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In a recent paper by Reza and Gupta(2005) it has been shown that the boundary layer equations
describing the two-dimensional oblique stagnation-point flow towards a stretching surface can be reduced
to the following two equations:

F ′2 − FF ′′ − F ′′′ = C1, (1)

F ′W ′ − FW ′′ − W ′′′ = C2, (2)

where primes denote differentiation with respect to �, and C1 and C2 are constants of integration which
can be determined upon using the following boundary conditions:

F = 0, F ′ = 1, W = 0, W ′ = 0 at � = 0, (3)

and

F ′(�) ∼ a

c
and W ′(�) ∼ 2

b

c
� as � → ∞. (4)

It should be noticed that the parameter a/c is defined by ue(x)/uw(x) = a/c, where ue(x) = ax is
the velocity of the flow outside the boundary layer (inviscid flow) and uw(x) = cx is the velocity of the
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stretching sheet, respectively, with a and c being positive constant.Also, b(�0) is a constant characterizing
the obliqueness of oncoming flow. Using the boundary conditions (4), Reza and Gupta(2005) found that
C1 = a2/c2 and C2 = 0. Thus, Eqs. (1) and (2) reduce to

F ′2 − FF ′′ − F ′′′ = a2

c2 , (5)

F ′W ′ − FW ′′ − W ′′′ = 0. (6)

We wish to point out in this note that Eq. (6) is wrong. Thus, from the boundary conditions (4) we get

F(�) ∼ a

c
� + A, F ′(�) ∼ a

c
, W ′(�) ∼ 2

b

c
�, W ′′(�) ∼ 2

b

c
as � → ∞, (7)

where A is a constant which can be determined by solving numerically Eq. (5) subject to the boundary
conditions (3) and (4) for the function F(�), see Labropulu et al. (1996). However, using (7) in Eq. (2),
we get

C2 = −2
b

c
A, (8)

so that Eq. (2) becomes

F ′W ′ − FW ′′ − W ′′′ = −2
b

c
A, (9)

which is different from Eq. (6) reported by Reza and Gupta(2005). The incorrect Eq. (6) appears, unfor-
tunately, also in the papers by Tamada (1979), Takemitsu and Matunobu(1979), Wang (1985), Dorrepaal
(2000), and Weidman and Putkaradze(2003). However, Weidman and Putkaradze(2005) have partially
corrected the error in their paper.

Substituting (5) and (9) into Eqs. (8) and (9), and after integration we found that the correct form of
the dimensionless pressure for the viscous oblique stagnation-point flow is given by

−P(�, �) = 1

2

(
a2

c2 �2 + F 2
)

+ F ′ − 2
b

c
A� + constant. (10)

Since this flow violates the no-slip boundary condition at the wall, the dimensionless outer inviscid (but
rotational) velocity, is given by, see Reza and Gupta(2005),

Ue(�, �) = a

c
� + 2

b

c
�, Ve(�, �) = −a

c
�. (11)

Using the Bernoulli equation for the inviscid but rotational flow, we can show that the dimensionless
pressure of the outer field in the present problem, is given by

−Pe(�, �) = 1

2

a2

c2 (�2 + �2) + 2
ab

c2 �� + 2
b2

c2 �2 + constant. (12)

If b=0, the linear shear flow (shear stress b) is absent, the external flow reduces to the potential irrotational
flow for the normal planar stagnation-point flow or Hiemenz (1911) problem for the stagnation-point flow
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Table 1
Values of the constant A and F ′′(0) for different values of the parameter a/c

a/c A F ′′(0)

Mahapatra and Nazar et al. Present results
Gupta (2002) (2004)

0.01 0.9747 −0.9980 −0.9980
0.02 0.9507 −0.9958 −0.9958
0.05 0.8853 −0.9876 −0.9876
0.10 0.7917 −0.9694 −0.9694 −0.9694
0.20 0.6407 −0.9181 −0.9181 −0.9181
0.50 0.3286 −0.6673 −0.6673 −0.6673
0.80 0.1145 −0.2994
1.00 0.0000 0.0000 0.0000
2.00 −0.4104 2.0175 2.0175 2.0176
3.00 −0.6931 4.7293 4.7296 4.7297
4.00 −0.9166 8.0014
5.00 −1.1053 11.7537 11.7538
10.00 −1.7997 36.2687 36.2687
20.00 −2.7196 106.5744 106.5744

towards a stretching surface. In this case Pe(�, �) given by (12) reduces to

Pe(�, �) = a2

c2 (�2 + �2) + constant. (13)

We have now solved numerically Eqs. (5) and (9) subject to the boundary conditions (3) and (7) using the
Keller-box method described in the book by Cebeci and Bradshaw (1984). We notice that the problem

F ′2 − FF ′′ − F ′′′ = a2

c2 ,

F(0) = 0, F ′(0) = 1, F ′(∞) = a

c
, (14)

describes the flow towards the orthogonal stagnation point on a horizontal stretching sheet. This problem
has been studied by Mahapatra and Gupta (2002) and Nazar et al. (2004). In order to verify the accuracy
of the present results, we have compared the values of the reduced skin friction F ′′(0) for some values
of the parameter a/c in Table 1. Values of the constant A are also included in Table 1. It is seen that
the present values of F ′′(0) are in excellent agreement with those obtained by Mahapatra and Gupta
(2002) and Nazar et al. (2004). Therefore, we are confident that the results obtained in this paper are very
accurate.

Fig. 1 shows the variation of U(�, �)= �F ′(�)+W ′(�) with � at �= 0.5 and b/c = 1 for several values
of a/c. It is seen that this figure is the same with Fig. 3 in Reza and Gupta(2005)’s paper. However,
graphs for a/c = 0.2 and 0.8 do not intersect as in the paper by Reza and Gupta(2005). On the other
hand, it can be seen from this figure that the flow has a boundary layer behavior when a/c > 1 and it has
an inverted boundary layer structure when a/c < 1. In our opinion, the claim by Reza and Gupta(2005)
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Fig. 1. Variation of U(�, �)with � at fixed value of � = 0.5 for several values of a/c when b/c = 1.
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Fig. 2. Streamlines pattern for b/c = 0.05. (a) a/c = 0.2; (b) a/c = 5.

that the boundary layer structure is destroyed in the presence of considerable shear in the free stream is
actually not true.

The streamline patterns for the oblique flows are shown in Figs. 2 and 3 for a/c = 0.2, 0.5, 2 and 5
corresponding to a small shear in the free stream (b/c = 0.05) or moderate value of shear (b/c = 1). It is
found that the obliqueness of the streamlines are very obvious for the case of moderate shear compared
to small shear. However, it is seen that the location of stagnation point is always at the origin, which can
be explained due to the fact that the plate linearly stretches with a velocity uw(x) = cx. However, this is
quite opposite to the case of a fixed plate shown recently by Lok et al. (2006).

Observation: We would like to point out that it is not our intention to criticize any paper mentioned
here but only to draw the attention that the results presented in some papers are not accurate. This is very
important, especially, for those who wish to deal with the topic of oblique stagnation-point flow.
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Fig. 3. Streamlines pattern for b/c = 1. (a) a/c = 0.2; (b) a/c = 0.5; (c) a/c = 2.

The authors wish to express their sincere thanks to the referees for their valuable comments and
suggestions.
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