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Abstract— In this paper, we derive interesting conditions
under which the frequency weighted balanced truncation tech-
niques: Enns’ technique, Lin and Chiu’s technique, Wang et
al’s technique as well as Varga and Anderson’s technique are
equivalent.

I. INTRODUCTION

The concept of approximating a linear system into a

more manageable order has been a constant fascination

for many years [1], [8], [9]. Enns [2] in particular has

initiated a method for reducing a stable high order model

with frequency weightings based on balanced truncation

technique [1]. In Enns’ method, when using input or output

weighting, the reduced order system will yield stable reduced

order model. However, when both weightings are present,

the stability of the reduced order system is not guaranteed.

Lin and Chiu [3] has since proposed a different method to

guarantee stability even when both weightings are present

under certain assumptions i.e. using strictly proper functions

and no occurence of pole-zero cancellations when forming

the augmented systems. Wang et al [5] has also solved the

stability problem of Enns’ for two-sided case by introducing

fictitious input and output matrices.

The drawbacks in Lin and Chiu’s technique are then

rectified by Sreeram [4] and Varga and Anderson [7], where

Sreeram et al generalized [3] to include proper weights while

Varga and Anderson’s technique still guarantees stability

even when pole-zero cancellations occur. In addition, Varga

and Anderson [7] modified Wang et al’s technique by reduc-

ing the Gramian’s distance to Enns’ choice i.e. the sizes of

[PW − PE ] and [QW − QE ] (refer to section II.E).

In this paper, we derive some conditions on the equations

of different frequency weighting model reduction techniques

for both continuous and discrete-time systems.

II. PRELIMINARIES

This section covers the frequency weighting techniques

of Enns’, Lin and Chiu’s, Wang et al’s as well as Varga and

Anderson’s. Some properties on inner functions are presented

which will be utilized in obtaining the main result.

Consider G(λ) = C (λI − A)
−1

B + D =

[

A B
C D

]

the transfer function of a stable original system where λ = s
is the Laplace-transform variable in the case of continuous-

time system or λ = z is the Z-transform variable in the
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case of discrete-time system, and {A,B, C, D} is a minimal

realization. Similarly, let

Wi(λ) = Cv (λI − Av)
−1

Bv + Dv =

[

Av Bv

Cv Dv

]

Wo(λ) = Cw (λI − Aw)
−1

Bw + Dw =

[

Aw Bw

Cw Dw

]

be the transfer functions of stable input and output weights

with the following minimal realizations: {Av, Bv, Cv, Dv}
and {Aw, Bw, Cw, Dw} respectively. Assuming that there are

no pole-zero cancellations between weights and the original

system, the minimal realization of the augmented system

G(λ)Wi(λ) and Wo(λ)G(λ) are given by

G(λ)Wi(λ) =

[

Āi B̄i

C̄i D̄i

]

=





A BCv BDv

0 Av Bv

C CDv DDv



 (1)

Wo(λ)G(λ) =

[

Āo B̄o

C̄o D̄o

]

=





Aw BwC BwD
0 A B

Cw DwC DwD



 (2)

Let

P̄ =

[

P P12

PT
12 Pv

]

, Q̄ =

[

Qw Q12

QT
12 Q

]

(3)

be the solutions of the following pair of Lyapunov equations

for continuous time system (cs) and discrete time system

(ds)

(cs)

{

ĀiP̄ + P̄ ĀT
i + B̄iB̄

T
i = 0

ĀT
o Q̄ + Q̄Āo + C̄T

o C̄o = 0
(4)

(ds)

{

ĀiP̄ ĀT
i − P̄ + B̄iB̄T

i = 0

ĀT
o Q̄Āo − Q̄ + C̄T

o C̄o = 0
(5)

Similarly, the minimal realization of the augmented system

Wo(λ)G(λ)Wi(λ) is given by

[

Â B̂

Ĉ D̂

]

=









Aw BwC BwDCv BwDDv

0 A BCv BDv

0 0 Av Bv

Cw DwC DwDDv DwD









(6)

Let

P̂ =





Pw P12 P13

PT
12 P P23

PT
13 PT

23 Pv



 , Q̂=





Qw Q12 Q13

QT
12 Q Q23

QT
13 QT

23 Qv



 (7)

be the solutions of the appropriate pair of Lyapunov equa-

tions

(cs)

{

ÂP̂ + P̂ ÂT + B̂B̂T = 0

ÂT Q̂ + Q̂Â + ĈT Ĉ = 0
(8)
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(ds)

{

ÂP̂ ÂT − P̂ + B̂B̂T = 0

ÂT Q̂Â − Q̂ + ĈT Ĉ = 0
(9)

A. Enns’ Technique

Enns’ technique [2] is utilized by firstly expanding the

(1,1) and (2,2) block of (4) and (5) for controllability

and observability Gramian respectively. This will yield the

following pair of equations for −PE and −QE respectively.

Continuous-time System

AP − PAT = −BCvP12 − PT
12C

T
v BT − BDvDT

v BT

△
= −PE (10)

AT Q − QA = −Q12BwC − CT BT
wQT

12 − CT DT
wDwC

△
= −QE (11)

Discrete-time System

APAT − P = −BCvPT
12A

T − AP12C
T
v BT

−BCvPvCT
v BT − BDvDT

v BT

△
= −PE (12)

AT QA − Q = −CT BT
wQT

12A − AT Q12BwC

−CT BT
wQBwC − CT DT

wDwC
△
= −QE (13)

Similar expressions are given for the (2,2) block of (8)

and (9). The matrices P and Q in equations (10)-(13) are

frequency weighted controllability and observability Grami-

ans respectively. Simultaneously diagonalizing the frequency

weighted controllability and observability Gramians yields

T−1PT−T = TT QT = diag(σ1, σ2, · · · , σr, σr+1, · · · , σn)
(14)

where σ1 > σ2 > · · · > σn > 0. The original system is

then transformed using the similarity transformation T and

partitioned as shown below:
[

T−1AT T−1B
CT D

]

=





Ar A12 Br

A21 A22 B2

Cr C2 D





and the dimension of Ar is equal to the dimension of

diag(σ1, σ2, · · · , σr).
Applying Enns’ method, the reduced order model Gr is

then given by Gr(λ) =

[

Ar Br

Cr D

]

. Essentially, Enns’

method is based on diagonalizing simultaneously the solu-

tions of Lyapunov equations as given in equations (10) and

(11) for the continuous case and equations (12) and (13) for

the discrete case. However, Enns’ method cannot guarantee

the stability of reduced order models as PE and QE may be

indefinite.

B. Lin and Chiu’s Technique

Lin and Chiu’s technique [3] differs from Enns’ technique

as it simultaneously diagonalizes the new Gramians PLC

and QLC instead of diagonalizing P and Q as given below

satisfying the one-sided frequency weighting system

PLC = P − P12P
−1
v PT

12

QLC = Q − QT
12Q

−1
w Q12 (15)

The new Gramians now satisfy the following pair of

Lyapunov equations

(cs)

{

APLC + PLCAT + BLCBT
LC = 0

AT QLC − QLCA + CT
LCCLC = 0

(ds)

{

APLCAT − PLC + BLCBT
LC = 0

AT QLCA − QLC + CT
LCCLC = 0

where BLC and CLC are given as [4]

cs

{

BLC = BDv − P12P
−1
v Bv

CLC = DwC − CwQ−1
v Q12

(ds)



















BLC =

[
(

AP12P
−1
v + BCv − P12P

−1
v Av

)

P
1/2
v

BDv − P12P
−1
v Bv

]T

CLC =

[

Q
1/2
w

(

Q−1
w Q12A + BwC − AwQ−1

w Q12

)

DwC − CwQ−1
w Q12

]

Assuming that there are no pole-zero cancellations be-

tween the weights and the original system, the realization

{A,BLC , CLC} is minimal and Lin and Chiu’s technique

yields stable models for two-sided frequency weighting sys-

tem.

C. Varga and Anderson’s modification on Lin and Chiu’s

Technique

In controller reduction applications, since the weights are

of the form (I +G(λ)K(λ))−1 and (I +G(λ)K(λ))−1G(λ)
where K is the controller for the plant G(λ), Lin and Chiu’s

requirement of no pole/zero cancellation between the weights

and the controller will not be satisfied.

To overcome this drawback, Varga and Anderson [7] pro-

posed on diagonalizing simultaneously the Gramians PVLC

and QVLC
as shown below: TT QVLC

T = T−1PVLC
T−T =

diag(σ1, σ2, . . . , σn)

PVLC
= P − α2

cP12P
−1
v PT

12 (16)

QVLC
= Q − α2

oQ
T
12Q

−1
w Q12 (17)

and 0 ≤ αc ≤ 1, 0 ≤ αo ≤ 1 where σi ≥ σi+1, i =
1, 2, · · · , n − 1 and σr ≥ σr+1. Reduced order models are

then obtained by transforming and partitioning the original

system. When αc = αo = 0, it can be seen that this method is

equal to Enns’ technique. When αc = αo = 1, this method is

equal to Lin and Chiu’s technique with guaranteed stability.

Since the stability is guaranteed, the same is expected to be

true in sub-unitary neighborhood of αc = 1 and αo = 1 even

though pole-zero cancellations occur.

D. Wang et al’s Technique

Stability of model are achieved in Wang et al’s technique

[5] by making the matrices PE and QE positive (semi)

definite. In this technique, new controllability (PW ) and

observability (QW ) Gramians are diagonalized as obtained

from the solution of the following pair of Lyapunov equa-

tions:

(cs)

{

APW + PW AT + BW BT
W = 0

AT QW + QW A + CT
W CW = 0

(18)

(ds)

{

APW AT − PW + BW BT
W = 0

AT QW A − QW + CT
W CW = 0

(19)
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The matrices BW and CW in the above Lyapunov equations

are fictitious input and output matrices which are determined

from BW = U |SW |
1/2

and CW = |RW |
1/2

V T where

U , SW , RW and V T are obtained from the singular value

decomposition of matrices, PE = USW UT and QE =
V RW V T . Since

PE ≤ BW BT
W ≥ 0, QE ≤ CT

W CW ≥ 0 (20)

and {A,BW , CW } is minimal, stability of the reduced order

model in case of two-sided frequency weighting is guaran-

teed.

E. Varga and Anderson’s modification on Wang et al’s

Technique

Varga and Anderson’s [7] modification to Wang et al’s

[5] technique is aimed at reducing the Gramian’s distance to

Enns choice i.e. sizes of [PW − PE ] and [QW − QE ]. This

is done by simultaneously diagonalizing the Gramians PVW

and QVW
as shown below:

TT QVW
T = T−1PVW

T−T = diag(σ1, σ2, . . . , σn) (21)

where the pair of Lyapunov equations are given as

(cs)

{

APVW
+ PVW

AT + BVW
BT

VW
= 0

AT QVW
+ QVW

A + CT
VW

CVW
= 0

(22)

(ds)

{

APVW
AT − PVW

+ BVW
BT

VW
= 0

AT QVW
A − QVW

+ CT
VW

CVW
= 0

(23)

and σi ≥ σi+1, i = 1, 2, · · · , n− 1 and σr > σr+1. The new

pseudo input and output matrices BVW
and CVW

are defined

as BVW
= UVW1

S
1/2

VW1
and CVW

= R
1/2

VW1
V T

VW1
respectively

and UVW1
, SVW1

, RVW1
and VVW1

are obtained from the

orthogonal eigen decomposition of symmetric matrices

PE =
[

UVW1
UVW2

]

[

SVW1
0

0 SVW2

] [

UT
VW1

UT
VW2

]

QE =
[

VVW1
VVW2

]

[

RVW1
0

0 RVW2

] [

V T
VW1

V T
VW2

]

where

[

SVW1
0

0 SVW2

]

= diag {s1, s2, · · · , sn},
[

RVW1
0

0 RVW2

]

= diag {r1, r2, · · · , rn} and SVW1
> 0,

SVW2
≤ 0, RVW1

> 0 and RVW2
≤ 0. Reduced order model

is then obtained by transforming and partitioning the original

system. Since

PE ≤ BVW
BT

VW
≤ BW BT

W ≥ 0

QE ≤ CT
VW

CVW
≤ CT

W CW ≥ 0

and {A,BVW
, CVW

} is minimal, stability of the reduced or-

der model for two-sided frequency weighting is guaranteed.

F. Inner Functions

Inner functions have norm preserving properties and are

used extensively in H∞ control design [8] and model

order reduction [8]. A transfer matrix N(λ) is called

inner if N(λ) ∈ ℜH∞, stable and N∼(λ)N(λ) =
I . While it is co-inner if N(λ) ∈ ℜH∞ and

N(λ)N∼(λ) = I . Note that N(λ) need not be square

and if N(λ) = {AN , BN , CN , DN} then N∼(λ) =
{

−AT
N , CT

N ,−BT
N , DT

N

}

. A transfer function N(λ) ∈ ℜL∞

is called all-pass if N(λ) is square i.e. a square inner

function is all-pass.

Let Xc, Yc, Xd, and Yd satisfy following Lyapunov

equations:

(cs)

{

ANXc + XcA
T
N + BNBT

N = 0
AT

NYc + YcAN + CT
NCN = 0

(24)

(ds)

{

ANXdA
T
N − Xd + BNBT

N = 0
AT

NYdAN − Y − d + CT
NCN = 0

(25)

The following lemmas are presented for both continuous and

discrete-time system.

Continuous-time System

Lemma 1: [8], A stable transfer function, N(λ) with mini-

mal realization AN , BN , CN , DN and observability Gramian

Yc = Y T
c > 0 is inner if and only if

DT
NCN + BT

NYc = 0

DT
NDN = I

Lemma 2: [8], A stable transfer function N(λ) with minimal

realization AN , BN , CN , DN and controllability Gramian

Xc = XT
c > 0 is co-inner if and only if

DNBT
N + CNXc = 0

DNDT
N = I

Discrete-time System

Lemma 3: [8], A stable transfer function, N(λ) with mini-

mal realization AN , BN , CN , DN and observability Gramian

Yd = Y T
d > 0 is inner if and only if

CT
NDN + AT

NYdBN = 0

DT
NDN + BT

NYdBN = I

Lemma 4: [8], A stable transfer function, N(λ) with minimal

realization AN , BN , CN , DN and controllability Gramian

Xd = XT
d > 0 is co-inner if and only if

DNBT
N + CNXdA

T
N = 0

DNDT
N + CNXdC

T
N = I

where DN in Lemma 3 and Lemma 4 is assumed to be

nonsingular.

III. MAIN RESULT

The main result that contributes to the foundation of this

paper is presented in this section. This section explores the

properties of the frequency weighted techniques presented

above when using some special input and output weightings.

This special functions are inner and co-inner functions as

mentioned in the previous section.

Theorem 3.1:

1) If the input weight Wi(z) is a co-inner function,

then P12 = 0, which yields a block diagonalized

P̄ that satisfies the Lyapunov equations in (5) for

controllability Gramian P̄ =

[

P 0
0 Pv

]

.
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2) If the output weight Wo(z) is an inner function,

then Q12 = 0, which yields a block diagonalized Q̄
that satisfies the Lyapunov equations in (5) for the

observability Gramian. Q̄ =

[

Qw 0
0 Q

]

.

Proof: First of all, consider the Lyapunov equation of (5)

for the controllability Gramian. Consider the expansion of

the (1,2) block of this equation which is shown below

AP12A
T
v − P12 = −BCvPvAT

v + BDvBT
v (26)

Then, expand the (2,2) block of the same Lyapunov equation

to obtain

AvPvAT
v − Pv + BvBT

v = 0 (27)

When Lemma 4 is applied to (27), it is apparent that

Xd equals to Pv . It can be clearly seen that Cv =
−DvBT

v A−T
v P−1

v , hence making the RHS of (26) to sim-

plify to zero and gives P12 = 0.

Similarly, we can prove the second part of Theorem 3.1

using Lemma 3, (5) for the observability Gramian. The

equivalent continuous time system can be seen in [6].

Theorem 3.2:

1) If the input weight Wi(λ) is a co-inner , then P13 = 0
and P23 = 0, which yield an almost diagonalized P̂
that satisfies the Lyapunov equations in (8) and (9) for

controllability Gramian, P̂ =





Pw P12 0
PT

12 P 0
0 0 Pv



 .

2) If the output weight Wo(λ) is an inner , then Q12 =
0 and Q13 = 0, which yield an almost diagonalized

Q̂ that satisfies (8) and (9) for observability Gramian,

Q̂ =





Qw 0 0
0 Q Q23

0 QT
23 Qv



 .

Proof: Proof of Theorem 3.2 is divided into two parts i.e.

for the continuous-time system and the discrete-time system.

Continuous-Time System

First, consider the expansion of (2,3) and (1,3) block of (8)

respectively as given below:

AP23 + P23A
T
v = −BCvPv − BDvBT

v (28)

AwP13 + P13A
T
v = −BwCP23 − BwDCvPv

−BwDDvBT
v (29)

Then, the expansion of (3,3) block of (8) is similar to (27).

When Lemma 2 is applied to (27), it is apparent that Xc

equals to Pv . It can be clearly seen that Cv = −DvBT
v P−1

v ,

hence giving the RHS of (28) to simplify to zero i.e. P23 = 0.

Substituting these into (29) will yield P13 = 0 i.e. the RHS

of (29) will also simplify to zero.

Similarly, we can prove the second part of Theorem 3.2

using Lemma 1 and (8) for observability Gramian.

Discrete-Time System

First, consider the expansion (2,3) and (1,3) block of (9) for

controllability Gramian respectively as given below :

AP23A
T
v − P23 = −BCvPvAT

v − BDvBT
v (30)

AwP13A
T
v − P13 = −BwCP23A

T
v − BwDCvPvAT

v

−BwDDvBT
v (31)

Similar to the continuous case, the (3,3) block expansion

of (9) will yield equivalent result to (27). When Lemma 4

is applied to (30), it is apparent that Xd equals to Pv . It can

be clearly seen that Cv = −DvBT
v A−T

v P−1
v , hence giving

the RHS of the equation to simplify to zero i.e. P23 = 0.

Substituting these into (29) will yield P13 = 0 and simplifies

the equation to zero.

Similarly, we can prove the second part of Theorem 3.2

using Lemma 3 and (9) for observability Gramian.

Lemma 5: The frequency weighted Gramians diagonalized

in the frequency weighted balanced truncation techniques

satisfies the following relations:

PLC ≤ PVLC
≤ P ≤ PVW

≤ PW

QLC ≤ QVLC
≤ Q ≤ QVW

≤ QW

The proof follows immediately from Lemma 5 of [4] and

Theorem 3.1 of [5].

Remark 1: When PE ≥ 0 and QE ≥ 0, P = PW =
PVW

and Q = QW = QVW
. However when PE and QE

are indefinite, P < PVW
< PW and Q < QVW

< QW .

Theorem 3.3:

1) In the augmented system G(λ)Wi(λ) and Wo(λ)G(λ)
cases, if the input weight Wi(λ) is a co-inner func-

tion that satisfies W∼
i (λ)Wi(λ) = I and the out-

put weight Wo(λ) is an inner function that satisfies

Wo(λ)W∼
o (λ) = I (or co-inner and inner respectively)

then

PLC = P = PW = PVLC
= PVW

= Pun

QLC = Q = QW = QVLC
= QVW

= Qun

where Pun and Qun are the unweighted controllability

and observability Gramians of the original system

satisfying following Lyapunov equations respectively:

(cs)

{

APuw + PuwAT + BBT = 0
AT Quw + QuwA + CT C = 0

(32)

(ds)

{

APuwAT − Puw + BBT = 0
AT QuwA − Quw + CT C = 0

(33)

2) Similar result is obtained in case of the augmented

system Wo(λ)G(λ)Wi(λ).

Proof: Since the proofs for continuous and discrete systems

are similar, the proof is given only for the discrete case.

1) For Lin and Chiu’s as well as its modification by Varga

and Anderson, applying Theorem 3.3, it is proven that

the values of P12 and Q12 equals to zero. Substituting

this into (15) will yield

PLC = P − P12P
−1
v PT

12 = P

QLC = Q − QT
12Q

−1
w Q12 = Q

and substituting P12 and Q12 equals to zero into

equations (16) and (17) yields

PVLC
= P − α2

cP12P
−1
v PT

12 = P

QVLC
= Q − α2

oQ
T
12Q

−1
w Q12 = Q

MoRP-B06.1

768

Authorized licensed use limited to: UNIVERSITY TEKNOLOGI MALAYSIA. Downloaded on December 30, 2009 at 03:35 from IEEE Xplore.  Restrictions apply. 



Furthermore, substitution of P12 and Q12 for the one-

sided frequency weighting system as well as DvDT
v =

I − CvPvCT
v and DT

wDw = I − BT
wQwBw from

Lemma 4 and Lemma 3 respectively into (12) and (13)

yields

APAT − P + BBT = 0, AT QA − Q + CT C = 0

which are exactly the same as the original unweighted

Lyapunov equation. Hence giving P = Puw and Q =
Quw. The same result is obtained when substituting

P12 = 0 and Q12 = 0 into (18), (19), (22) and (23)

i.e.

PW = PVW
= P = Puw, QW = QVW

= Q = Quw

2) The proof is similar to the proof of part 1) above, and

hence omitted here.

Remark 2 : For both one-sided and two sided frequency

weighting cases, When the input weight is inner and the

output weight is co-inner the structure of the Gramians

obtained is the same as when the input and output weights

are co-inner and inner respectively.

Remark 3 : If the input weight, Wi(λ) is co-inner and the

output weight, Wo is inner , then Enns’ technique [2], Lin

and Chiu’s technique [4], Wang et al’s technique [5] and

Varga and Anderson’s technique [7] are all equivalent to the

unweighted balanced truncation technique [1].

IV. NUMERICAL EXAMPLE

A. Continuous-Time system

Consider

A =









−1 0 0 0
0−2 0 0
0 0−3 0
0 0 0 −4









B=









0 5
1/2 −3/2
1 −5

−1/2 1/6









CT=









1 4/15
0 1
1 0
0 1









in [4] for continuous-time system where the input

{Av, Bv, Cv, Dv} and output {Aw, Bw, Cw, Dw} weights

are co-inner and inner functions respectively as given below

Av =

[

−4.1 0
0 −4.5

]

Bv =

[

3 0
0 3

]

Cv =

[

−2.7333 0
0 −3

]

Dv =

[

1 0
0 1

]

Aw =

[

−4.1 0
0 −4.5

]

Bw =

[

−5.4667 0
0 −6

]

Cw =

[

1.5 0
0 1.5

]

Dw =

[

1 0
0 1

]

The balanced augmented system are given in (34) and (35).

Clearly, they satisfy Theorem 3.2 for both the controllability

P̂ and observability Q̂ Gramians.

Frequency weighted Gramians for this example obtained

using Enns’, Lin and Chiu’s, Wang et al’s as well as Varga

and Anderson’s, are the same as the unweighted Gramians

of the original system. This satisfies Theorem 3.3 (See the

(2,2) blocks of (34) and (35)).

B. Discrete-Time system

Consider K(s) = z3

z4+1.1z3−0.01z2−0.275z−0.06 from [4]

for discrete-time system. The input {Av, Bv, Cv, Dv} and

output {Aw, Bw, Cw, Dw} weights are co-inner and inner

function respectively as given below:

Av =

[

−0.0329 0.9976
−0.6995 −0.0671

]

Bv =

[

0.0617
0.7115

]

Cv =
[

0.7139 −0.0197
]

Dv =
[

0.7000
]

Aw =

[

−0.1208 0.7163
−0.9807 0.0208

]

Bw =

[

−0.6872
0.1942

]

Cw =
[

0.1534 0.6975
]

Dw =
[

0.7000
]

The balanced augmented system obtained in (36) and (37)

satisfies Theorem 3.1 while (38) and (39) satisfies Theorem

3.2 for both the controllability (P̄ , P̂ ) and observability (Q̄,

Q̂) Gramian respectively.

P̄ =
















5.6044 −0.0000 0.0000 0.0000 0.0000 −0.0000
−0.0000 0.6695 0.0000 0.0000 −0.0000 0.0000
0.0000 0.0000 0.1071 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0048 0.0000 −0.0000
0.0000 −0.0000 0.0000 0.0000 1.0000 −0.0000

−0.0000 0.0000 0.0000−0.0000−0.0000 1.0000

















(36)

Q̄ =
















1.0000 −0.0000 −0.0000−0.0000−0.0000 0.0000
−0.0000 1.0000 −0.0000−0.0000 0.0000 0.0000
−0.0000 −0.0000 5.6044−0.0000 0.0000 0.0000
−0.0000 −0.0000 −0.0000 0.6695 0.0000−0.0000
−0.0000 0.0000 0.0000 0.0000 0.1071 0.0000
0.0000 0.0000 0.0000−0.0000 0.0000 0.0048

















(37)

Frequency weighted Gramians for this example obtained

using Enns’, Lin and Chiu’s, Wang et al’s as well as Varga

and Anderson’s, are the same as the unweighted Gramians

of the original system. This satisfies Theorem 3.3 (See the

(2,2) blocks of (38) and (39)).

V. CONCLUSION

For one-sided frequency weighting case, when the input

weight is a co-inner function and the output weight is an

inner function, or vice versa, the commonly referred fre-

quency weighted balanced truncation techniques, i.e. Enns’,

Lin and Chiu’s, Wang et al’s as well as Varga and Anderson’s

will give a diagonalized controllability and observability

Gramians. These Gramians are equal to the Gramians of

unweighted balanced truncation technique [1]. This is ap-

plicable to both continuous and discrete-time systems.

When inner and co-inner function are used in the two-

sided frequency weighting case, the commonly referred fre-

quency weighted balanced truncation techniques will yield an

almost diagonalized controllability and observability Grami-

ans. The (2,2) block of these Gramians are equal to the

Gramians of unweighted balanced truncation technique [1]

for both the continuous and discrete-time systems.
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P̂ =

























1.9111 0.3235 1.6022 −0.3850 0.0281 0.0352 −0.0000 −0.0000
0.3235 0.0575 0.2533 −0.0692 0.0129 0.0084 −0.0000 0.0000
1.6022 0.2533 1.9763 −0.0000 0.0000 0.0000 −0.0000 0.0000

−0.3850 −0.0692 −0.0000 0.2998 −0.0000 −0.0000 0.0000 0.0000
0.0281 0.0129 0.0000 −0.0000 0.0446 0.0000 −0.0000 0.0000
0.0352 0.0084 0.0000 −0.0000 0.0000 0.0170 0.0000 0.0000

−0.0000 −0.0000 −0.0000 0.0000 −0.0000 0.0000 1.0000 0
−0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 1.0000

























(34)

Q̂ =

























1.0000 0 −0.0000 0.0000 0.0000 −0.0000 −0.0000 −0.0000
0 1.0000 −0.0000 −0.0000 0.0000 0.0000 −0.0000 −0.0000

−0.0000 −0.0000 1.9763 −0.0000 −0.0000 0.0000 0.2896 1.5555
0.0000 −0.0000 −0.0000 0.2998 0.0000 −0.0000 −0.0091 0.3789
0.0000 0.0000 −0.0000 0.0000 0.0446 −0.0000 0.0014 0.0186

−0.0000 0.0000 0.0000 −0.0000 −0.0000 0.0170 −0.0040 0.0016
−0.0000 −0.0000 0.2896 −0.0091 0.0014 −0.0040 0.0512 0.1960
−0.0000 −0.0000 1.5555 0.3789 0.0186 0.0016 0.1960 1.7707

























(35)

P̂ =

























2.6092 1.2844 3.2287 0.5418 0.0856 0.0227 0.0000 0.0000
1.2844 1.2329 1.5789 0.5431 −0.1075 0.0065 −0.0000 0.0000
3.2287 1.5789 5.6044 −0.0000 0.0000 0.0000 0.0000 −0.0000
0.5418 0.5431 −0.0000 0.6695 0.0000 0.0000 −0.0000 0.0000
0.0856 −0.1075 0.0000 0.0000 0.1071 0.0000 0.0000 0.0000
0.0227 0.0065 0.0000 0.0000 0.0000 0.0048 −0.0000 0.0000
0.0000 −0.0000 0.0000 −0.0000 0.0000 −0.0000 1.0000 −0.0000
0.0000 0.0000 −0.0000 0.0000 0.0000 0.0000 −0.0000 1.0000

























(38)

Q̂ =

























1.0000 −0.0000 0.0000 −0.0000 −0.0000 −0.0000 −0.0000 0.0000
−0.0000 1.0000 −0.0000 −0.0000 0.0000 −0.0000 −0.0000 0.0000
0.0000 −0.0000 5.6044 −0.0000 0.0000 0.0000 −2.6106 2.4703

−0.0000 −0.0000 −0.0000 0.6695 0.0000 −0.0000 0.3551 −0.6800
−0.0000 0.0000 0.0000 0.0000 0.1071 0.0000 −0.1137 −0.0771
−0.0000 −0.0000 0.0000 −0.0000 0.0000 0.0048 −0.0197 0.0129
−0.0000 −0.0000 −2.6106 0.3551 −0.1137 −0.0197 1.7552 −1.4476
0.0000 0.0000 2.4703 −0.6800 −0.0771 0.0129 −1.4476 2.0868

























(39)
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