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Abstract. The presence of atomic oxygen at internal metal-ceramic oxide interfaces significantly 
affects the physical properties of the interfaces which in turn affects the bulk properties of the 
material. This problem is addressed for the model composite system Ag-MgO from a 
phenomenological point of view using a lattice-based Monte Carlo method and a finite element 
method extended with special user-subroutines. We simulate the time dependence of oxygen depth 
and contour profiles. We are able to show very good agreement between these two methods.  
 
Introduction  

       The nature and integrity of the internal interfaces (interphase boundaries) between a metal 
matrix phase and a dispersed ceramic phase is of great importance in many technologies including 
those involving thin solid films, coatings, electronic packaging, supported catalysts, fibre-reinforced 
composites and dispersion-hardened materials (cermets). Some of these structures are formed by 
allowing oxygen to diffuse interstitially into a metallic alloy, one component of which preferentially 
oxidizes to form the dispersed ceramic phase. Further oxygen coming at the time of formation of 
the composite or later during high temperature service of the material can segregate to the internal 
metal-ceramic interfaces, changing their physical properties and ultimately adversely affecting the 
bulk properties of the composite.  It is thus important to establish means for predicting the time-
dependence of the concentration of oxygen that segregates at the various interfaces of the material. 
Recently, the time-dependence of the diffusion of oxygen into the composite and the subsequent 
segregation of oxygen at Ag-MgO interfaces (a model system) has been studied theoretically using 
simple one-dimensional finite difference models [1]. The principal input parameters to these 
calculations are the diffusivity of oxygen in Ag and an estimate of the segregation factor [2] of 
oxygen at the Ag-MgO interfaces. The influence of effects such as kinetic order or non-
homogeneity of the ceramic oxide inclusions was investigated. Later, more sophisticated geometries 
and particle distributions were investigated with a two-dimensional finite element scheme making 
use of commercial code that had been extended with special user-subroutines [3]. This numerical 
approach allowed for the consideration of somewhat more general boundary conditions, specimen 
sizes and time or concentration dependent material and materials process parameters.  
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       However, because of meshing difficulties, finite element schemes are restricted to quite simple 
particle distributions and boundary conditions. An alternative approach to the problem is the use of 
Monte Carlo methods. In the past, Monte Carlo methods have generally been viewed as being much 
too computationally demanding to be used for addressing phenomenological heat and mass 
transport problems. Recent advances in affordable computational resources now make the Monte 
Carlo method a viable alternative for the much more established methods such as the finite element 
method. Recently, a lattice-based Monte Carlo method that makes use of virtual random walking 
particles has been proposed to address phenomenological mass and thermal diffusion problems 
[4,5]. This method, which can be considered a convenient simulation form of a finite-difference 
method, conveniently copes with multi-scale modelling in both space and time. The method has 
enabled effective mass and thermal diffusivities/conductivities in two and three-phase composite 
materials to be readily calculated for various inclusion geometries and matrix and inclusion 
diffusivities [4,5]. It has also permitted the calculation of ‘depth’ concentration profiles of the 
diffusant such as tracer concentration depth profiles from the well-known thin-film or instantaneous 
tracer source condition for such problems as diffusion in the presence of grain boundaries, 
segregation of the diffusant to the grain boundary and within nanocrystalline material. Commercial 
software is not available at the present time for utilizing the Monte Carlo method for addressing 
phenomenological heat and mass transport problems. Indeed, the method is still in the relatively 
early stages of development for such applications. In the present paper, we address the 
phenomenological problem of the time-dependent segregation of oxygen at metal-ceramic (Ag-

MgO) interfaces by making use of a lattice-based Monte Carlo method. We address a simple 
geometric distribution of inclusions so that we are able to make a side-by-side comparison of the 
results with results using the finite element method.  
 
Theory 

The model. We consider the problem in 2D as shown in Fig. 1. The outer surface boundary is 
denoted by Γ0. The surface concentration of oxygen at Γ0 is kept constant for all times. The oxygen 
is permitted to diffuse into the Ag matrix denoted by region Ω1. Each square inclusion of MgO 
(indicated by Ω3) is surrounded by a very thin interface region Ω2 where the oxygen can 
adsorb/desorb i.e. to segregate. The inclusion, denoted by region Ω3, is considered itself to be 
impermeable to oxygen at the temperatures of interest.   
 
 
The interface boundaries are Γ1 – this is the boundary between regions Ω1 and Ω2 and Γ2 – this is 
the boundary between regions Ω2 and Ω3. The square inclusions themselves are arranged in a 
square planar pattern in the present calculations but other shapes and arrangements can be readily 
employed. The model is assumed to be periodic in the direction normal to the diffusion direction 
(periodic boundary conditions are set at Γ0

1). We also assume that the boundary Γ0
2 is far enough 

from the Γ0 so the concentration of oxygen at this boundary is always zero. 
 

I. In region Ω1 we have for the oxygen concentration 
1
Oψ  that: 
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where  1
OD  is the diffusion coefficient of oxygen in the Ag matrix and ∇2 is the Laplacian  operator. 
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Figure 1. Schematic representation of the model for the adsorption/desorption (segregation) of 
oxygen at internal interfaces after diffusion through the matrix from an external surface Γ0. 
 

II. In region Ω2 we have for the oxygen concentration 
2
Oψ  (we assume that this concentration is 

equivalent to the coverage, this is the 2D analogue of the 3D concentration) that: 
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In principle, 2
OD  can take a different value along and perpendicular to Γ1 (Γ2). It can take any 

(constant) value when oxygen moves along the interface itself. We have put this intra interface 
mobility equal to zero; in other words, the oxygen can adsorb and desorb at the interface but not 
move along the interface.  
 

III. In region Ω3 we have for the oxygen concentration 
3
Oψ  that: 

 

03 =Oψ .                                                                                                                   (3) 

 
For the boundary condition at the outer boundaries we have the well-known constant concentration 
(or constant source) boundary condition: 
        

    constTO ==
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1
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at all times t ≥ t0, t0 is the initial time. 
       For the inner boundaries we have the following conditions for the concentrations and fluxes: 
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At Γ1 we have that:  
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(At steady-state or at very long diffusion times for interfaces very close to the surface this will be 
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ψψ OOs = where s is the segregation factor (Henry segregation isotherm [2]) and is known or 

can be estimated before the calculation. In principle, the oxygen can saturate the interface regions 

and, in effect, s then depends on 2
Oψ  ( 1

Oψ ). Then the ‘McLean segregation isotherm’ [2] would be 

the appropriate one to employ. In the present paper, however, we have restricted ourselves to 
Henry-type isotherms. 
For the flux then we have that: 
 

1
1

|
2

1
1

Γ
Γ

ψ
O

O
O J

n
D =

∂

∂
r ,                          21

2
12

1
2

ww
t

OO
O ψψ

ψ
−=

∂

∂
                                      (6) 

 
where 2112, ww   are local transition rates (see further below) which relate to the equilibrium 

segregation factor s: 
 

 2112 /wws =                                                                                                              (7) 

 
At Γ2 we have that: 
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and 

       0
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The initial conditions are trivial: ψ = 0 everywhere. 
 

Method of computation. The method of computation using the finite element method has been 
described in detail elsewhere [1,2]. In the following section, we confine ourselves to describing the 
lattice-based Monte Carlo procedure along with some practical details. The regions Ω1 and Ω3 are 
mapped onto a fine grained square planar lattice of mesh size a. A large number of particles (105) 
are released all at once at time t = 0 from random positions chosen at the surface (Г0) of the lattice. 
These particles are permitted to diffuse according to a hopping model by being chosen randomly to 
jump in a random direction and at a rate depending on their location as reflected in a transition rate 
w.  The motion of the particles is restricted to a square planar lattice (in the present case 400 x 50, 
the former dimension is the diffusion direction) where the particles move on random walks for a 
given ‘diffusion anneal’ time t (which is scaled to an attempt to jump). Typically, this time 
comprises some 108-1011 attempts to jump.  Multiple occupancy of a site is permitted and 
accordingly there are absolutely no diffusion correlation effects in this problem. The diffusion 
coefficient DO

1 of oxygen in the matrix Ω1 is represented by:    
    
                  DO

1 = w1 a
2/4                                                                                                   (10)    

          
where w1 is the inter-site transition rate in the matrix region Ω1 and a is the lattice spacing (mesh 
size) and the factor 4 comes from the fact that the simulation is in 2D (this factor would be 6 for 
3D).  
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       We denote a transition rate w12 from the matrix region Ω1 to the interface region Ω2 (see further 
below). (This can be regarded as an adsorption process of oxygen to the interface. Similarly, we 
have the reverse of this, a transition rate w21 from the interface region Ω2 back to the matrix region 
Ω1. (This can be regarded as a desorption process of oxygen from the interface to the matrix.) As 
mentioned above, in our calculations the oxygen mobility along the interface in this problem was 
suppressed as well as the oxygen mobility within the inclusion itself. The highest transition rate 
(say w1) is scaled to unity for computational efficiency. 
       A constant source of particles at the surface (plane 201) for all diffusion times is obtained in the 
following way. The idea is simply to keep the number of virtual particles constant on this surface 
plane at, say, 105 for all diffusion times. As each particle leaves the source plane, it is immediately 
replaced by a new one, which is again generated at a random position on this plane in order to 
maintain the number designated (105). On the other hand, whenever a particle returns to the source 
plane, thereby exceeding the number designated (105) then that particle is permanently removed 
from the system. Over a period of time, as the material absorbs more diffusant, the number of 
particles in the system naturally increases. Accordingly, the diffusion time t needs to be constantly 
re-scaled since it is proportional to the number of attempts per particle.   
       It is useful to discuss the meaning of ‘distance’ in the present problem. The oxygen diffusion 
coefficient in the Ag matrix DO

1 takes a value of 2.1 x 10-11 m2 sec-1 at 773K [3]. If we assume for 
convenience that this is the highest diffusion coefficient in the problem, then by putting the 
corresponding inter-lattice site transition rate w1 equal to unity then, from Eq. 10, this immediately 
means that the basic mesh size a of the lattice is then 2.5 x 10-7 m. In principle, all distances in the 
problem must then be related to this one. For example, if we wish the shortest distance from the 
source to the leading edge of the first inclusion to be, say, 0.005 mm then one would need about 20 
lattice spacings of the lattice between the source and the leading edge of the inclusion to achieve 
this.  
       Now let us discuss the meaning of time in the present problem. From the above value for the 
diffusion coefficient of oxygen in the Ag matrix and the lattice jump distance a we can easily see 
from Eq. (10) that the basic time unit in the problem is 0.744 x 10-3 sec. If we recognize that an 
attempt to jump per particle is such a time unit; then, for example, 1000 of such time units 
corresponds to 0.744 seconds of real time.  
       Finally, let us consider the problem of the width of the interface Ω2. In preliminary work, the 
interface region Ω2 was treated as rows of lattice sites within the basic lattice. This presents a 
problem by, in effect, requiring that the interface to be at least the same width as the mesh size a. In 
general, this would make interface unphysically wide. To avoid this, Ω2 was later treated as a set of 
special virtual sites that do not appear formally in the lattice itself but can be accessed only via the 
lattice sites immediately around the inclusion. In this way, the width of the interface does not need 
to be specified or implied.  
 
Results and Discussion 

       First, we mention that in the absence of inclusions the simulated concentration profiles from 
both finite element and Monte Carlo methods were in excellent agreement with the well-known 
complementary error function solution for diffusion into an infinite medium from a constant source 
of diffusant at the surface [6]. 
       In Fig. 2a we show an example of an averaged concentration profile for the case where there is 
no segregation and the inclusions simply are impenetrable to oxygen.  Fig. 2b gives the 
corresponding 2D concentration profile. The behaviour is as expected with a drop in the profile 
where the impenetrable inclusion impedes the flux of oxygen atoms. In Fig. 3a an example of an 
averaged concentration profile is given where a segregation factor s of 103 has been assumed and in 
Fig. 3b the corresponding 2D concentration profile is given.  The maxima in concentration in both 
figures correspond to oxygen that has segregated to the interface region. It is noted in Fig. 3b that 
the corners of the interface region have a much higher concentration than elsewhere. This would 
appear to result from the fact that in the lattice model the corner sites of the interface region have 
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two neighbouring sites that can provide oxygen to them whereas other interface sites have only one 
such provider site. It is quite possible that the effect seen is an artefact of the lattice model being 
used here to model segregation and that a superior way to model segregation is to invoke the local 
virtual interface sites as suggested at the end of the previous section where this problem would not 
occur. In Fig. 3c we present 2D concentration profile with calculations being done with the use of 
virtual interface sites.  In the implementation of this method we effectively added one more 
coordination direction to all sites to keep the time steps equally spaced. Therefore Eq. 10 should be 
used with a factor of 5 not 4. 
        

                (a)                                                                   

                    
 
Figure 2. (a) A typical oxygen concentration profile calculated by Monte Carlo method and 
averaged in the y-direction (y = 1 – 50, x-direction is shown as lattice plane number). No 
segregation effect (s = 1.0). Total number of jump attempts: 109, real time: 0.4166 sec., diffusivity 
in the matrix: 2.1 x 10-11 m2 sec-1, inclusion fraction: 0.0324. (b) The 2D concentration profile for 
the same conditions (y = 19 – 34).  
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To test our Monte Carlo simulations we made a series of finite element calculations in parallel with 
the Monte Carlo simulations for the model described above. Results of this comparison are 

presented in Figures 4-5. In Fig. 4 we plot 1
Oψ  as a function of x at y = 25 for two times 1.2929 s 

and 5.0456 s. We can see that agreement between these two types of calculation for the matrix 
phase is quite good. For the segregation layer the situation is a bit more complicated. In Table 1 

below we present a few point values for 2
Oψ  in the segregation layer calculated by finite element 

and Monte Carlo analysis. It can be seen that the discrepancies here are between 2 and 14%. This 
could be due to the fact that the segregation layer is essentially a singular region in the model. 
While this can be handled quite easily in the Monte Carlo simulations, in the finite element 
implementation this introduces significant difficulties. 
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                                                (b) 
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                                                (c) 
 
Figure 3. (a) A typical concentration profile calculated by Monte Carlo method and averaged in y-
direction (y = 1 – 50, x-direction is shown as lattice plane number). Segregation factor s = 103, total 
number of jump attempts: 109, real time: 0.4166 sec., oxygen diffusivity in the matrix: 2.1 x 10-11 
m2 sec-1, inclusion fraction: 0.0324. (b) The 2D concentration profile for the same conditions (y = 
19 – 34). (c) The 2D concentration profile calculated by Monte Carlo method with the virtual 
sublattice used, real time: 0.3594 sec, all other parameters are the same as in the case (b). 
  
 

Table of oxygen compositions at the segregation layer 
 

Time (s) x (comp.) ψ 0
2(x) (FE analysis) ψ 0

2(x) (MC simulation) 
1.2929 21 3.4263 2.9541 
1.2929 29 28.6647 27.8290 
5.0456 21 28.1135 25.8008 
5.0456 29 134.9105 120.5191 

 
 

Table 1. Comparison of the point values of 2
Oψ  at y = 25 obtained by finite element and Monte 

Carlo methods. 
 
 
In Fig. 5 we plot composition profile in 2D segregation layer calculated by means of finite element 
method. The set of parameters here is analogous to that used in Monte Carlo calculation presented 
in Fig. 3c. It can be seen that quantitative agreement for the oxygen composition in the segregation 
layer calculated by means of finite element and Monte Carlo methods is good. 
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Figure 4. Distribution of 1
Oψ  in the matrix material across the sample at y = 25. Solid lines represent 

the finite element analysis calculation; symbols represent the Monte Carlo simulation results. Time 
in time units corresponds to time in seconds as follows: 2173 time units is equal to 1.2929 seconds; 
8480 time units is equal to 5.0456 seconds. 
 
 

           
 
Figure 5. The 2D segregation layer profile calculated by the finite element method, real time: 
0.3594 sec, segregation factor s = 103, oxygen diffusivity in the matrix: 2.1 x 10-11 m2 sec-1. This 
profile to compare with segregation layer region (squares) presented in Fig. 3c.  
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Summary 

The problem of oxygen segregation at the internal metal-ceramic interfaces have been addressed for 
the model system Ag-MgO from a phenomenological aspect using a lattice-based Monte Carlo 
method and a finite element method extended with special user-subroutines. We have simulated the 
time-dependence of oxygen depth and contour profiles and the segregation layer of the coverage-
type composition function for oxygen. We have been able to show very good agreement between 
these two methods for the matrix phase. For the oxygen coverage of the segregation layer a 
quantitative agreement between these two methods have been observed. Discrepancy in point 
values for the FE and MC calculations have been estimated as under 14% and on average as 8%. 
       The lattice-based Monte Carlo method has been demonstrated here to have the capability to 
address the problem of diffusion of oxygen into a Ag-MgO composite with accompanying 
segregation of oxygen at the Ag-MgO interfaces. In the future, it is anticipated that the lattice Monte 
Carlo method will be used to address this problem using more realistic sizes/shapes and 
distributions (e.g. random) of the MgO inclusions. (Such refinements present a major difficulty for 
the finite element method but do not present a difficulty for the lattice Monte Carlo method.) It is 
also anticipated that the lattice-based Monte Carlo method will be used to address the problem of 
out-diffusion where, at higher temperatures, oxygen leaves the interfaces and matrix of the 
composite in a diffusion-limited evaporation process.  
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