and then 
produced a reduction of state estimation error in different stages of sample 
impoverishment. Finally, the third scheme was the adaptive memory single 
distribution resampling (AMSDR), which combined resampling tasks from two 
different types of single distribution resampling, and then generated optimization of 
resampling memory. All of these enhanced schemes reacted based on measurement 
detection o f particle noise, particle sample size and resampling memory. Simulation 
results showed that AMPSIR scheme achieved improved performance in termsof 
reducing state estimation error in different situations in high sample impoverishment 
by 7.26%, reduced state estimation error in different stages of sample 
impoverishment by 24.78%, and optimized resampling memory by 28.73% as 
compared to the existing resampling schemes. The findings showed that the 
AMPSIR scheme has the capability to do different kinds of resampling tasks, and 
choose a suitable scheme based on detected noise, sample size and memory 
measurements. In conclusion, the AMPSIR scheme has been proven to be a valuable 
solution for different sample impoverishment environments and different resampling 
memory usage. Besides, it has the ability to adapt the end user’s application memory 
usage with the scheme to determine the most suitable resampling scheme based on 
the application memory usage.
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ABSTRAK

Penurasan zarah memberikan penganggaran berangka kepada permasalahan 
penurasan tidak linear, terutamanya ketika penghantaran zarah atau isyarat. Di dalam 
persekitaran yang pelbagai, pengiraan nilai yang dipercayai merupakan isu kritikal. 
Ini disebabkan oleh taburan zarah yang tidak seimbang atau dikenali sebagai 
kemerosotan dan ketidak pelbagaian berat sampel. Untuk mengatasinya, 
pensampelan semula perlaksanaan berjujukan (SIR) mengambilkira punca dan 
persekitaran untuk setiap hasil kerja pensampelan semula. Walaubagaimanapun, SIR 
cuma hanya mempertimbangkan punca dan persekitaran untuk situasi yang spesifik, 
yang seterusnya sebaliknya gagal dalam penghasilan pengiraan nilai yang boleh 
dipercayai semasa proses penurasan. Selain itu, SIR yang dibangunkan tidak terlepas 
daripada masalah penggunaan memori yang tidak seimbang, yang mana ianya boleh 
meninggalkan kesan terhadap penggunaan memori dan masa secara keseluruhan 
terhadap sistem. Oleh itu, penyelidikan kajian ini menghasilkan suatu skema 
pensampelan semula yang boleh dipercayai semasa penurasan zarah. Untuk 
mencapai matlamat ini, suatu skema pensampelan semula perlaksanaan berjujukan 
berdasarkan memori dan zarah mudahsuai (AMPSIR) bagi persekitaran 
ketidakpelbagaian berat sampel yang pelbagai, yang terdiri daripada tiga skema yang 
dipertingkatkan, bagi memastikan pengiraan nilai yang boleh dipercayai serta 
menyeimbangkan memori pensampelan semula. Skema yang pertama ialah, 
pensampelan semula strategi khas berdasarkan hingar dan saiz sampel mudah suai 
(ANSSSR), yang menggabungkan tiga jenis pensampelan semula strategi khas yang 
berbeza, dan kemudiannya menghasilkan pengurangan ralat pengiraan nilai di 
pelbagai situasi ketidakpelbagaian berat sampel peringkat tinggi. Skema yang kedua 
ialah, pensampelan semula perlaksanaan berjujukan berdasarkan hingar dan saiz 
sampel mudah suai (ANSSIR), yang menggabungkan tiga jenis pensampelan semula 
perlaksanaan berjujukan yang berbeza, dan kemudiannya menghasilkan pengurangan 
ralat pengiraan nilai di pelbagai peringkat ketidakpelbagaian berat sampel. Yang 
terakhir, skema yang ketiga, ialah, pensampelan semula teragih tunggal berdasarkan 
memori mudah suai (AMSDR), yang menggabungkan dua jenis pensampelan semula 
teragih tunggal yang berbeza, dan kemudiannya menghasilkan pengoptimuman 
memori pensampelan semula. Kesemuanya bertindak berdasarkan pengukuran hingar 
zarah, saiz sampel zarah dan memori. Hasil simulasi menunjukkan AMPSIR 
mencapai prestasi yang baik dengan mengurangkan ralat pengiraan nilai di pelbagai 
situasi pertidihan berat sampel tinggi sebanyak 7.26%, mengurangkan ralat 
penentuan nilai di pelbagai peringkat pertindihan berat sampel sebanyak 24.78% dan 
mengoptimumkan memori pensampelan semula sebanyak 28.73% berbanding 
sebelumnya. Hasil penemuan telah menunjukkan AMPSIR mempunyai kebolehan 
melakukan pelbagai kerja dan mampu memilih kesesuaiannya. Kesimpulanya, SIR 
yang dicadangkan membuktikannya ianya berharga bagi pelbagai persekitaran 
pertindihan berat sampel dan penggunaan memori. Selain itu, ianya mempunyai 
kebolehan menyesuaikan diri berdasarkan penggunaan memori yang digunakan oleh 
pengguna akhir, supaya dapat menentukan pensampelan semula yang sesuai 
berdasarkan penggunaan memori.
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CHAPTER 1

INTRODUCTION

1.1 Background of Study

The rapid development of ubiquitous computing technology has made it 

possible to connect various ‘smart’ objects via the internet as a way of providing 

more data interoperability for its application purposes. However, the retrieved data 

must be analysed, manipulated and interpreted by a particle filter prior to being used 

for computer processing purposes as shown by the examples of target tracking 

(Ahmadi and Salari, 2017; Wang and Nguang, 2016), pollution monitoring (Metia et 

al., 2018, 2016), communications (Yao et al., 2015; Zhou et al., 2018), audio 

engineering (Ding et al., 2017; Munoz-Romero et al., 2018), finance (Chauhan and 

Huseynov, 2018; Finlay et al., 2018), econometrics (Gonzalez-Fernandez and 

Gonzalez-Velasco, 2018; Wilcox and Hamano, 2017) and other fields (Cappe et al., 

2007; Doucet et al., 2001, 2000)). It is, however, often the case that by the time these 

data are observed or obtained, it was contaminated by the presence of noise, which 

makes it difficult to analyse the true data and retrieve relevant information. This 

raises important questions about the inferences and conclusions that can be drawn 

from the data. The practice of stochastic filtering attempts to understand and answer 

these questions. One of these methods is known as particle filters.

The general aim of the particle filter is to smoothen or approximate the data 

or particles for it to be easily read by the end user. In a ubiquitous computing 

environment however, the particle filter is required to process the data or particles 

from different types (in term of specification) of sensor or real time platforms, where 

the retrieved data or particles may be corrupted and consequently, affect the 

particle’s value (for example the particle weight or particle state) or its sample size. 

This will in turn lead to an unbalanced particle distribution or in other words, sample 

degeneracy and impoverishment.
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However, the solution using resampling scheme in particle filter just 

considering the environment in a specific case, which is cannot generates reliable 

state estimation. Apart from that, the usage of resampling in particle filter also 

consuming their own memory and time, which is it reflect to the overall consumed 

system memory and time.

The main problem is how to optimise the accuracy of state estimation, and 

the same time also resampling’s memory in various sample impoverishment 

situations. To resolve this, a resampling scheme can be adopted to counteract 

different forms of sample degeneracy and impoverishment. However, the solution of 

using a resampling scheme for a particle filter considers only the environment of a 

specific case, and so cannot generate reliable state estimation. In addition, the use of 

resampling in a particle filter also consumes memory and time, which is reflected in 

the overall memory and time consumed by the system.

During the implementation of the particle filter, it is desirable to ensure its 

compatibility within the system. The development of adaptive resampling scheme in 

a particle filter is argued to counteract different forms of sample degeneracy and 

impoverishment relating to unique features and conditions. The outcome of this 

study is expected to contribute to the modernisation of the particle filter by providing 

a significant number of new resampling for particle filtering.

1.2 Problem Background

The particle filter is a one (1) of crucial component in a software application, 

particularly in the mobile navigation systems. This is because it is ability to 

performing state estimation tasks using signal filtering. In the ubiquitous computing 

environment, it is more practical for a particle filter to work or cooperate 

simultaneously with different kinds (in term of specification) of sensor and real time 

platform system requirements. During the particle filtering process, the particle 

distribution will be unbalanced; this is known as sample degeneracy and 

impoverishment. In cases of sample degeneracy, the majority of the particles in a

2



distribution was dominated by low weighted particles (where the weight is almost 

zero). By contrast, sample impoverishment can be described as the situation where 

most of the particles in a distribution was dominated by replicated high weighted 

particles. The resampling, such as sequential implementation resampling (SIR), can 

address this issue and balance the particle distribution. A situation of ideal or 

balanced particle weight distribution situation can lead to better state estimation. 

However, SIR considers the cause and environment at a specific time only, which 

cannot generate reliable state estimation during resampling in various computing 

configurations, and especially in the memory usage of various applications. In 

addition, the use of resampling in a particle filter also consumes memory and time, 

which is reflected in the overall memory used by the system. In a normal situation, a 

user application will require various memory usages. A developed and completed 

resampling scheme also experiences this issue, as its implementation relies on the 

memory of various applications.

Although SIR is generally able to balance particle weight to avoid the sample 

degeneracy effect, it is not able to completely overcome sample impoverishment. 

This is because SIR must consider various situations and stages of sample 

impoverishment during the implementation process. Two (2) important factors must 

be considered in regard to sample impoverishment; situation, and stages. The 

situation refers to the cause or factor affecting sample impoverishment; stages refers 

to the levels of sample impoverishment, which consist of high sample 

impoverishment, low sample impoverishment, and very low sample impoverishment. 

The following will elaborate further on the three (3) different issues relating to 

existing SIR schemes

The first (1st) issue of this research is inaccurate state estimation under 

situations in high sample impoverishment. In particle filtering, providing reliable and 

accurate state estimation during situations in high sample impoverishment is 

essential. This is due to the different factors that can affect the particle distribution. 

This situation is initially caused by three (3) possible factors; low particle sample 

size, moderate particle sample size, and low measurement noise (Pak et al., 2016, 

2017; Fox et al., 2001). Low and moderate particle sample size are caused by

3



variations in real time system architecture, while low measurement noise is caused 

by high accuracy sensor integration. As mentioned, sample impoverishment will lead 

to the particle weight distribution being, unbalanced, ultimately causing inaccurate 

state estimation. Specific SIR schemes have been developed to rectify this problem 

(Li et al., 2015a). The use of SSR can address this issue. SSR is a resampling scheme 

that can help to balance the particle distribution during situations in high sample 

impoverishment. There are three (3) main type of SSR scheme; modified based 

resampling, variable size based resampling, and roughening based resampling. Each 

type is suitable for a specific situation in high sample impoverishment.

As mentioned before, there are different contributing factors to or causes of 

sample impoverishment, primarily; low particle sample size, moderate particle 

sample size, and low measurement noise. In a situation of low particle sample size, 

the solution is variable size based resampling. Meanwhile, for low measurement of 

noise, the solution is roughening based resampling. Finally, for moderate particle 

sample size, modified based resampling is the most suitable solution. However, the 

usage of resampling in different sample impoverishment situations can increase 

state estimation error. For example, if  the modified based resampling is applied to 

other situations (such as low particle sample size or low noise measurement), the 

particle distribution will not change much. On the other hand, if  variable size based 

resampling is used in other situations (such as moderate particle sample size or low 

measurement noise), it can adjust to a small number of differences in particle 

distribution. Finally, the use of roughening based resampling in other situations 

(such as low measurement noise and particle sample size) will have a minimal 

effect on particle distribution and also be time consuming. Each categorisation of 

SSR will be explained in more detail in the Section 2.7 (critical review).

Based on the above discussion, it can be concluded that special strategies 

resampling can be implemented in the specific situations in high sample 

impoverishment only (Li et al., 2015a). Accordingly, in order to carry out more 

comprehensive resampling in other, different situations in high sample 

impoverishment, the factor of different situation is an important consideration in 

high sample impoverishment, especially state estimation error. In addition, an

4



The second (2nd) issue of this research is inaccurate state estimation under 

stages of sample impoverishment. The use of SSR as a single solution by means to 

increase the accuracy of state estimation during high sample impoverishment can be 

considered inefficient, since it is overly time consuming. Other SIR resampling 

schemes can better address this issue. There are three (3) main type of SIR scheme; 

single distribution resampling (SDR), compound resampling (CR), and special 

strategies resampling (SSR). Each of these schemes is able to counteract certain 

stages of sample impoverishment (Pak et al., 2016, 2017; Li et al., 2015a). 

Nevertheless, there still a need to develop schemes which is can achieve reliable state 

estimation accuracy across different stages of sample impoverishment.

As mentioned before, there are different stages of sample impoverishment; 

high sample impoverishment, low sample impoverishment, and very low sample 

impoverishment. The solution to high sample impoverishment is special strategies 

resampling (SSR); low sample impoverishment, the solution is compound 

resampling (CR); and, finally, for very low sample impoverishment, single 

distribution resampling (SDR) is the most suitable solution. However, the use of 

resampling at different sample impoverishment stages can make it difficult to 

achieve accurate state estimation. For example, if  SSR is used at other sample 

impoverishment stages, state estimation error might be increased. Similarly, if  CR 

or SDR is used at inappropriate sample impoverishment stages, state estimation 

error can be increased. The Section 2.7 (critical review) will be provided more 

details for each categorisation of SIR.

Based on these, it can be concluded that different forms of sequential 

implementation resampling can be implemented at specific stages of sample 

impoverishment only (Li et al., 2015a). Accordingly, in order to carry out more 

comprehensive resampling during the different stages of sample impoverishment, the 

state estimation error should be assessed. In addition, an adaptive particle and noise

adaptive particle and noise measurement input is required in order to help balance

state estimation accuracy in different situations in high sample impoverishment.
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Finally, the third (3 rd) issue of this research is non optimized resampling’s 

memory during implementation in various application’s memory usage. To ensure 

optimized resampling’s memory usage in various applications, existing SIR schemes, 

also known as single distribution resampling (SDR), produce unbalanced memory 

usage during resampling in various application’s memory usage. This is due to 

different memory required during resampling in different applications (Ikuzawa et al., 

2016; Li et al., 2015a; Orsila et al., 2007; Hightower and Borriello, 2004; Grisetti et 

al., 2007; Bolic et al., 2004; Hong et al., 2010).

Two (2) main types of SDR scheme have been proposed by other researchers; 

resampling based on normalised particle weights cumulative sum (RNPWCS), and 

resampling based on residual (RBR). The SDR scheme has a specific resampling’s 

frequency rate, which requires a specific memory rate that is suitable for certain 

applications. The unbalanced memory usage by resampling occurs when an 

application’s memory usage changes from high to low, or vice versa, whereas the 

memory rate of resampling is fixed. A difference in memory usage between the 

application and resampling will lead to unbalanced resampling memory, where it will 

either consume a high amount of memory, or have low memory efficiency

As mentioned earlier, there are two (2) different levels of memory usage in an 

application, high application’s memory usage and low application’s memory usage. 

According to (Qiu et al., 2015), most of the end user application will needs at least 

one (1) GB (maximum) memory, for their memory allocation purpose. This is will 

make any required memory of 500MB and below; considered as low memory usage 

and any required memory above than 500MB; considered as high memory usage. 

This required application’s memory will be change from time to time based on the 

allocated memory of a application. The implementation of the single distribution 

resampling scheme in the application (especially in mobile navigation system), may 

result unoptimized resampling’s memory allocation (Ikuzawa et al., 2016; Li et al., 

2015a; Orsila et al., 2007; Hightower and Borriello, 2004; Grisetti et al., 2007; Bolic

measurement input is required in order to help balance state estimation accuracy at

different stages of sample impoverishment.
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et al., 2004; Hong et al., 2010). For high application’s memory usage, the solution is 

resampling based on normalised particle weights cumulative sum (RNPWCS). On 

the other hand, the solution to low application’s memory usage is resampling based 

on residual (RBR). The use of such resampling for different memory usage of 

applications can lead to unoptimised resampling. For example, if  the resampling is 

based on normalised particle weights cumulative sum (RNPWCS) and applied to the 

condition of low application’s memory usage, this will lead to inefficient memory 

usage. On the other hand, the use of resampling based on residual (RBR) under the 

condition of high application’s memory usage will lead to high memory consumption. 

Each categorisation of SDR will be explained in more detail in the Section 2.7 

(critical review).

Based on these, it can be concluded that single distribution resampling can 

be implemented in applications with specific application’s memory usage. 

Accordingly, in order to carry out more comprehensive resampling in applications 

with different application’s memory usage, the factor of memory allocation should 

be considered in relation to different resampling schemes. In addition, an adaptive 

memory input is required in order to balance the memory allocation for resampling 

in applications with different application’s memory usage.

1.3 Problem Statement

This research addresses a number of critical problems faced by the existing 

sequential implementation resampling (SIR) of particle filtering under different 

sample impoverishment environments. The implementation of resampling in the 

particle filter will indirectly exposes the particle distribution to the various other 

computing aspects, such as different sensor and real time platform. It was also 

discovered to have resulted in an unbalanced particle distribution and consequently, 

inaccuracies in the state estimations. Apart from the above, the existing resampling 

method was also revealedto suffer from an unbalanced memory usage when being 

executedin the end user application.
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The best SIR resampling scheme, which is able to counteract sample 

impoverishment, is special strategies resampling (SSR). However, current SSR 

schemes are only able to accurately carry out resampling task during specific 

situations in high sample impoverishment. Additionally, there are different situations 

in high sample impoverishment situations in which SSR cannot establish state 

estimation accurately.

The usage of SSR in SIR is important to establish better accuracy of state 

estimation generally. However, current SIR schemes are only able to accurately 

apply resampling at specific levels of sample impoverishment. Additionally, there 

are different stages of sample impoverishment situations in which SIR cannot 

establish state estimation accurately.

As a resampling scheme, the particle selection process may require a certain 

amount of memory. The key resampling scheme that can control the resampling 

cycle is single distribution resampling (SDR). However, current SDR schemes are 

only applicable to balance the resampling’s memory in certain application’s memory 

usage. Additionally, there are different level of application’s memory in which SIR 

cannot optimize the resampling’s memory properly.

1.4 Research Questions

Based on the discussion provided in Section 1.2, the research questions can 

be formulated as follows;

i. How to reduce state estimation error over situations during high sample 

impoverishment?

a. How to minimize RMSE in various situation in high sample impoverishment?

b. How to choose suitable resampling for various situation in high sample 

impoverishment?

ii. How to reduce state estimation error over sample impoverishment stages?

a. How to minimize RMSE in various stages of sample impoverishment?
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b. How to choose suitable resampling for various stages of sample 

impoverishment?

iii. How to optimize memory usage between resampling’s memory in different 

application’s memory usage?

a. How to minimize resampling’s memory consumption as well preserve 

resampling’s memory efficiency in different application’s memory usage?

b. How to choose suitable resampling for different application’s memory usage?

1.5 Research Aim

The aim of this research is to design a new resampling scheme of adaptive 

memory and particle sequential implementation resampling (AMPSIR) with; 

adaptive noise and sample size special strategies resampling (ANSSSR), adaptive 

noise and sample size sequential implementation resampling (ANSSIR), and 

adaptive memory single distribution resampling (AMSDR), which employ current 

resampling scheme in order to, improve state estimation accuracy in different 

situation in high sample impoverishment, stages of sample impoverishment, and also 

balance resampling’s memory usage in particle filtering.

1.6 Research Objectives

For this purpose, the different sub objectives that need to be addressed are in 

the following manner;

i. To design an adaptive noise and sample size based special strategies 

resampling (ANSSSR) scheme, to reduce RMSE while preserving it in 

different situation in high sample impoverishment.

ii. To design an adaptive noise and sample size based sequential implementation 

resampling (ANSSIR) scheme, to reduce RMSE while preserving it in 

different stages of sample impoverishment.

iii. To design and implement adaptive memory based single distribution
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resampling (AMSDR) scheme in sequential implementation resampling, to 

reduce memory consumption and preserving memory efficiency.

1.7 Research Contributions

The main contribution of this research is the use of adaptive memory and the 

particle sequential implementation resampling (AMPSIR) scheme in particle filtering, 

which had provided a reliable state estimation in applications with different memory 

usage. For this reason, the AMPSIR is thus seen as a combined outcome from the 

following three (3) contributions.

The first (1st) contribution is, the adaptive noise and sample size based special 

strategies resampling (ANSSSR) scheme, which is used to reduce and preserve 

RMSE in different situations of high sample impoverishment. Current SSR schemes 

are only able to accurately carry out resampling task during specific situations in 

high sample impoverishment. Additionally, there are different situations in high 

sample impoverishment situations in which SSR cannot establish state estimation 

accurately. Therefore, there is a need for a trade off between RMSE in different 

situations of high sample impoverishment. This scheme will minimise RMSE in 

different high sample impoverishment situations.

Second (2nd) contribution is the adaptive noise and sample size based 

sequential implementation resampling (ANSSIR) scheme, which is used to reduce 

and preserve RMSE at different levels of sample impoverishment. Current sequential 

implementation resampling (SIR) schemes are only able to accurately apply 

resampling at specific levels of sample impoverishment. Additionally, there are 

different stages of sample impoverishment situations in which SIR cannot establish 

state estimation accurately. Therefore, there is a need for a trade off between RMSE 

at different levels of sample impoverishment. This scheme will minimise RMSE at 

different levels of sample impoverishment.
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The third (3rd) contribution is the adaptive memory based single distribution 

resampling (AMSDR) scheme for sequential implementation resampling, which is 

used to reduce memory consumption and preserve memory efficiency. Current SDR 

schemes are only applicable to balance the resampling’s memory in certain 

application’s memory usage. Additionally, there are different level of application’s 

memory in which SIR cannot optimize the resampling’s memory properly. Therefore, 

there is a trade off between resampling when uniform across applications with 

different memory usages. This scheme will reduce memory consumption and 

preserve memory efficiency.

1.8 Research Scope

This research presents an adaptive memory and particle sequential 

implementation resampling (AMPSIR) scheme for particle filtering. The scope of 

this research covers the following;

i. This study addresses particle filtering in mobile navigation system scenario.

ii. The value of particle sample size and noise measurement is in MATLAB

parameter value. The value is based on previous experiment that has been 

done other researcher.

iii. This study excludes sensor sensitivity or method to obtain noise 

measurements from real sensor or simulated sensor.

1.9 Significant of Research

This research contributes to the field of particle filtering by focusing on the 

development of adaptive memory and particle sequential implementation resampling 

(AMPSIR). This is to provide reliable state estimation across the various application 

memory. Meanwhile, the proposed resampling solution is suitable for various levels 

of sample impoverishment, a situation commonly faced by particle filters in 

ubiquitous computing environments where the end user application (for example
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Waze, Papago, Google Maps, or other mobile navigation software) will be integrated 

with different sensor configurations (internal or external sensor) and system 

architecture (whether using real time or non real time positioning). As addition, it is 

provides balanced state estimation that is suitable for implementation in small 

devices or other devices on which a heavy application is installed. Furthermore, the 

proposed resampling scheme has the ability to adapt the end user application’s 

memory usage, where the proposed resampling solution is can determine the most 

suitable resampling scheme based on the application’s memory usage.

1.10 Structure of Thesis

This thesis is divided into seven (7) chapters. Chapter 1 has introduced the 

study, by highlighting the background to the study, stating the objectives, problem 

statements, and contributions of the study. Chapter 2 will present a literature review 

of particle filter resampling and an overview of existing sequential implementation 

resampling schemes. Chapter 3 will discuss the research methodology used to 

achieve the research objectives. Chapter 4 will formally introduce the adaptive noise 

and sample size based special strategies resampling scheme (ANSSSR), while 

Chapter 5 will introduce the adaptive noise and sample size based sequential 

implementation resampling (ANSSIR), and Chapter 6 will present the adaptive 

memory based single distribution sequential implementation resampling (AMSDR). 

Finally, Chapter 7 will conclude the thesis and make recommendations for possible 

future works.
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