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ABSTRACT 

 

 

 

 

Writer identification is essential today to identify the authenticity of a 

document in forensic expert decision-making. However, handwriting in various 

languages specifically Chinese poses a different challenge in identifying the writer.  

The main challenge faced by current researchers is that they fail to adopt traditional 

methods over an offline text independent Chinese writer identification scheme due to 

the complexity of Chinese writing structure and style. Furthermore, the previous 

method relies heavily on the selection of window size, which causes an ambiguity 

and leads to inconsistent results if the previous method is applied on a large image 

repository while finding the best-matched document from the database. Thus, much 

uncertainty still exists about the insurmountable searching space and the method has 

failed to show the effectiveness in searching relevant documents from a large image 

repository.  This research attempted to solve problems by developing a new 

identification scheme for offline text-independent Chinese writer identification with 

the enhancement of feature extraction method and two-tier image retrieval 

mechanism to reduce search space and increase identification rates.  The technique 

involved three essential steps.  Firstly, the first-tier phase used Slantlet Transform 

based Local Binary Pattern (SLT-LBP) to bring out fine details.  Then, sixty 

matching handwriting images were short-listed for the second-tier phase using 

Hierarchical Centroid (HC) of image pixels method for feature extraction. Finally, 

thirty shortlisted images were used as the input in the identification phase using 

Gray-Level Difference Method (GLDM) features.  Experiment results had 

remarkably improved as compared to the previous method and the increase was from 

95.4% to 96.68% in terms of identification rate as reported in the HIT-MW dataset.  

The contribution of this study is that it highlights the importance of using a two-tier 

retrieval mechanism to reduce search space in a large database in order to achieve 

higher accuracy.  Besides, the development of a size-independent writer 

identification mechanism is a novelty as it can corroborate real-world application.
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ABSTRAK 

 

 

 

 

Pengenalpastian penulis adalah sangat penting untuk mengenal pasti kesahihan 

penulis dokumen dalam proses membuat keputusan pakar forensik.  Walau 

bagaimanapun, tulisan dengan pelbagai bahasa terutama tulisan Cina memberi 

cabaran berbeza kepada pengenalpastian penulis.  Cabaran utama yang dihadapi oleh 

penyelidik semasa adalah mereka gagal menggunakan kaedah tradisional menerusi 

pengenalpastian penulis Cina kerana kesukaran memahami struktur dan gaya 

penulisan tulisan Cina. Selain itu, kaedah sebelumnya bergantung pada pemilihan 

saiz tetingkap, yang menyebabkan keputusan yang samar dan tidak konsisten jika 

kaedah terdahulu diterapkan pada repositori imej yang besar sambil mencari 

dokumen yang paling sesuai dari pangkalan data. Oleh itu, banyak ketidakpastian 

masih wujud tentang ruang pencarian yang tidak dapat diatasi dan kaedah tersebut 

gagal menunjukkan keberkesanan dalam mencari dokumen yang relevan dari 

repositori imej yang besar. Kajian ini cuba menyelesaikan masalah dengan 

membangunkan skim pengenalan baru untuk pengenalpastian penulis bebas teks di 

luar talian dengan peningkatan kaedah pengekstrakan ciri dan mekanisma 

pengambilan imej dua peringkat untuk mengurangkan ruang carian dan 

meningkatkan kadar pengenalan. Teknik ini melibatkan tiga langkah penting. 

Pertama, fasa peringkat-pertama menggunakan Slantlet Transform berdasarkan Local 

Binary Pattern (SLT-LBP) untuk membawa butiran halus. Kemudian, enam puluh 

tulisan tangan yang sepadan tersenarai pendek untuk fasa peringkat-kedua 

menggunakan Hierarchical Centroid (HC) kaedah pixel imej untuk pengekstrakan 

ciri.  Akhirnya, tiga puluh gambar yang disenarai pendek digunakan sebagai input 

dalam fasa pengenalan menggunakan ciri Gray-Level Difference Method (GLDM).  

Keputusan eksperimen telah meningkat berbanding dengan kaedah sebelumnya dan 

peningkatan adalah dari 95.4% kepada 96.68% dari segi kadar pengenalan seperti 

yang dilaporkan dalam dataset HIT-MW.  Sumbangan kajian ini adalah menekankan 

pentingnya menggunakan mekanisma pengambilan dua peringkat untuk 

mengurangkan ruang carian dalam pangkalan data yang besar untuk mencapai 

ketepatan yang lebih tinggi. Di samping itu, perkembangan mekanisma ukuran 

pendekatan penulis bebas adalah sesuatu yang baru kerana dapat menyokong aplikasi 

dunia nyata. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Overview 

 

 

Research in writer identification has received significant interest in recent 

years due to its forensic applicability. The problem of writer identification arises 

frequently in the court of justice where one must come to a conclusion about the 

authenticity of a document.  Forensic analysis of handwriting requires to query large 

databases of handwritten samples of known writers due to the large number of 

individuals to be considered.  The task is to establish the identity of the writer of a 

questioned handwritten document, by comparing the questioned handwriting to 

handwritten samples with known identities which are stored in a database.  Hence, 

the research has history of decades and recently draws more and more attention 

because of its significance in criminal justice proceedings owing to its significance in 

forensic, security, financial transaction and archaeological investigations, both 

academic and industrial researchers are now more interested in it than ever before 

(H.E.S. Said, Tan and Baker, 2000; Louloudis et al., 2013; Kore and Apte, 2012; 

Saranya and Vijaya, 2013).  This performance however, remains far from being 

achieved for the time being tend to be computationally over-expensive, especially 

searching for relevant document from large complex document image repositories is 

a crucial problem in document image analysis and retrieval.  It is as yet unclear such 

methods can be seamlessly integrated in current forensic handwriting expertise.   

 

 

Furthermore, there are numerous languages throughout the world. Each 
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language with different structure characters and writing style poses a different 

challenge to the writer identification problem depending on its characteristics. 

Although, Western handwriting identification technology has been experimented on 

large handwriting databases and has shown practical effectiveness, but many 

identification methods proposed for Western handwriting are not suitable for Eastern 

handwriting, such as Chinese and Japanese (J. Tan et al., 2011; Bulacu and 

Schomaker, 2007; Li, X., Ding, X., and Wang, 2008).  Chinese handwriting 

identification is a rather challenging task because different writing styles with unique 

stroke shapes and structures of Chinese characteristics are embedded which is more 

difficult from those of other languages.   

 

 

 

 

1.2 Problem Background 

 

 

The problem of writer identification arises frequently in the court of justice 

where one must come to a conclusion about the authenticity of a document.  Hence, 

it has received significant interest in recent years due to its forensic applicability and 

most of the studies in this field share the same goal of identifying authorship of a 

script by acquiring individual features of the handwriting.  Current traditional 

method involves a process that to generate and find all documents features, then by 

comparing the feature vector distance between query and entire library database.  

Extensive research has been carried out on traditional method which is without 

retrieval is being done in real-world scenario as of now across three major languages 

in Chinese, English and Arabic around the world.  It is observed that during that 

period, there are significant progresses achieved on English and Arabic; however, the 

growth on Chinese is rather slow and far from satisfactory in comparison to its wide 

usage.  The systems developed for Latin scripts have been tried on Arabic scripts in 

some studies that achieved variable degree of success but Chinese handwritten text is 

comparably rare and not proportional to its widely usage (Bulacu, Schomaker and 

Brink, 2007).  This is due to each language poses a new challenge to the writer 

identification because of unique characteristics each language with its complex 

writing structure poses a different set of difficulties to the writer identification 

problem and requires a unique identification approach specific for that language.   
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The complications arising because of complicated Chinese and unique stroke 

Arabic script has motivated only a few studies on off-line text independent writer 

identification (J. T. J. Tan et al., 2011; Tan, Lai and Zheng, 2013; J. Tan et al., 2011; 

Sargur N Srihari, Yang and Ball, 2007; Cheng, 1998; Ahmed and Sulong, 2014; M. 

A. Abdullah et al., 2012; Chawki and Labiba, 2010; Al-Maadeed, 2012; Hashemi, 

Fatemi and Safavi, 1995; Saeed, 2001; Assayony and Mahmoud, 2016).  The best 

performance of text-independent Chinese writer identification attained to date is 

95.4% matching rate with Top-1 (Wen et al., 2012).  They proposed a method based 

on edge structure code (ESC) distribution feature, which is extracted by window that 

scans the edge detected binary image of handwritten text.  It requires pre-extraction 

of fragmented edge structure and code-based structural probability distribution of all 

writers in the database.  Such a method segments texts into small square windows 

has been proven to effectively perform although in this context, window-based 

extraction calls for a tedious, challenging from a size-adjustable sliding window and 

the selection of window size directly affect identification performance.  However, the 

performance of ESC is limited by window size and its accuracy decreases when 

operated on large size databases. 

 

 

Few of the recent techniques, stated for all languages, performed ambiguously 

when tried on different languages.  In addition to the challenges presented by 

characteristics of different language scripts, data size negatively affects the 

identification rate.  Thus, it is difficult to find multiple researches on different 

languages using same dataset for benchmarking which makes the comparison, on 

common grounds, impossible.  It would be valuable to prepare comparison 

mechanism based on a common benchmark to compare various identification 

schemes introduced by different researchers on common grounds and to avoid 

ambiguous results which needs to be summarized and compared among other 

researchers on a standard public database (Sreeraj and Idicula, 2011).  In another 

word, a method toward language invariant instead being specific to a particular 

language. 

 

 

Undoubtedly, many achievements have been made and only focused on 

identification performance on this very subject but a major problem with this kind of 
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traditional method is to search for the relevant document from large complex 

document image repositories.  This performance however, remains far from being 

achieved for the time being tend to be computationally over-expensive.  Time 

complexity is however beyond the scope of this study.  Searching and retrieval of a 

document from large image repositories is currently a big issue. Issues on datasets 

used by previous studies are also highlighted because the size matter – accuracy of 

the writer identification deteriorates as database size increases.  There is a problem of 

data heterogeneity apart from problems of scale involve database size.  Alternatively, 

it has become an important field of research to integrate writer identification with 

retrieval mechanism for improving the writer identification performance in real life 

applications.  Extension of writer identification with retrieval was first introduced by 

Atanasiu et al. (2011) in English language to enhance the writer identification 

performance using single retrieval mechanism.  So far, very little attention has been 

paid to the role of retrieval mechanism.  Seamless integration of such methods in 

current forensic handwriting expertise is as yet unclear.  Until now, in the research 

on off-line text-independent writer recognition researchers have been mainly 

interested in writer identification without retrieval mechanism approach. 

 

 

Current progress in writer identification is forging new areas of research and 

applications has inspired this study to introduce retrieval mechanism in off-line text-

independent writer identification approach for Chinese language while emphasizing 

on data heterogeneity aiming for reducing big search space, which requires a large 

amount of memory, computation power and time consumption in interpretability of 

results when large databases are involved.  This research is enlivened by the similar 

idea of reducing the feature dimension before to next identification task.  Up to now, 

there are still remains research opportunity and gap in existing method in terms of 

offline text- independent Chinese writer identification. 

 

 

 

 

1.3 Problem Statements 

 

 

Based on the problem background, unimpressive identification accuracy (Wen et 
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al., 2012) lead ambiguous and inconsistent result strictly depends upon the selection 

window size involve manipulation constant window size.  Thus, the manipulation 

process is not reliable and efficient involve insurmountable search space especially 

finding best matched document in large and complex databases across large number 

of individuals with complex writing structure by comparing the feature vector 

distance between query and entire library database directly impacts the writer 

identification performance deteriorates as database size increases is a crucial problem 

in this field.   

 

 

 

 

1.4 Research Goal 

 

 

This study aims to develop a new scheme of off-line text-independent Chinese 

writer identification with retrieval mechanism for better and remarkable accuracy.   

 

 

 

 

1.5 Research Objectives  

 

 

In order to achieve the above mentioned goal, the following three major 

objectives must be fulfilled: 

 

1. To develop feature extraction method for image retrieval process which realizes 

better identification rates than the existing state-of-the-art writer identification 

methods.  

2. To enhance writer identification method that integrates with two-tier image 

retrieval for reducing search space and improving identification rates.  

3. To propose and implement the identification enhancement scheme of Chinese 

writer for off-line text-independent.   
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1.6 Research Scope  

 

 

The research objectives are achieved by identifying the problem scope which 

focuses the following aspects: 

 

i. Evaluations on public standard HIT-MW Chinese database (Tonghua Su, 

2006) comprising three major writing styles in regular script, fluent script and 

cursive script. 

ii. Type of features: texture feature is the concern of this study, other features 

such as shape and color are beyond the scope of study. 

iii. Use of offline or scanned Chinese handwriting samples. 

iv. Performance evaluation: Accuracy is used in line with previous works.  Time 

complexity, precision and recall are however beyond the scope of this study.  

 

 

 

 

1.7 Significance of the Study 

 

 

Handwriting based personal identification is great interest in image 

processing to correctly recognise an individual through handwriting and important 

research area of forensic interest which has been lately focused on automatic writer 

identification (Zhu, Tan and Wang, 2000).  The need for an efficient, fully automated 

writer recognition (AWR) and a powerful handwritten document retrieval system as 

an emerging technology, tackles the challenges and issues that were reported by the 

researchers regarding the current writer identification, and that it will be considered 

as a consistently reliable biometric system with retrieval mechanism.  After 

examining the issues involved in managing writer retrieval in some depth, the 

participants concluded that handwritten documents retrieval were indeed likely to 

play an increasingly important role in many fields.  Several writer retrieval methods 

have been described and large number of the new writer retrieval techniques 

invented but most of them are not adequate of effective writer identification 

representation. 
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It is also hoped and expected that AWR may minimize the size of the search 

area of writer identification as the size of the forensics databases and standard 

datasets are immense.  Such issue directly impacts the system performance of writer 

identification and it consumes time.  AWR also extracts and employs the most 

important information from the handwriting to accurately emphasize the writer’s 

characteristics.  

 

 

Considering the above issues, the research outcomes are expected to 

contribute to the currently information regarding writer identification systems with 

retrieval mechanism.  Despite the above described significance of this study, it must 

understand that it will not confine only to the enrichment of knowledge. It is self-

evident of potentially capable of practical applications. 

 

 

 

 

1.8 Thesis Outline 

 

 

In this chapter along presenting an overview of the research problem and a 

brief background, it cites recent work in the area particularly those dedicated to 

window-based methods to stress on the issues that exist in the current methods.  The 

objectives of the research are also described in this chapter. 

 

 

In the first part of Chapter 2, an overview of writing identification; the 

significant contributions in the writer identification field is presented, and different 

methods are synthesized in the text independent methods for writer identification 

including the selection of database, features extraction, similarity measurement, and 

performance evaluation method are described.  Whereas, in the second part of this 

chapter, several writer identifications with retrieval mechanisms is described. 

 

 

In Chapter 3, presents a clear roadmap that describe research framework in 

details is presented.  It provides explanation of every step involved in systematic 

approach used for carrying out this research project. A discussion on phases, 

techniques and performance measures of the proposed technique is appropriately 
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