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Abstract 

        In this review paper, we introduce the recently developed Lattice Monte Carlo method for 
addressing and solving phenomenologically-based mass and heat transport problems especially 
for composite and porous materials. We describe in detail the application of this method to 
calculate effective mass diffusivities and to determine concentration profiles. Next, we describe 
in detail the application of this method to the calculation of effective thermal 
conductivities/thermal diffusivities and the determination of temperature profiles. Where 
possible, results of the method are compared with exact results or those from application of the 
Finite Element method. Excellent agreement is demonstrated.  
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1. Introduction 

       The Monte Carlo method was first developed at Los Alamos during the WWII Manhattan 
Project for the purposes of modelling neutron trajectories during fission. Since that time, the 
Monte Carlo method has undergone numerous developments and has enjoyed applications in 
virtually every area of science and engineering. Intrinsically a computationally very demanding 
method, the Monte Carlo method has naturally become far more popular as computers have 
become faster, less expensive and more accessible. The Monte Carlo method has been a popular 
method to address both mass and heat transport problems in materials. For mass transport, the 
Monte Carlo method has been used for many years for addressing atomistic problems in 
crystalline solids (in such problems it is now usually called the Kinetic Monte Carlo (KMC) 
method; see [1] for an early review and [2] for a typical recent KMC calculation. More recently, a 
related Monte Carlo method has been used for addressing phenomenological problems (where it 
is has been termed the Lattice Monte Carlo (LMC) method [3,4]). For addressing heat transport, 
the Monte Carlo method has been used for many years for addressing transient heat conduction 
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problems in homogeneous materials (where a continuous random walk method has been used 
[5]). Recently, the LMC method has been adapted to address steady-state and transient heat 
transport problems in inhomogeneous materials [6,7].  
       The LMC method, the focus of this contribution, is basically a type of finite-difference 
method that is embedded in a quasi-simulation of the physical process. It has shown itself to be 
very useful in addressing and solving complex phenomenological mass and thermal diffusion 
problems. In this paper, we provide a review at an introductory level of the LMC method, with an 
emphasis on how the method is actually employed to address and solve phenomenological mass 
and heat transport problems. In Section 2, we discuss the LMC calculation of the effective mass 
diffusivity and concentration profiles. In Section 3, we provide the corresponding discussion of 
the LMC calculation of the effective thermal conductivity, the effective thermal diffusivity and 
temperature profiles.  
 

2. Effective Mass Diffusivities 

       The effective mass diffusivity represents the long time limit mass diffusivity of a ‘composite 
material’. Experimentally, this effective diffusivity is probably best known as the diffusivity 
measured in a tracer diffusion experiment made on a polycrystalline material in the Harrison 
Type-A kinetics regime. In this regime, the effective diffusivity is some weighted average of the 
lattice or bulk diffusivity of the diffusant and its grain boundary diffusivity. Other examples are 
the effective ionic conductivity of a composite solid electrolyte and the effective diffusivity of a 
diffusant in a two phase material. In Section 2.1, we review the LMC method for determining the 
effective mass diffusivity and in Section 2.2 we highlight the various published LMC calculations 
of the effective mass diffusivity. In Section 2.3, we review the LMC method for determining 
concentration profiles and in Section 2.4 we highlight the various published LMC calculations of 
concentration profiles.  
 
 
2.1 The LMC Method for Determining the Effective Mass Diffusivity 

        Mass diffusion is a random process that can be represented by random walks of particles. 
The particles can be atoms, molecules or much larger entities such as colloidal particles or even 
unicellular organisms. The century-old Einstein-Smoluchowski (ES) Equation [8,9] (often 
referred to simply as the Einstein Equation) describes the self-diffusivity D of randomly walking 
particles in d dimensions (d = 1,2,3): 
 

                                    
dt

R
D

2

2 ><
=                                                                                               (1) 

 
(where R is the vector displacement of a given particle after some long time t and the brackets < > 
refer to an average over a very large number (N) of particles).  
       The ES Equation refers only to a system already at equilibrium. In a mass diffusion context, 
the ES Equation refers then to the determination of the diffusivity of individual particles that can 
be followed or traced in a system that is already at chemical equilibrium, i.e. with no 
concentration gradient acting or external field(s) acting. In other words, each particle needs to be 
followed for some long time t in order to determine its displacement R. In a real experiment, there 
are rather few examples where this has been possible to achieve. One well-known example makes 
use of a field ion microscope to follow or trace individual surface rhodium atoms diffusing on 
various faces of a f.c.c. rhodium crystal [10]. If the ad-atom fraction is low and the positions of 
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the ad-atoms are observed frequently, then it is possible in effect to tag the atoms by noting at 
each observation precisely which atom has moved, and how far, since the previous observation. 
The rhodium surface diffusivity itself can then be formed simply and directly using Eq. 1 after a 
suitably long diffusion time. 
       In contrast with its very limited use in experiments, the ES Equation has provided the 
foundation for much of the theory that describes the diffusion of atoms in the solid state. There, it 
is commonly assumed that atoms jump from site to site on a lattice with very long residence 
times on each site between jumps and an assumed zero flight time between sites. (This is often 
loosely referred to as the ‘hopping model’.) The atoms, individually, as well as their collective 
centre of mass, undergo random walks on a lattice. In a period extending over half a century, a 
vast literature has been built up that has been especially concerned with describing memories or 
correlations between individual jumps of the random walk of (mainly) tracer atoms; see, for 
example, [11]. Since about the early 1970s, a large part of this literature has made use of the 
Monte Carlo method either for verifying theoretical results or exploring new situations where 
analytical methods have not yet been developed; see, for example, the review [1].  
       For random walks (say with correlations) on a simple cubic lattice the diffusivity can be 
partitioned from Eq. 1 as [11]: 
 

                                        
6

2fr
D

Γ
=                                                                                             (2) 

 
where Γ is the jump rate, r is the jump distance (the distance between sites) and f is termed the 
tracer correlation factor. The tracer correlation factor embodies the correlations in the directions 
of the jumps of the individual atoms on their diffusion paths [11]. The tracer correlation factor 
has the limits of zero and unity. For a hypothetical walk, where every jump of the individual 
particles is immediately reversed, then f = 0. On the other hand, for a complete random walk, i.e. 
when each jump in the walk of the particles is completely independent or uncorrelated with all 
previous ones, then f = 1. As an aside, it is worth mentioning that for many solid state diffusion 
mechanisms such as the vacancy mechanism, there are considerable correlations in the directions 
of successive jumps of the atoms because of the continued proximity of the vacancy after a tracer 
or tagged atom jump with the vacancy. For the vacancy diffusion mechanism, the correlation 
factor is given approximately by:  
 

Z
f

2
1−≈                                                                                                   (3) 

 
where Z is the local coordination number; Z = 4 and 6 for the square planar and simple cubic 
lattices respectively.                                                                     
       It is important to recognize that the ES Equation remains valid for long times even when the 
material has different diffusivities in different regions of the material (for example in a 
composite), provided that the material remains isotropic in its diffusion properties overall. The 
implication also is that each tracer particle ‘explores’ a sufficiently large portion of the structure 
to be representative of the composite structure. The diffusivity represented in the ES equation is 
then the effective diffusivity of the structure. 
       The process of describing random walk diffusion of particles on a lattice lends itself 
particularly well to Monte Carlo methods. Directing random walks of particles on lattices with 
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random numbers was in fact one of the first applications (1951) of the new Monte Carlo method 
in the post WWII years [12]. Perhaps surprisingly, the ES Equation itself does not seem to have 
been used until almost twenty years later and then only indirectly. A possible reason for this is 
the difficulty in dealing with time. In fact, in contrast to the other principal diffusion kinetics 
simulation method of molecular dynamics, the simulation of real time is not possible in a Monte 
Carlo kinetics calculation. What one actually does is to use a discrete quantity that is proportional 
to actual time. This quantity is the number of jump attempts per particle. Using the ES Equation 
with this quantity acting as ‘time’, one can then calculate a relative diffusivity, i.e. a diffusivity 
that is relative to one of the specified diffusivities (usually the highest) in the system. 
       We now describe several straightforward LMC calculations, the first to calculate the 
diffusivity in a homogeneous material, the second to calculate an effective diffusivity in a 
composite material. In both cases, the particles that explore the lattice are no longer considered to 
represent the diffusivities of individual entities such as atoms but are virtual particles that 
represent the macroscopic diffusivities in each region. In contrast with atomistic Monte Carlo 
calculations, there are no correlation effects here in the diffusion of the particles. Each particle 
diffuses completely independently of all others. Put another way, multiple occupancy of the 
lattice sites is permitted.  
       In the first case to be considered, we look at a situation where the diffusivity is the same 
everywhere. Consider then the case of the self-diffusion of isolated particles on a simple cubic 
lattice having the dimensions, say, of 100 x 100 x 100 i.e. one million lattice sites. There are six 
jump directions for each jump of a particle, i.e. Z=6. We suppose that this lattice has periodic 
boundaries. This very common type of boundary condition specifies that when a particle reaches 
an edge or face of the lattice, if the next jump would take it outside of the lattice, then the particle 
is simply plugged back into the edge or face of the lattice directly on the opposite side of the 
lattice. In effect, with the imposition of periodic boundaries, the original lattice is now 
surrounded by periodic images or replicas of itself. The use of periodic boundaries thus enables 
surface effects to be avoided completely. However, this lattice is still a small system, and, if too 
small, historical effects may be perpetuated in some diffusion problems as a particle leaves one 
side and enters on the opposite side into what is, in effect, essentially the same environment that 
it has just left. In a problem such as diffusion in a thin film, a formal surface(s) is of course 
necessary and is retained in the calculation. 
       Monte Carlo methods require of course random numbers: these are nearly always computer 
generated and, since extremely large numbers of them are required in a calculation, they are 
produced with highly optimized routines. Random numbers ri are typically presented uniformly 
on the following interval: 0 ≤ ri < 1. In our calculation here, a particle is first created at some 
randomly chosen site in our lattice (random numbers are used to generate the x, y and z 
coordinates for this site and the direction to jump is also chosen at random (from the six available 
in this particular case where the simple cubic lattice is used). There are frequently two options 
available here depending on the problem. We can release all N particles at the same time at 
randomly chosen sites in the lattice and then start the simulation by choosing them randomly to 
jump. Provided that we permit multiple occupancy of a given site, the particles would diffuse 
independently of each other over the lattice for the entire time Nt. The alternative is to release the 
particles one at a time i.e. we let each particle diffuse for exactly the same time t (the same 
number of jump attempts) before the next particle is released. At long times, both of these 
procedures are completely equivalent and would take about the same amount of overall 
computational time, but the second way is probably slightly easier conceptually and we will 
assume it in the following for convenience.  
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       After each step of the random walk of a given particle has been directed by the computer-
generated random numbers, the corresponding step-by-step contribution to the vector 
displacement of the particle R from its original position is also accumulated. It has been found 
that it is probably best to do this by assuming that each particle starts from its own origin (0,0,0). 
It should be especially noted that when a particle crosses a periodic boundary and is therefore 
reinserted into the opposite side of the lattice, this process is completely ignored in the 
calculation of R. In other words, for the purposes of calculating R we think of the original lattice 
as being surrounded by periodic images of itself. The process of directing the random walk of the 
particle is allowed to continue for, say, 10 000 jump attempts. The entire process is then repeated 
with further particles until, say, a total of N = 106 particles have been released, each one having 
had 10 000 jump attempts in its walk. In this particular example, every attempt to jump is 
permitted to be successful (this is equivalent to saying that Γ = 1 in the units: jump per jump 
attempt of the particle). The jump distance (see Eq. 2) is r = 1 and has the units of ‘lattice 
spacings’. Accordingly, the jump distance can be scaled to any distance. Since f = 1 here (the 
particles diffuse completely independently of each other and there are no correlation effects), Eq. 
2 shows immediately that D should equal 1/6 and also carries the units: lattice spacings squared 
per jump attempt. A calculation of D directly from the LMC procedure using the ES Equation 
verifies this within statistical uncertainty. The value here of 1/6 taken by D then must of course 
be scaled to the actual diffusivity in the material.  
       Now let us consider diffusion in a simple two-component composite material. For the sake of 
concreteness, we consider the dispersed phase (the inclusions) to be spheres (phase 2) that are 
embedded in a matrix phase (phase 1) and that the spheres are themselves arranged for 
convenience here in a simple cubic arrangement. We assume that the diffusivity in the spherical 
inclusions themselves is D2 and that the diffusivity in the matrix is D1. We are then interested in 
calculating the effective diffusivity Deff of the composite. First of all, as a very rough 
approximation for the effective diffusivity in such a composite, we can write the effective 
diffusivity as a simple linear combination of the individual diffusivities:  
 
                               12 )1( DggDDeff −+=                                     (4) 

 
where g is the volume fraction of the inclusion phase. In the solid state diffusion literature, Eq. 4 
is commonly referred to as the Hart Equation [13] and originally referred to the specific situation 
where the two ‘phases’ are the bulk (the grains) and the grain boundaries (or dislocation pipes). 
Eq. 4 is the effective diffusivity measured in the Harrison Type-A kinetics regime where the 
parallel grain boundary slabs are parallel to the diffusion direction [14]. Eq. 4 is exact only when 
the two phases or regions are parallel and the diffusivities are measured in that direction. 
       Now let us consider a LMC method determination of the effective diffusivity in this 
composite. A fine-grained simple cubic lattice say (100 x 100 x100) is overlaid on this system. A 
plane of this structure is shown in Fig. 1. The requirement here of course is that the lattice is 
sufficiently fine grained that it can adequately capture the shape of the spherical inclusions. The 
volume fraction of inclusions g is simply the number of lattice sites in the inclusion(s) divided by 
the total number of sites (There is usually a small correction that depends on the choice of the 
jump frequencies between the two phases and will be discussed below.) The lattice also has 
periodic boundaries which are implemented exactly as for the homogeneous system described 
above. Since there are periodic boundaries, it does not actually matter in this particular example if 
the inclusion is in the centre of the lattice because the arrangement of the spherical inclusions 
itself is also simple cubic. (Recall that with the employment of periodic boundaries, the lattice is 
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surrounded by images of itself.) For more complicated arrangements of the inclusions in the 
lattice, which effectively acts like a unit cell of the structure of the chosen arrangement, the 
inclusions must be located with care.   
 
     

 
    
 
Fig. 1. A plane of a model composite with spherical inclusions in a simple cubic arrangement overlaid by a simple 
cubic lattice.  

 
 
As in the earlier example described above, each particle is created and released from a randomly 
chosen site in the lattice. As before, there are no correlation effects here to be concerned with 
because the particle is diffusing completely independently of all others. The two diffusivities D1 
and D2 are now simply individually represented by the two (different) jump probabilities (per unit 
time) Γ1 and Γ2. It is usual to scale the higher Γ to unity for computational efficiency. The jump 
rate of the particle now varies according to position within the lattice. Thus if the particle is 
currently on a site known to be in phase 1 (i.e. the spherical inclusion), it has a jump rate Γ1, 
whereas if the particle is currently on a site known to be in phase 2, then it has a jump rate of Γ2. 
As an example, let us choose Γ1 = 1 and Γ2 = 0.1 (this means that the ratio of the diffusivities 
D1/D2 =10). Thus when the particle is on a ‘phase 2 site’, another random number r needs to be 
generated to determine the outcome of the jump attempt. If r is greater than Γ2 then this jump 
attempt is said to have failed and a jump direction must again be chosen at random for this 
particular particle. (Note, if the simulation is being done in such a way that all particles were 
released at the same time, then, if an attempt to jump is unsuccessful, a particle must again be 
chosen at random from the cohort.) If r is less than or equal to Γ2 then the jump attempt is said to 
have been successful and the particle is permitted to move.  
       A small difficulty occurs at a boundary between the phases. When a particle is about to cross 
a boundary, a consistent choice must be made about the jump rate to use. If the jump is between 
phase 1 and phase 2 and Г1 is used, then the reverse jump (from phase 2 to phase 1) must also use 
Г1. Otherwise, the principle of local detailed balance would be violated and there is an 
implication that there is some kind of segregation of the particles between the two regions. 
Similarly, if, for argument’s sake, the jump between phase 1 and phase 2 used Г2 then Г2 must 
also be used for the reverse jump. In practice, the choice made here of Г has almost no affect on 
the calculated results for the effective diffusivity. The correction is actually to g – the fraction of 
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the inclusions. This will arise as a result of this procedure because of the following reason. 
Obviously, a path of the particle jump with jump rate Гi should belong to the phase i. Because of 
that, we introduce the fraction of sites (exactly 1/Z, where Z is the coordination number) being 
taken from one phase and added to the other phase according to the method of handling the jumps 
at a boundary between the phases that was introduced above. This correction is usually very 
small and can be shown to be inversely proportional to the number of sites representing an 
inclusion of a different type. 
       In many materials, one can expect that the diffusant can undergo segregation among the 
various phases that are present. For two phases, this is conveniently expressed through a 
segregation factor s which is defined in the usual Henry’s Law way as:  
 

                                     














−==
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E
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c
s sexp

1

2                          (5) 

 
where, for convenience, c1 < c2 where ci is the (equilibrium) concentration of the diffusant in 
phase i. In Eq. 5, Es is the segregation energy of the diffusant between the two phases, k is the 
Boltzmann constant and T is the absolute temperature. In the implementation of segregation in 
the LMC method, the jump probability Γ12 for a jump from phase 1 to phase 2 and the jump 
probability Γ21 for a jump from phase 2 to phase 1 are related to the segregation factor at 
equilibrium by: 
 
                                            Γ12 / Γ21 = s                                                                                        (6) 
 
When segregation is present, the initial release of the particles must also be adjusted. This is 
simply achieved by weighting the regions according to Eq. 5 and their relative fractions.  
       As in the earlier example above, after a large number of particles have been released, say N = 
106, then the effective diffusivity for the composite can be formed directly from the ES Equation. 
The effective diffusivity of the composite is automatically scaled relative to the highest 
diffusivity (in this particular case, to that of the matrix D1). It is clear that it is very easy to 
introduce other inclusions having different diffusivities into the matrix. It is also straightforward 
to allow position-dependent diffusivities even within the inclusions or the matrix by simply 
mapping such dependencies onto the corresponding jump frequencies Γi. This method of 
calculating the effective diffusivity is basically a finite-difference method for the solution of the 
corresponding inverse Diffusion Equation (see, for example, Manning’s [15] derivation of the ES 
Equation with the Diffusion Equation (Fick’s Second Law) as a starting point). 
       The principal difficulty in the LMC method determination of the effective diffusivity is 
ensuring that the number of jump attempts is sufficiently large to ensure that the long-time 
effective diffusivity of the composite is correctly determined. At very short diffusion times for 
each particle (one or two jumps), as might be expected, the effective diffusivity is simply given 
by the approximate Eq. 4 because this would also be the instantaneous effective diffusivity. At 
very long diffusion times, after each particle has adequately ‘explored’ the structure, the correct 
long-time limit effective diffusivity of the composite is obtained. As a good estimate for what 
would be a sufficiently long time for a given calculation, it is best to first form the effective 
diffusivity according to the approximate Eq. 4 and then use this via a calculation of the ‘diffusion 
length’, (6Deff t)

1/2 to determine the number of jump attempts (t) appropriate for the problem. As 
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a reasonable guide, the diffusion length should be at least half the length of the lattice, or unit cell 
of the ordered arrangement of the inclusions.  
       In some applications, one may wish to introduce some degree of randomness to the 
arrangement of the inclusions or to their size, or possibly their shape. This poses no major 
problems. For the purposes of changing the arrangement of the inclusions, at one extreme, one 
may start from an ordered arrangement of the inclusions which is then randomized to some extent 
by making appropriate random shifts of the inclusions within the lattice but without allowing the 
inclusions to overlap. At the other extreme, one might first prepare a gas-phase like distribution 
or even a dense random packing distribution [16] of the inclusions in a separate calculation. This 
distribution is then mapped onto a fine-grained lattice. In both cases, the effective diffusivity is 
still determined simply as described above from the ES Equation. Of course, in such cases, it will 
also be necessary to average over a number of random starting distributions of the inclusions in 
order to obtain a reliable estimate of the effective diffusivity of the composite model being 
addressed. Dealing with a distribution of sizes of the inclusions is straightforward and needs no 
explanation. Inclusions that take the standard geometrical shapes of spheres, cubes, ellipses etc 
are, of course, straightforward to implement. In principle, actual experimental inclusion shapes 
could be mapped onto the Monte Carlo lattice making use of image analysis of micrographs from 
a confocal microscope, but this has not been attempted.    
       As noted above, the highest jump rate (diffusivity) is scaled to unity for efficiency. When 
one of the diffusivities is very small, the Monte Carlo method with the basic algorithm described 
above frequently tends to run into difficulties arising from rather large computational inefficiency 
(most attempts to jump are rejected in that region) and a slight non-randomness in the random 
number generation and the subsequent inhomogeneity of the random numbers generated over the 
range zero to unity. This will be magnified for diffusion in the slow diffusivity region. These 
difficulties can be avoided or at least minimized by making use of straightforward residence time 
algorithms; see, for example, [17-19]. Such algorithms can be very useful when the diffusivities 
vary by many orders of magnitude. A popular choice makes use of an algorithm that guarantees a 
jump on every attempt [19] wherein the particle’s site residence time (the reciprocal of the jump 
rate) is simply added to the elapsed time at each move. In principle, this can lead to overshooting 
of the specified time though this is unlikely to be a serious problem at very long diffusion times. 
There is, of course, a significant computational overhead with such algorithms that may offset 
some of the efficiency gains.  
       As an alternative to the ES Equation for the calculation of the effective diffusivity, it is also 
possible to make use of Fick’s First Law [6]: 
 

                                         
x

C
DJ
∂
∂

−=                                                                                            (7) 

 
where J is the particle flux and ∂C/∂x is its concentration gradient. In a LMC calculation Eq. 7 is 
most conveniently used under steady-state conditions by introducing a source plane, at which 
particles can be created at a random position and released one at a time, and a sink plane, at 
which the particles are annihilated as soon as they arrive. This of course gives an apparent 
particle concentration of 1/n for the source plane (where n is the number of sites on that plane) 
and zero for the sink plane. This, along with the length of the lattice between the source plane and 
the sink plane, provides a uniform concentration gradient ∂C/∂x. This gradient can also be 
adjusted by changing the length of the lattice or by adjusting the probability for the particle being 
annihilated at the sink plane. For example, if a particle arrives at the sink plane and is annihilated 
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with a probability of Pi (appropriately evaluated on the spot using a new random number), the 
effective concentration of particles on that plane is then simply given by (1-Pi)/n and the 
concentration gradient in the problem is thus reduced. In a lattice of dimensions 100 x 100 x 100 
the source and sink planes are separated by 50 planes in the +x direction and by the same number 
of planes via the periodic boundary in the –x direction. A particle is released from the source 
plane and is permitted to diffuse to the sink, thereby providing, in effect, a well-defined uniform 
concentration gradient.  The mass flux J is simply calculated as the net number of particles that 
have crossed between two neighboring planes in the x-direction as calculated over a long time t 
during which time some 105 particles are released from the source and annihilated at the sink. 
Inclusions are introduced in exactly the same way as the ES Equation method described above 
and diffusion is simulated in the same way. However, it should be noted a particle may ‘see’ in 
effect only one isolated inclusion in its lifetime in going from source to sink and give an incorrect 
result for the effective diffusivity. For this reason, periodic arrangements of inclusions would 
require at least two inclusions between the source plane and the sink plane of particles.       
       Results of calculations of the effective mass diffusivity (also the effective thermal 
conductivity see below) in simple 2D composites via the ES Equation and Fick’s First Law have 
been described as being in very good agreement [6]. In general, however, it must be mentioned 
that for calculating the effective diffusivity, the ES Equation method is considerably easier to use 
than the Fick’s First Law method and, furthermore, is rather more flexible in its application. The 
authors seriously doubt if the Fick’s First Law method in general has any particular advantages 
for the calculation of the effective diffusivity: it is likely that the method will remain largely of 
pedagogical interest. 
 
2.2 LMC Calculations of the Effective Mass Diffusivity  

2.2.1 Effective Mass Diffusion in Two Phase Materials 
       Most of the LMC calculations for the effective mass diffusivity have been on two phase 
materials. In many cases, the second ‘phase’ has been the grain boundary region.  
       The first LMC calculation of the effective mass diffusivity was concerned with determining 
the effective diffusivity of the void space of a simple model of porous media that was constructed 
from spheres [16]. Various ordered (f.c.c., b.c.c. and s.c.) and random packing arrangements of 
impermeable spheres were examined in that first LMC study. Random distributions of touching 
spherical particles were generated in the following way. First, spheres were introduced randomly 
into a volume (non-periodic) without overlap. In order to generate dense random packing of the 
spheres there are quite a number of possible algorithms available; see, for example, [20]. 
However, it is generally accepted that the dense random packing of spheres always depends 
slightly on the actual algorithm used and that there may in fact be no perfect algorithm for 
generating dense random packing [20]. In the LMC study [16], a dense random packing of 
spheres was first obtained by starting with a very simple Lennard-Jones pair-potential between 
particles that was tailored to have a very dominant repulsive part of the potential (this was 
intended to closely approximate hard spheres) and an extremely weak attractive part of the 
potential. The potential energy function for the system of spheres was then minimized by taking 
very small fixed spatial steps of the spheres in random directions. This minimization procedure 
tends to avoid collapsing to the most stable f.c.c. arrangements which is a frequent difficulty 
when standard numerical minimization techniques with pair-wise interactions are employed with 
spheres of equal size. Arrangements of ‘spheres’ at densities higher than dense random packing 
were generated in the study by the simple artifice of simply enlarging the spheres further after 
minimization, thereby in effect overlapping the spheres. In addition, the case of equal 
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concentrations of spheres of two different sizes was also examined in dense random packing 
arrangements.  
       Once the densely randomly packed arrangement of spheres had been prepared it was overlaid 
with a fine-grained grid with a mesh size of typically 100-spacings per sphere diameter as 
described in general terms in above. The effective diffusivity of the void space between the 
spheres was obtained according to the ES Equation as described above. The diffusivity within the 
spheres was assumed to be zero. In the study, the results for both ordered and random 
arrangements of spheres were compared with a number of analytical expressions for the effective 
diffusivity.  
       Another pioneering LMC study explored the effective mass diffusivity in 2D models of a 
composite composed of circular and square inclusions for the condition where the concentration 
of diffusant in the inclusions was equal to zero [21]. The next LMC study [22] was put into the 
context of the effective mass diffusivity in nanomaterials where diffusion occurs via both the 
grains (nanocrystals) and the interface regions (grain boundaries). Two very simple 2D square 
grain configurations were examined.  The particular situation that is of course relevant to this 
context is where the grain boundary diffusivity is considerably larger than the diffusivity within 
the grains. The effective diffusivity was calculated according to the ES Equation and the results 
for the effective diffusivity were compared to several derived expressions.  
       A closely related LMC study to the above examined the effective diffusivity for a model of 
cubic grains in a simple cubic arrangement [23]. Again the relevant case where the diffusivity in 
the grain boundaries is much greater than that in the grains was examined. Importantly, over the 
entire grain boundary fraction range it was shown that an excellent equation to describe the 
effective mass diffusivity is the (mass diffusion version) of the Maxwell-Garnett Equation 
[24,25]: 
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       A later and quite comprehensive LMC study of the effective diffusivity in two component 
composites examined the effective diffusivity for a simple model of dispersed spherical 
inclusions in f.c.c., b.c.c. and s.c. arrangements [26]. In that study, two cases of the relative 
diffusivities were examined: 1) the diffusivity of the inclusions was less than the matrix phase, 
and 2) the diffusivity of the inclusions is greater than the diffusivity of the matrix phase.  It was 
again found that the Maxwell-Garnett Equation does very well in describing the effective 
diffusivity up to the percolation threshold where the spheres touch. 
       The problem of determining and analyzing the effective diffusivity in a material that has 
contributions from grain and grain boundary diffusion was reviewed [27] and some further LMC 
data were included in that review. Special emphasis was put on the limits of usefulness of the 
Hart and Maxwell-Garnett Equations.  Comparison of the LMC data of the effective diffusivity 
of cubic and spherical grain models (the diffusivity was always assumed to be greater in the grain 
boundaries) showed that the Maxwell-Garnett Equation consistently provides a superior 
description of the effective diffusivity than the Hart Equation unless the diffusion time is 
sufficiently small that the problem can be conceived as diffusion only along parallel paths 
extending in from the surface.   
       A very detailed comparison of LMC and Finite Element calculations of the effective 
diffusivity (expressed in that paper as the effective conductivity) of circular and square inclusions 
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both in square planar arrangements was undertaken in [28] for the case where the diffusivities of 
the matrix and inclusions differ by up to an order of magnitude. Both cases of the inclusions 
having a higher and lower diffusivity than the matrix were examined. Excellent agreement for the 
effective diffusivity was found between these quite different methods. It was also shown in that 
study that the results are in excellent agreement with the Maxwell-Garnett Equation except in the 
case of the circular inclusion fractions above the percolation threshold (i.e. where the circular 
inclusions already touch).  
       Finally in this section, we mention a detailed study of the effective diffusivity for the case of 
2D square inclusions arranged in square planar and brickwork patterns where the inclusions have 
a diffusivity three orders of magnitude less than that of the matrix phase [29]. It was shown that 
the Maxwell-Garnett Equation describes this rather extreme situation roughly but for an accurate 
representation of the effective diffusivity it is necessary to take into account the actual 
arrangement of the dispersed phase. 
        
2.2.2 Effective Mass Diffusion in Three Phase Materials 
       The problem of determining the effective diffusivity in three phase material has also been 
addressed with the LMC method. The first LMC calculation [29] was couched in terms of 
determining the effective diffusivity in a material containing two alternating (in all directions) 
stable cubic phases (phases A and B with diffusivities DA and DB and volume fractions gA and gB 
respectively) that are separated by interphase boundaries (‘phase’ C) having a high diffusivity 
DC. A general expression for the thermal conductivity in a model of a three-phase material was 
derived many years ago by Brailsford and Major [30]. Brailsford and Major’s expression was 
derived in a more general way in [29] and was extended to include possible differing segregation 
of the diffusant in the three phases. The extended Brailsford and Major expression for the 
effective mass diffusivity in three phase material is, from [29]: 
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where sA and sB are the segregation factors for phases A and B: sA

 = cA/cC, sB
 = cB/cC. Two other 

equations for the effective diffusivity were also derived in [29] using Maxwell-type arguments in 
succession. The LMC results for the effective diffusivity show that the effective diffusivity in the 
composite is certainly described roughly by Eq. 9. However, the detailed pattern of behaviour of 
the effective diffusivity is rather complicated in this model: the other expressions give better 
agreement but in different ranges of the individual diffusivities and fractions of inclusions. At the 
present time, it is not possible to guide, at least in general terms, the choice for the best overall 
expression for the effective mass diffusivity.  
       The electrical (ionic) conductivity in three phase composites in which an insulating phase 
(phase B) is embedded in an ionically conducting matrix (phase C) has recently been of great 
interest for enhancing the overall ionic conductivity of the material [31,32]. Such materials are 
frequently called ‘composite electrolytes’. Because of space charge effects, a ‘phase’ having a 
much higher electrical conductivity (‘phase A’) is present immediately around the insulating 
phase. There are two percolation thresholds in this problem: one where the highly conducting 
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regions overlap and, later at high inclusion fractions, a second one where the insulating regions 
start to overlap. The problem is then to determine the effective ionic conductivity σeff of this three 
‘phase’ composite. Provided the same type of ions carry the current in all three phases one can 
make use of the Nernst-Einstein relation for each phase: 
 
                                        σi= ciq

2Di /kT                                                                                      (10) 
 
where q is the charge on the ion. The problem has been modelled by the LMC method using a 
similar procedure to that described above [33]. An approximate expression for the effective ionic 
conductivity was also derived using Maxwell-type arguments and was found to be in better 
agreement with the LMC results than expressions derived in previous treatments. The expression, 
in effective mass diffusivity form, is: 
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2.3 The LMC Method for Determining Concentration Profiles 

       Obtaining the concentration profile using the LMC method is equivalent to solving the 
Diffusion Equation (Fick’s Second Law) for a problem once initial and boundary conditions have 
been designated. In order to demonstrate the procedure, we will focus first on two simple cases 
where the diffusivity is the same everywhere in the material. (Both cases have very well known 
analytical solutions for the case when the solid is semi-infinite and the mass diffusivity does not 
depend on position.) Case 1 refers to a situation where a very thin layer of tracer (the diffusant) is 
deposited at the surface at time t = 0. (This is sometimes referred to as the thin-film or 
instantaneous source condition.) The tracer is then permitted to diffuse into the material for some 
diffusion anneal time t. Case 2 refers to a situation where the concentration of the diffusant is 
held constant at the surface throughout the diffusion time. 
       The basic LMC procedure to generate concentration profiles has a great many similarities to 
that described already in Section 2.1 above. We first illustrate the procedure with Case 1. A 
source plane of particles is established in the centre of a large periodic simple cubic lattice in 
order to avoid edge effects in the calculation.  Particles are generated at random positions on this 
source plane and released from the plane either sequentially or all at once. Assuming the latter for 
convenience here, we allow the particles to diffuse independently of one another for the entire 
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time Nt, at which time the final position of each particle is recorded. The final positions of all of 
the particles are then simply assembled from the individual final positions to form a 
concentration penetration profile. If the lattice is large in the diffusion direction, at relatively 
short times, the profile is the familiar Gaussian profile as appropriate for diffusion into a ‘semi-
infinite’ solid, see Fig. 2. 
  

              
     
Fig. 2. Typical Gaussian concentration profiles for tracer diffusion from an instantaneous source at x=0 for two 
different times (symbols represent LMC results).  

 
       Case 2 requires a constant source of particles to be maintained at the ‘surface’ for all 
diffusion times and is obtained in the following way. The basic idea is simply to keep the total 
number of particles at the source plane constant at all diffusion times. This is achieved in the 
following way. All particles are released at the same time. As each particle makes a jump from 
the source plane it is immediately replaced by a new one, which is again generated at a random 
position on this plane in order to maintain the number designated. On the other hand, whenever a 
particle returns to the source plane, thereby exceeding the number designated for the source, then 
that particle is permanently removed from the system. Over a period of time, the number of 
particles within the system naturally increases as more particles diffuse away from the source 
than return to it. Accordingly, the diffusion time t must be constantly re-scaled since the time is 
required to be proportional to the number of attempts per particle. At longer times, the two 
profiles emanating from each side of the source start of course to meet up via the periodic 
boundary. However, if the particle source is then conceived as two ‘separated’ surfaces, then the 
profile represents diffusion from two surfaces into a material of a finite width.   
       In principle, it is possible to determine the effective mass diffusivity of a model material by 
analyzing the simulated concentration profiles. This would assume that there has been averaging 
of the profile over all possible locations of the second phase in the matrix phase. The profile 
would then be processed to give the effective mass diffusivity in much the same way as an 
experimental diffusant concentration depth profile by using the appropriate solution to the 
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Diffusion Equation. In practice, it is much easier to calculate the effective diffusivity of the 
model material in a separate calculation using the ES Equation along the lines of what has been 
described above in Section 2.1.  
 
2.4 LMC Calculations of Concentration Profiles 

       In the first LMC calculation to produce concentration profiles, tracer concentration depth 
profiles were determined for diffusion from a thin-film tracer source in the presence of 
dislocation ‘pipes’ that are normal to the source at the surface [34]. Typical profiles for this 
situation (obtained later in [42]) are shown in Fig. 3.  

 
 
 
 
Fig. 3. Representative LMC concentration depth profiles for various distances between isolated dislocation pipes 
(spaced along a line) for the case of diffusion from an instantaneous source (at y = 0) [39]. 

 
 
In another LMC calculation, impurity concentration depth profiles were determined for diffusion 
from a thin film source into an array of finite sized grains arranged in a brick-wall configuration. 
In this calculation, segregation of the impurity to the grain boundaries was specifically allowed 
for, with the result that secondary peaks were found at locations where the grain boundaries are 
parallel to the surface [17,18,35]. In another study, the behaviour of the tracer concentration 
depth profiles was examined for diffusion from a thin-film source in the presence of overlapping 
diffusion fields from equally spaced grain boundary slabs [36]. This study was greatly extended 
much later [37] by two of the present authors in an in-depth Lattice Monte Carlo study to 
determine the transition from Harrison Type-A kinetics to Type-B kinetics. The latter study also 
allowed surface diffusion within the source to have a comparable rate to grain boundary 
diffusion. Surface diffusion at the source had also been explored in an earlier study where it was 
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shown that fast surface diffusion can expedite the ‘pumping away’ of tracers via the grain 
boundaries [38]. A recent study examined the Harrison Type-A to Type-B transition point for 
several cubic grain and square to explore the effect of shape and dimensionality on the transition 
point [39]. In another study, the concentration depth profiles were examined to explore the size 
and characteristics of an intermediate A-B transition region [40]. LMC calculations have been 
made on concentration depth profiles for diffusion from a thin-film source where the grains are 
randomly oriented with the goal of fitting the depth profiles with an empirical equation [41]. We 
make mention of a calculation of the contour angle made by iso-concentration lines for the case 
of an isolated grain boundary with diffusion from a thin-film source [43]. Finally, recent LMC 
calculations have been made of oxygen concentration depth profiles from a constant oxygen 
source at the surface into a Ag/MgO cermet where allowance is made for segregation (of oxygen 
at the interfaces between Ag and MgO [44,45]. An example is shown in Fig. 4. 
        

                       
 
Fig. 4. A typical distribution map of oxygen in a model Ag/MgO cermet with a square inclusion of MgO with 
allowance made for segregation of oxygen at the metal-ceramic interface. The (constant) source of oxygen is at plane 
x=205.  

 

 

3. Effective Thermal Diffusivities/Conductivities 

In heat transport problems, the long time limit effective heat transport quantity that is best known 
is probably the effective thermal conductivity of a composite material. In Section 3.1, we review 
the LMC method for calculating the effective thermal diffusivity and effective thermal 
conductivity and in Section 3.2 we highlight the various published LMC calculations of the 
effective thermal diffusivity and thermal conductivity. In Section 3.3, we review the LMC 
method for determining temperature profiles and in Section 3.4 we highlight several LMC 
calculations of temperature profiles, shown here for the first time.  
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3.1 The LMC Method for Determining the Effective Thermal Diffusivity and Thermal 

Conductivity 

       The diffusion of heat, like mass, is a random process that can be represented by random 
walks of particles that can be considered as virtual ‘heat particles’. The ES Equation also 
describes the thermal diffusivity Κ in d dimensions (d = 1,2,3): 
 

                                    
dt

R

2

2 ><
=Κ                                                                                             (12) 

 
It should be noted that the thermal conductivity λi in a phase i is directly related to the thermal 
diffusivity Ki in that phase by the well-known expression Ki = λi / ρi Cp,i where ρi is the density of 
phase i and Cp,i is its specific heat. In a model composite, by simply requiring that the densities 
and the specific heats take values equal to unity everywhere in the calculation, the effective 
thermal conductivity λeff then simply equals the effective thermal diffusivity Keff. To the authors’ 
knowledge, in a diffusion of heat context the ES Equation has no physical meaning in the sense 
that it can be made use of experimentally. It purely provides a useful means for calculating in 
models the effective thermal diffusivity (and thermal conductivity) from random walks of virtual 
heat particles using the LMC method.  
 
3.2 LMC Calculations of the Effective Thermal Diffusivity and Thermal Conductivity 

       The methods in Section 2.1 above (without the inclusion of segregation) for the calculation 
of the effective mass diffusivity apply equally to the calculation of the effective thermal 
conductivity. Accordingly, all of the corresponding results for the various models that have been 
obtained for the effective mass diffusivity apply equally to the effective thermal conductivity. 
Several calculations have been specifically directed to the LMC calculation of the effective 
thermal conductivity [6,46-48]. These include calculations of the effective thermal conductivity 
of models of syntactic metallic hollow sphere structures, usually known as MHSS materials [47] 
and compact heat sinks based on cellular metals [48]. An example of the results of a LMC 
calculation of the effective thermal conductivity is shown in Fig. 5 for the case of circular 
inclusions in a matrix [6]. In the same figure are also the results for the effective thermal 
conductivity using finite element analysis. The agreement is seen to be excellent.   
       There have been no direct LMC calculations of the effective thermal diffusivity. However, 
this quantity can be readily formed from the effective thermal conductivity calculated by LMC 
using the following equation: 
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       Exactly analogous to the method for using Fick’s First Law (Section 2.1) under steady-state 
conditions to obtain the effective mass diffusivity, the Fourier Equation can also be used to 
determine the effective thermal conductivity. But, as with the Fick’s First Law method, this does 
not provide any obvious advantages over the method using the ES Equation.  
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     Area fraction of inclusions, g 
 
Fig. 5. Comparison of results from LMC and Finite Element Method calculations of the relative effective thermal 
conductivity of a composite with circular inclusions (0) in a matrix (1) in a square planar arrangement as a function 
of area fraction of inclusions for several values of the matrix and dispersed phase thermal conductivities. 

 
3.3 The LMC Method for Determining Temperature Profiles 

       Because of the role of the density and specific heat in transient heat transport problems, the 
determination of temperature profiles requires a different procedure from that described for 
concentration profiles given above in Section 2.4. As an example frequently found 
experimentally, we will focus on the situation where the temperature at the surface or source is 
held constant at Tc. The number of virtual heat particles in the source plane is Nn. The amount of 
thermal energy Ep corresponding to a virtual thermal energy particle is given by the relation: 
 

n

3
c

1

N
CrTE pp ⋅⋅⋅⋅= ρ ,       (14) 

 
where r is the distance between two neighbouring lattice sites.  
          We organize the random walks of the particles in such a way that they are now directed by 
two parameters: the jump probability pj (scaled thermal conductivity) and the selection 
probability ps (scaled inverse product ρi ·Cp,i). We treat the selection probability as an ‘amount of 
inertia’ assigned to a virtual thermal particle in the particular phase: i.e. the higher the specific 
heat in the phase the slower the virtual thermal particle. Both jump and selection probabilities 
depend on the material parameters of the phase i. The jump and selection probabilities pj and ps 
are defined to have values between zero (the event never occurs) and unity (the event always 
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occurs). Then the jump probability in a phase must be scaled with respect to the highest thermal 
conductivity so that: 
 

 maxj, /λλiip =                                             (15) 

 
And the selection probability ps,i is scaled with respect to the lowest value of the product ρi · Cp,i: 
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According to Eq. 16, materials with a high specific heat and density possess a low selection 
probability. Different selection probabilities between sites from different material regions results 
in the modified (Eq. 14) definition of the energy Ep corresponding now to a virtual heat particle: 
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Let us assume that phase 1 has a lower selection probability than phase 2 i.e.: p1 < p2. The overall 
probability of a jump of a probing heat particle in phase 1 is then equal to ps,1. pj,1 and similarly 
for a particle in phase 2. (This value is, in fact, a scaled thermal diffusivity.) The increased 
number of unsuccessful jump attempts in phase 1 simulates an accumulation of virtual heat 
particles in that phase. It should be mentioned here that the selection of ps and jump probabilities 
pj of virtual heat particles inside the source plane (x = 0) are equal to unity. 
       At the beginning of each time-step, a particle is randomly selected. Next, a random number 
between 0 and 1 is generated and compared to the selection probability corresponding to the 
phase at that lattice site. If this random number is higher than the selection probability, the 
attempt is unsuccessful; the LMC time is increased and another particle is randomly chosen. 
Otherwise, a jump direction for the particle is randomly chosen and, depending on the phase(s) of 
the starting and target lattice sites, the jump probability pj is now determined. In the case that the 
jump attempt is successful, the coordinates of the particle are updated before the LMC time is 
increased and a new particle is selected. The incremental increase to the Monte Carlo time tMC 
depends on the total number Nges of virtual heat particles in the system. At the end of the 
specified time tMC the final positions of all of the particles are recorded. 
       The results of the LMC analyses are virtual heat particle distributions that correspond to 
particular Monte Carlo times tMC. In order to obtain temperature profiles, the heat particles are 
translated into site temperatures T according to: 
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where n is the number of virtual heat particles currently located at the site.  
       Next, the Monte Carlo time tMC needs to be converted into real time t. To do this, we will use 
a standard parametric analysis approach. Consider the Heat Equation in its dimensionless form: 
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where x* is a characteristic length for which we will use the jump distance r: x* = r, t* is 
characteristic time that is most naturally a jump attempt per virtual heat particle and t* should be 
determined in real time units; t' and x' are the dimensionless time and space coordinates.  
Kt*/(x*)2 is the dimensionless parameter of the heat diffusion processes. It is obvious that the 
value of this parameter used in LMC simulations should be equal to its value in real units.  
       For the case of multiphase material, it is clear that we need to consider this correspondence 
only in one phase, provided that the other phases are modelled correctly. Let us choose phase i 
where the thermal conductivity is the highest maxλ . Then the LMC value of the heat diffusion 

parameter is: 
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Equating this value to the heat diffusion parameter in real units we have that: 
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Solving the equation between the leftmost term and the rightmost term we soon arrive at: 
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Therefore, for the total time in real units we have the following connection to the LMC 
simulation time as follows: 
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       In much the same way as for mass diffusivity, it would be possible in principle to determine 
the effective thermal diffusivity of a model composite by analyzing simulated temperature 
profiles. This would assume that there has been averaging of the temperature profile over all 
possible locations of the second phase. The temperature profile could then be processed to give 
the effective diffusivity in much the same way as an experimental temperature profile by using 
the appropriate solution to the Heat Equation. In practice, as with the mass diffusion case, it is 
much easier to calculate the effective thermal diffusivity of the model composite in a separate 
calculation using the ES Equation along the lines of what has been described above in Sections 
3.1 and 3.2.  
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3.4 LMC Calculations of Temperature Profiles 

       Fig. 6 shows three example temperature profiles in aluminium calculated by the LMC 
method described above for the condition of a constant surface temperature. In the same figure, 
we include the exact analytical error function solution (dashed lines) and also a determination of 
the temperature profiles using Finite Element analysis (solid lines).  
 

 
Fig. 6 Simulated temperature profiles in homogeneous aluminium. 

 
It can be seen that there is excellent agreement between all three results.  
       Fig. 7 shows an example temperature profile obtained by the LMC method in a layered 
composite of aluminium and paraffin with the layers arranged normal to the heat flow. Here, the 
thermal parameters of the two phases are of course very different. In the same figure are the 
results of a determination of the temperature profile using Finite Element analysis. It can be seen 
that there is excellent agreement between the two methods.  
 

 
Fig. 7 Simulated temperature profile in a layered two phase aluminium – paraffin composite. 
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The analysis is repeated for an inverted arrangement of the aluminium and paraffin phases. 
Again, an excellent agreement between the LMC and Finite Element solutions can be found (see 
Fig. 8). 
 

 
Fig. 8 Simulated temperature profile in a layered two phase paraffin - aluminium composite. 

 
4. Concluding remarks 

               In this review paper, we introduced the recently developed LMC method for addressing 
and solving phenomenologically-based mass and heat transport problems especially for 
composite and porous materials. We described in detail the application of this method to calculate 
effective mass diffusivities and to determine concentration profiles. Next, we described in detail 
the application of the LMC method to the calculation of effective thermal conductivities, thermal 
diffusivities and the determination of temperature profiles. Where possible, in both cases, results 
of the method were compared with results of exact or Finite Element methods. Excellent 
agreement was shown. These applications have demonstrated the power, flexibility and reliability 
of the LMC method for addressing phenomenological mass and heat transport problems. 
Compared with the Finite Element method, the LMC method is of course much slower. For the 
same level of accuracy computation times with the LMC method can be expected to be many 
thousands of times greater than with the Finite Element method. This must be considered a 
disadvantage of the LMC method. Moreover, there are many commercial Finite Element software 
packages available but there are none for the LMC method at this time: a new program must be 
written for each problem. The principal advantage of the LMC method is being able to address 
readily mass and heat transport problems that are almost impossible to mesh with the Finite 
Element method.  
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