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Abstract

An analysis of the steady two-dimensional mixed convection flow of an incompressible viscous fluid near an oblique stagnation point
on a heated or cooled stretching vertical flat plate has been studied. It is assumed that the plate is stretched with a velocity proportional to
the distance from a fixed point and the temperature of the plate is constant. Both the cases of the assisting and opposing flows are con-
sidered. It is shown that the velocity increases as the shear parameter c increases with the increase of the straining parameter a/c. These
flows have a boundary layer structure near the stagnation region. It is also found that the flow has an inverted boundary layer structure
when the stretching velocity of the surface exceeds the stagnation velocity of the free stream (a/c < 1). It is shown that the position of the
point xs of zero skin friction (shear stress on the wall) is shifted to the left or to the right of the origin and it depends upon the balance
between obliqueness, straining motion and buoyancy effects.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The study of the flow field and heat transfer due to a
stretching surface in a quiescent or moving fluid is relevant
to several practical applications in the modern industry. To
cite a few practical examples, industrial processes such as
the extrusion of metals and plastics, cooling and/or drying
of paper and textiles, glass blowing and material handling
involve boundary layers on continuous moving surfaces
in a free stream under prescribed boundary conditions.
The control of the cooling rate of the sheets is very impor-
tant for the desired material structure. As the sheets move
through a cooling tank or in open air, they are cooled by
the boundary layers induced on their surface due to the vis-
cous force. It should be mentioned that the problem of
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boundary layer flow adjacent to a continuous moving sheet
is physically different from that of the classical Blasius flow
past a stationary flat plate and that the two problems can-
not be mathematically transformed from one to the other.
It seems that Crane [1] was the first to give a similarity solu-
tion in closed analytical form for steady two-dimensional
incompressible boundary layer flow caused by the stretch-
ing of a sheet, which moves in its own plane with a velocity
varying linearly with distance from a fixed point. Subse-
quently, several investigators [2–6] have studied various
aspects of this problem such as the effect of the mass trans-
fer, wall temperature and magnetic field. Mixed convection
boundary-layer flows, characterized by the modification of
the convective flow and thermal fields by buoyancy forces,
are frequently encountered in transport processes occurring
both in nature and in industry. The wall skin friction and
the heat transfer rate from the surface are affected by the
buoyancy forces, and considerable error in their estimation
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Nomenclature

a positive constant characterizing the outer flow
b positive or negative constant characterizing the

outer flow
A constant
c positive constant characterizing the stretching

sheet
C1,C2 constants of integration
g gravitational acceleration
k thermal conductivity
Gr Grashof number
‘ characteristic length
Nu Nusselt number
�p dimensional pressure
p dimensionless pressure
Pr Prandtl number
�qw heat transfer from the plate
Re Reynolds number
T fluid temperature
�u;�v dimensional velocity components along �x- and

�y-axes
u,v dimensionless velocity component
Ve dimensional free stream velocity
�ue;�ve dimensional free stream velocity components

along �x- and �y-axes
�uwð�xÞ dimensional velocity of the stretching sheet

�x; �y dimensional Cartesian coordinates along the
stretching surface and normal to it, respectively

x,y dimensionless Cartesian coordinates
xs point of zero skin friction or shear stress on the

wall

Greek symbols

a thermal diffusivity of the fluid
b coefficient of thermal expansion
c shear flow parameter
k mixed convection parameter
l dynamic viscosity
t kinematic viscosity
h dimensionless temperature
q density of fluid
�sw dimensional skin friction or shear stress on the

wall
sw dimensionless skin friction or shear stress on the

wall
w dimensionless stream function

Subscripts

w refers to the wall
1 refers to the far stream
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can result if the buoyancy effects are not taken into account
in the analysis (see Ramachandran et al. [7]). The effect of
buoyancy forces on the steady boundary layer induced by a
stretching sheet in the vertical direction has been consid-
ered by Ingham [8], Daskalakis [9], Chen [10,11], Chamkha
[12], Ali [13], Partha et al. [14] and Ishak et al. [15].

Stagnation-point flow is a topic of considerable impor-
tance in fluid mechanics in the sense that they appear in vir-
tually all flow fields of engineering and scientific interest. In
some situations flow is stagnated by a solid wall, while in
others a free stagnation point or line exists interior to the
fluid domain. After Weidman and Putkaradze [16], these
flows may be characterized as inviscid or viscous, steady
or unsteady, two-dimensional or three-dimensional, sym-
metric or asymmetric, normal or oblique, homogeneous
or two-fluid, and forward or reverse. The two-dimensional
stagnation point flow impinging obliquely on a fixed plane
wall has been investigated by a number of authors such as
Stuart [17], Tamada [18], Takemitsu and Matunobu [19],
Dorrepaal [20,21], Labropulu et al. [22], Tilley and Weid-
man [23], while Reza and Gupta [24], Lok et al. [25] and
Mahapatra et al. [26] considered a similar problem on a
stretching surface. It was found in these papers without
or with heating plates that the stream function splits into
a Hiemenz [27] flow and a tangential component. The main
consequence of the free stream obliqueness is the shift of
the stagnation point toward the incoming flow. This shift
increases when decreasing the free stream incidence.

All the above investigations on flows impinging obli-
quely on a plane wall are, however, without considering
the effect of the thermal buoyancy forces on the flow and
thermal fields. Amaouche and Boukari [28] has studied
the interaction of a buoyancy induced convection flow
and free stream impinging at some angle of incidence on
an inclined heated flat plate. Also, Lok et al. [29] have con-
sidered recently the mixed convection flow near the non-
orthogonal stagnation point on a vertical surface, which
is subject to a constant heat flux.

The aim of this paper is to investigate the steady mixed
convection flow of an incompressible viscous fluid imping-
ing obliquely on a heated or cooled vertical stretching sur-
face. Using similarity variables, the full governing partial
differential equations are transformed into a system of
three non-linear ordinary differential equations which are
then solved numerically using Keller’s box method for both
assisting and opposing flows. Representative results for the
velocity profiles and the location of the point of zero skin
friction (or shear stress on the wall) are obtained for several
values of the governing parameters, which are presented in
tables and figures. To the best of our knowledge this prob-
lem has not been studied before and the results reported
here are new.
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2. Basic equations

Consider a two-dimensional flow impinging on a
stretching vertical surface in a viscous and incompressible
fluid, the oblique velocity of the inviscid fluid is
Veð�ue;�veÞ, which consists of irrotational stagnation point
flow and a uniform shear flow parallel to the stretching sur-
face. It is assumed that the constant temperature of the
plate is Tw, while the uniform temperature of the ambient
fluid is T1. Fig. 1 illustrates such a flow field for a vertical,
heated stretching surface with the upper half of the flow
field (x > 0) being assisted and the lower half of the flow
field (x < 0) being opposed by the buoyancy force. The
reverse trend will occur if the plate is cooled below the
ambient temperature T1. The reported results are thus true
for both the heated (Tw > T1) and cooled (Tw < T1) sur-
face conditions when the appropriate (assisting and oppos-
ing) flow regions are selected (see [30]). The coordinate
system O �xy has its origin O located at the center of the
sheet with the positive �x-axis extending along the sheet in
the upward direction, while the �y-axis is measured normal
to the surface of the sheet and is positive in the direction
from the sheet to the fluid, the flow being confined to
�y > 0. The continuous stretching surface is assumed to
have the velocity �uwð�xÞ ¼ c�x, where c > 0 is a constant.
Under these assumptions along with the Boussinesq
approximation, the steady two-dimensional flow of a vis-
cous and incompressible fluid is described by the following
equations:
o�u
o�x
þ o�v

o�y
¼ 0 ð1Þ

�u
o�u
o�x
þ �v

o�u
o�y
¼ � 1

q
o�p
o�x
þ t �r2�uþ gbðT � T1Þ ð2Þ

�u
o�v
o�x
þ �v

o�v
o�y
¼ � 1

q
o�p
o�y
þ t �r2�v ð3Þ

�u
oT
o�x
þ �v

oT
o�y
¼ a �r2T ð4Þ
g
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Fig. 1. Physical model and coordinate system.
where �u and �v are the velocity components along the �x- and
�y-axes, respectively, g is the acceleration due to gravity, �p is
the pressure, q is the density, t is the kinematic viscosity, a
is the thermal diffusivity, b is the coefficient of thermal
expansion, �r2 is the Laplacian in Cartesian coordinates
ð�x; �yÞ. Following Amaouche and Boukari [28], Eqs. (1)–
(4) are solved under the following boundary conditions

�v ¼ 0; �u ¼ �uwð�xÞ ¼ c�x; T ¼ T w at �y ¼ 0

�ue ¼ a�xþ b�y; �ve ¼ �a�y; T ¼ T1 as �y !1
ð5Þ

where a and b are constants characterizing the outer invis-
cid flow.

We introduce now the following dimensionless variables

x ¼ �x=‘; y ¼ �y=‘; u ¼ �u=ðc‘Þ; v ¼ �v=ðc‘Þ;
p ¼ �p=ðqc2‘2Þ; h ¼ ðT � T1Þ=ðT w � T1Þ ð6Þ

where ‘ = (t/c)1/2 is a characteristic length of the flat plate.
Substituting (6) into Eqs. (1)–(4), gives

ou
ox
þ ov

oy
¼ 0 ð7Þ

u
ou
ox
þ v

ou
oy
¼ � op

ox
þr2uþ kh ð8Þ

u
ov
ox
þ v

ov
oy
¼ � op

oy
þr2v ð9Þ

u
oh
ox
þ v

oh
oy
¼ 1

Pr
r2h ð10Þ

where Pr is the Prandtl number and k is the mixed convec-
tion parameter, which is defined as

k ¼ gbðT w � T1Þ
c2‘

¼ gbðT w � T1Þ‘3=t2

ðc‘Þ2‘2=t2
¼ Gr

Re2
ð11Þ

Here Gr = gb(Tw � T1)‘3/t2 is the Grashof number and
Re = (c‘)‘/t is the Reynolds number. It should be noted
that k = 0 corresponds to forced convection flow, while
k 6¼ 0 corresponds to the mixed convection flow, where
k > 0 refers to the heated sheet and k < 0 refers to the
cooled sheet, respectively. Further, we introduce the stream
function w defined as

u ¼ ow
oy
; v ¼ � ow

ox
ð12Þ

and eliminate pressure p from Eqs. (8) and (9). Thus, we
have

ow
ox

o

oy
ðr2wÞ � ow

oy
o

ox
ðr2wÞ þ r4wþ k

oh
oy
¼ 0 ð13Þ

ow
oy

oh
ox
� ow

ox
oh
oy
¼ 1

Pr
r2h ð14Þ

and the boundary conditions (5) become

w ¼ 0;
ow
oy
¼ x; h ¼ 1 at y ¼ 0

w ¼ a
c

xy þ 1

2
cy2; h ¼ 0 as y !1

ð15Þ

where c = b/c is a shear flow parameter.



Table 2
Values of H0(0) for different values of a/c and Pr

a/c H0(0)

Pr = 0.05 Pr = 0.5 Pr = 1.0 Pr = 1.5

0.1 �0.0813 �0.3824 �0.6022 �0.7768
(�0.081) (�0.383) (�0.603) (�0.777)

0.2 �0.0990 �0.4073 �0.6245 �0.7971
(�0.099) (�0.408) (�0.625) (�0.797)

0.5 �0.1356 �0.4728 �0.6933 �0.8652
(�0.136) (�0.473) (�0.692) (�0.863)

1.0 �0.1784 �0.5643 �0.7979 �0.9772
(�0.178) (�0.563) (�0.796) (�0.974)

2.0 �0.2411 �0.7119 �0.9788 �1.1782
(�0.241) (�0.709) (�0.974) (�1.171)

3.0 �0.2901 �0.8336 �1.1322 �1.3521
(�0.289) (�0.829) (�1.124) (�1.341)

( ) Results by Mahapatra and Gupta [32].
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Physical quantities of interest are the skin friction or
shear stress on the wall and the Nusselt number which
are defined as

�sw ¼ l
o�u
o�y
þ o�v

o�x

� �
�y¼0

; Nu ¼ ‘�qw

kðT w � T1Þ
ð16Þ

where k is the thermal conductivity, l is the dynamic vis-
cosity and �qw is the heat transfer from the wall which is gi-
ven by

�qw ¼ �k
oT
o�y

� �
�y¼0

ð17Þ

Using the dimensionless variables (6) and the definition of
the stream function (12), the dimensionless skin friction or
shear stress on the wall and the Nusselt number can be
written as

sw ¼
o2w
oy2
� o2w

ox2

� �
y¼0

; Nu ¼ � oh
oy

� �
y¼0

ð18Þ

where sw ¼ �sw=ðlcÞ.
The boundary conditions (15) suggest that Eqs. (13) and

(14) have the solution of the form

wðx; yÞ ¼ xF ðyÞ þ GðyÞ; hðx; yÞ ¼ HðyÞ ð19Þ

where the functions F(y) and G(y) refer to the normal com-
ponent and tangential component of the flow, respectively,
see Dorrepaal [20]. Thus the velocity components (u,v) that
obtained from Eqs. (12) and (19) are

u ¼ xF 0ðyÞ þ G0ðyÞ; v ¼ �F ðyÞ: ð20Þ

Substituting (19) into Eqs. (13) and (14) results in, after one
integration, the following ordinary differential equations

F 000 þ FF 00 � F 02 þ C1 ¼ 0 ð21Þ
G000 þ FG00 � F 0G0 þ kH þ C2 ¼ 0 ð22Þ
1

Pr
H 00 þ FH 0 ¼ 0 ð23Þ

where C1 and C2 are constants of integration. The bound-
ary conditions (15) become
Table 1
Values of A for different values of a/c

a/c A

0.1 0.7917
0.2 0.6407
0.5 0.3286
0.8 0.1145
1.0 0.0000
1.2 �0.0998
1.5 �0.2297
2.0 �0.4104
3.0 �0.6931
5.0 �1.1053
F ð0Þ ¼ 0; F 0ð0Þ ¼ 1; F 0ð1Þ ¼ a
c

ð24aÞ

Gð0Þ ¼ G0ð0Þ ¼ 0; Hð0Þ ¼ 1; G00ð1Þ ¼ c; Hð1Þ ¼ 0

ð24bÞ
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Fig. 2. Velocity profiles u(x,y) for different values of a/c when x = 1,
Pr = 0.72 and c = 0.5: (a) heated sheet (k = 1); (b) cooled sheet (k = �1).
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Primes denote differentiation with respect to y. Taking the
limit y ?1 in Eq. (21) and using the boundary condition
F0(1) = a/c, we get C1 = a2/c2. From an analysis of the
boundary layer Eq. (21) it is found that F(y) behaves as
F(y) = (a/c)y + A as y ?1, where A = A(a/c) is a con-
stant accounts for the boundary layer displacement. By
taking the limit y ?1 in Eq. (22) and using the boundary
conditions (24), we get C2 = �Ac. Thus, Eqs. (21) and (22)
become

F 000 þ FF 00 � F 02 þ a2

c2
¼ 0 ð25Þ

G000 þ FG00 � F 0G0 þ kH � Ac ¼ 0 ð26Þ

The value of A = A(a/c) is determined by solving numeri-
cally Eq. (25) subject to the boundary conditions (24a).
Some values of A for several values of a/c are given in
Table 1.

Employing (19), the non-dimensional skin friction and
the Nusselt number given by Eq. (18) can now be written as

sw ¼ xF 00ð0Þ þ G00ð0Þ; Nu ¼ �H 0ð0Þ ð27Þ
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Fig. 3. Velocity profiles u(x,y) for different values of a/c when x = 1,
Pr = 0.72 and c = 2: (a) heated sheet (k = 1); (b) cooled sheet (k = �1).
where values of F00(0), G00(0) and H0(0) can be calculated
from Eqs. (25), (26) and (23) for some values of the param-
eters k and c.

In particular, the dividing streamlines w = 0 and the
curve u = ow/oy = 0 intersect the wall at the stagnation
point where sw = 0. Therefore the location of the point xs

of zero skin friction or shear stress on the wall is given by

xs ¼ �
G00ð0Þ
F 00ð0Þ ð28Þ
3. Results and discussion

Eqs. (23), (25) and (26) subject to the boundary condi-
tions (24) have been solved numerically for some values
of the parameter a/c, Prandtl number Pr, mixed convection
parameter k and shear flow parameter c using Keller’s box
method in conjunction with Newton’s linearization which
is described in the book by Cebeci and Bradshaw [31]. Both
assisting and opposing flow cases are considered. We notice
that Eqs. (23) and (25) describe the flow and heat transfer
of an orthogonal stagnation point flow towards a stretch-
ing sheet, which has been solved numerically by Mahapatra
and Gupta [32] using the finite difference method with
Thomas algorithm. In order to verify the accuracy of the
present results, we have compared the values of the heat
Table 3
Values of the point xs of zero shear stress on the wall (sw = 0) for different
values of k and a/c when Pr = 0.72 and c = 1: heated stretching sheet

k xs

a/c = 0.1 a/c = 0.2 a/c = 0.5 a/c = 1.2 a/c = 1.5 a/c = 2.0

0.1 0.3564 0.5926 1.2652 �3.2453 �1.2612 �0.5967
0.2 0.4410 0.6741 1.3575 �3.3842 �1.3087 �0.6158
0.5 0.6948 0.9185 1.6343 �3.8009 �1.4513 �0.6733
1.0 1.1178 1.3258 2.0958 �4.4953 �1.6888 �0.7691
1.5 1.5408 1.7331 2.5572 �5.1897 �1.9264 �0.8648
2.0 1.9638 2.1404 3.0186 �5.8842 �2.1640 �0.9606
3.0 2.8098 2.9550 3.9414 �7.2731 �2.6392 �1.1521
5.0 4.5019 4.5843 5.7871 �10.0508 �3.5896 �1.5352

10.0 8.7320 8.6574 10.4013 �16.9951 �5.9656 �2.4929

Table 4
Values of the point xs of zero shear stress on the wall (sw = 0) for different
values of k and a/c when Pr = 0.72 and c = 1: cooled stretching sheet

k xS

a/c = 0.1 a/c = 0.2 a/c = 0.5 a/c = 1.2 a/c = 1.5 a/c = 2.0

�0.1 0.1872 0.4297 1.0806 �2.9676 �1.1661 �0.5584
�0.2 0.1026 0.3482 0.9884 �2.8287 �1.1186 �0.5392
�0.5 �0.1513 0.1039 0.7115 �2.4120 �0.9761 �0.4818
�1.0 �0.5743 �0.3035 0.2501 �1.7176 �0.7385 �0.3860
�1.5 �0.9973 �0.7108 �0.2113 �1.0231 �0.5009 �0.2902
�2.0 �1.4203 �1.1181 �0.6727 �0.3287 �0.2633 �0.1945
�3.0 �2.2663 �1.9327 �1.5956 1.0602 0.2119 �0.0029
�5.0 �3.9583 �3.5619 �3.4413 3.8379 1.1623 0.3802
�10.0 �8.1884 �7.6351 �8.0554 10.7822 3.5383 1.3378
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transfer rate, H0(0) for various values of a/c and Pr with
those of Mahapatra and Gupta [32]. The results are in very
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good agreement as can be seen from Table 2. Therefore, we
are confident that the present results are accurate.
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Figs. 2 and 3 shows the variation of u(x,y), the vertical
component of the velocity, which is given by Eq. (20), with
y at a fixed value of x(=1.0) and Pr = 0.72 for several val-
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ues of a/c when k = 1, and c = 0.5 (small shear in the free
stream) and c = 2 (large shear in the free stream), respec-
tively. It is found that the velocity increases with the
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increase in a/c. A boundary layer structure is formed for
both assisting and opposing flows when a/c > 1, however,
an inverted boundary layer is observed when a/c < 1. It
results from the fact that when a/c < 1, the stretching veloc-
ity �uwð�xÞ ¼ c�x of the surface exceeds the stagnation velocity
�ue ¼ a�xþ b�y of the external stream (see [26,32]). We can
also see that there is not much difference between the cases
of heated and cooled sheets when a/c > 1. However, a dif-
ference can be seen when a/c < 1, namely, the convexity of
the velocity profiles for cooled sheet looks more expanded.
Further, it is clearly seen from Figs. 2 and 3 that the slope
of the velocity is higher for large value of shear (e.g. c = 2)
compared to that for smaller value (e.g. c = 0.5).

Tables 3 and 4 show the values of the point xs of zero
skin friction or shear stress on the wall (sw = 0) for some
values of k and a/c when Pr = 0.72 and c = 1, for heated
and cooled vertical sheets, respectively. For the case of
heated sheet, assisting flow, it can be observed that for a
fixed value of a/c, the location of the point xs moves con-
tinuously to the right of the origin O (assisting flow region)
with an increase in k provided that a/c < 1, but it shifts to
the left of the origin (opposing flow region) when a/c > 1.
For the case of cooled sheet, the position of xs moves from
the right (xs > 0, assisting flow region) to the left (xs < 0,
opposing flow region) when a/c < 1 with an increasing k.
However, when a/c > 1, xs is shifted from the left (xs < 0,
opposing flow region) to the right (xs > 0, assisting flow
region). This is due to the balance between the obliqueness,
straining motion and the buoyancy force. In order to illus-
trate these various situations, some streamline patterns are
drawn in Figs. 4–7. Figs. 4 and 5 are for the heated stretch-
ing sheet assisting flow when a/c < 1 and a/c > 1, respec-
tively. The case of the cooled stretching sheet is
illustrated in Figs. 6 and 7.
4. Conclusion

In this paper, we have studied the steady two-dimen-
sional oblique stagnation-point flow of an incompressible
viscous fluid towards a vertical surface, which is stretched
with a velocity proportional to the distance from a fixed
point. The motivation is to determine the effect of buoy-
ancy on the flow characteristics of the boundary layer by
interaction of a buoyancy induced convection flow and a
free stream impinging obliquely on a heated or cooled
stretching flat plate of constant wall temperature for both
cases of buoyancy assisting flow and buoyancy assisting
flow, respectively. By using a proper scaling, an exact sim-
ilarity solution of the Navier–Stokes and energy equations
has been obtained. The present results show that the veloc-
ity profile at a given point of y increase with increase in a/c.
For the case of cooled sheet, the convexity of the inverted
boundary layer that formed looks more expanded than the
case of heated sheet. It is also found that the mixed convec-
tion parameter affects the position of the point xs of zero
skin friction (shear stress on the wall). However, it needs
to be mentioned that there exists no theoretical or experi-
mental data available for comparison.
Acknowledgements

The author would like to express their very sincerely
thanks to reviewers for their valuable and interesting com-
ments and suggestions. The authors are also indebted to
Prof. D.B. Ingham for his valuable comments which lead
to the further improvement of the paper.
References

[1] L.J. Crane, Flow past a stretching plate, J. Appl. Math. Phys.
(ZAMP) 21 (1970) 645–647.

[2] H.K. Kuken, On boundary layers in fluid mechanics that decay
algebraically along stretches of wall that are not vanishingly small,
IMA J. Appl. Math. 27 (1981) 387–405.

[3] P. Carragher, L.J. Crane, Heat transfer on a continuous stretching
sheet, J. Appl. Math. Mech. (ZAMM) 62 (1982) 564–565.

[4] W.H.H. Banks, Similarity solution of the boundary layer equations
for a stretching wall, J. Mech. Theor. Appl. 2 (1983) 375–392.

[5] E. Magyari, B. Keller, Heat and mass transfer in the boundary layers
on an exponentially stretching continuous surface, J. Phys. D: Appl.
Phys. 32 (1999) 577–585.

[6] E. Magyari, B. Keller, Exact solutions for self-similar boundary-layer
flows induced by permeable stretching surfaces, Eur. J. Mech. B-
Fluids 19 (2000) 109–122.

[7] N. Ramachandran, T.S. Chen, B.F. Armaly, Mixed convection from
vertical and inclined moving sheets in a parallel free stream, J.
Thermophys. Heat Transfer 1 (1987) 274–281.

[8] D.B. Ingham, Singular and non-unique solutions of the boundary-
layer equations for the flow due to free convection near a continu-
ously moving vertical plate, J. Appl. Math. Phys. (ZAMP) 37 (1986)
559–572.

[9] J.E. Daskalakis, Free convection effects in the boundary layer along
a vertical stretching flat surface, Can. J. Phys. 70 (1993) 1253–
1260.

[10] C.-H. Chen, Laminar mixed convection adjacent to vertical, contin-
uously stretching surface, Heat Mass Transfer 33 (1998) 471–
476.

[11] C.-H. Chen, Mixed convection cooling of heated continuously
stretching surface, Heat Mass Transfer 36 (2000) 79–86.

[12] A.J. Chamkha, Hydromagnetic three-dimensional free convection on
a vertical stretching surface with heat generation or absorption, Int. J.
Heat Fluid Flow 20 (1999) 84–92.

[13] M.E. Ali, The buoyancy effects on the boundary layers induced by
continuous surfaces stretched with rapidly decreasing velocities, Heat
Mass Transfer 40 (2004) 285–291.

[14] M.K. Partha, P.V.S.N. Murthy, G.P. Rajasekhar, Effect of
viscous dissipation on the mixed convection heat transfer from an
exponentially stretching surface, Heat Mass Transfer 41 (2005) 360–
366.

[15] A. Ishak, R. Nazar, I. Pop, Mixed convection boundary layers in the
stagnation-point flow towards a stretching vertical sheet, Meccanica
41 (2006) 509–518.

[16] P.D. Weidman, V. Putkaradze, Axisymmetric stagnation flow
obliquely impinging on a circular cylinder, Eur. J. Mech. B/Fluids
22 (2003) 123–131.

[17] J.T. Stuart, The viscous flow near a stagnation point when the
external flow has uniform vorticity, J. Aerospace Sci. 26 (1959) 124–
125.

[18] K.J. Tamada, Two-dimensional stagnation point flow impinging
obliquely on a plane wall, J. Phys. Soc. Jpn. 46 (1979) 310–311.



L.Y. Yian et al. / International Journal of Heat and Mass Transfer 50 (2007) 4855–4863 4863
[19] N. Takemitsu, Y. Matunobu, Unsteady stagnation-point flow
impinging obliquely on an oscillating flat plate, J. Phys. Soc. Jpn.
47 (1979) 1347–1353.

[20] J.M. Dorrepaal, An exact solution of the Navier–Stokes equation
which describes non-orthogonal stagnation-point flow in two dimen-
sions, J. Fluid Mech. 163 (1986) 141–147.

[21] J.M. Dorrepaal, Is two-dimensional oblique stagnation-point flow
unique? Canad. Appl. Math. Quart. 8 (2000) 61–66.

[22] F. Labropulu, J.M. Dorrepaal, O.P. Chandna, Oblique flow imping-
ing on a wall with suction or blowing, Acta Mech. 115 (1996) 15–25.

[23] B.S. Tilley, P.D. Weidman, Oblique two-fluid stagnation-point flow,
Eur. J. Mech. B/Fluids 17 (1998) 205–217.

[24] M. Reza, A.S. Gupta, Steady two-dimensional oblique stagnation-
point flow towards a stretching surface, Fluid Dyn. Res. 27 (2005)
334–340.

[25] Y.Y. Lok, N. Amin, I. Pop, Non-orthogonal stagnation point flow
towards a stretching sheet, Int. J. Non-Linear Mech. 41 (2006) 622–
627.
[26] T.R. Mahapatra, S. Dholey, A.S. Gupta, Heat Transfer in oblique
stagnation-point flow of an incompressible viscous fluid towards a
stretching surface, Heat Mass Transfer 43 (2007) 767–773.

[27] K. Hiemenz, Die Grenzschicht an einem in den gleichförmigen
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