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Abstract 
 

 In this paper the derivation of mathematical model of a 
horizontal active magnetic bearing (AMB) system in 
deterministic form is presented. The system is open-loop 
unstable and highly coupled due to nonlinearities inherited 
in the system such as gyroscopic effect and mass 
imbalance. Based on the equation of motions of the rotor 
and dynamic equation of electromagnetic coils, the 
dynamic model of the system with eight inputs is derived 
and represented in state-space format in which the system 
matrix is 16x16 in size. By using the upper and lower 
bounds of the parameter and the state variables of the 
system, the model is transformed into deterministic form 
where it can be shown that the system contains 
mismatched uncertainties in the state and disturbance 
matrices. This final system model with its numerical values 
can be used for the design of a class of a dynamic 
controller for system stabilization. 
 
1. Introduction 
 
 An active magnetic bearing (AMB) system is a 
collection of electromagnets used to suspend an object and 
stabilization of the system is performed by feedback 
control. The system is composed of a floating mechanical 
rotor and electromagnetic coils that provide the controlled 
dynamic force. Due to this non-contact operation, AMB 
system has many promising advantages for high-speed and 
clean-environment applications. Moreover, adjustable 
stiffness and damping characteristics also make the system 
suitable for elimination of system vibration. Although the 
system is complex and considered an advance topic in term 
of its structural and control design, the advantages it offers 
outweigh the design complexity. A few of the AMB 
applications that receive huge attentions from many 
research groups around the globe are the flywheel energy 
and storage device, compressor, turbo molecular pump, 
Left Ventrical Assist Device (LVAD) and artificial heart 
[1][2][3] and [4]. 

 AMB system is considered an advance mechatronic 
system in which a successful design depends heavily on 
the mathematical models that represents the system 
behaviour at design stage [5]. Many of early works in 
AMB modeling involve the derivation of linear or 
linearized models which operate at certain operating 
condition. This procedure is performed in order to 
accommodate a linear dynamic controller for stabilization 
of the AMB system. The disadvantage of this approach is 
the model is valid at a very small operating condition and 
the system performance will degrade as the model of the 
physical system is perturbed from this operating point [6]. 
However, in order to maximize the performance of the 
system, the derived model needs to cover wider operational 
ranges that further will force the system into its nonlinear 
regime. In order to achieve this, a more sophisticated 
mathematical model that can describe the behaviour of the 
system within this boundary is required. 
 In this paper, a nonlinear mathematical model of a 
horizontal shaft AMB system will be derived in which the 
gyroscopic effect and mass imbalance are considered. The 
derived model will be presented in a state variable form 
that is suitable for the design of a class of robust controller. 
Fig. 1 below shows the five degree-of-freedom (DOF) 
horizontal AMB system that requires four pairs of 
electromagnetic coils to perform the radial control. The 
thrust control of the system is performed independently by 
another pair of electromagnetic coil and is not shown in the 
figure. The fifth DOF, which is the rotation around the x-
axis, is supplied by external rotating machine in which the 
rotational speed is considered as time-varying parameter. 
Eight voltage sources supplied to the coils will be the 
inputs to the system and the rotor-coil gap deviations and 
the electromagnet fluxes are selected as the state variables.  
 This paper will be organized as follows: In section 2, a 
review on the derivation of the equations of motion and the 
dynamic equation of electromagnetic coils will be 
performed based on [7] and [8]. In section 3, the 
integration of both sets of equations is carried out to form a 
state-space AMB model. Then, in section 4, based on the 
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upper and lower bounds of the system states and the 
rotational  speed, the model is converted to its 
deterministic form where it can be shown that the system 
uncertainty and disturbance matrices suffer mismatched 
condition. However, the model produced is suitable for the 
design of a class on dynamic controller to stabilize the 
system.  Finally, the conclusion in section 5 will 
summarize the work of this paper. 
 
2. Dynamical equations of AMB system 
 
 For the derivation of the mathematical model, 
cylindrical horizontal AMB system as shown in Fig. 1 
above will be used.  Equations of motions of the rotor and 
the nonlinear electromagnetic coils equations are the two 
sets of equations that describe the dynamical behaviour of 
the system. 
 
2.1 Equations of motion 
 
 The equations of motion describe the dynamic 
movement of the rotor of the system. Assuming that the 
rotor is rigid floating body, the principle of flight dynamics 
is used to derive the equation. Based on the work in [7] and 
[8], the rotor’s equations of motion for five DOF are  
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where: m is the mass of the rotor, l is the longitudinal of 
length between the rotor mass centre to the 
electromagnetic coil, Jx is the moment of inertia around Xr, 
Jy is the moment around Yr, α is the radial eccentricity 
coefficient, ψ  and θ are angular displacement of rotor axis 
about Ys and Zs axes, yo and zo are the coordinates of rotor 
mass centre on Ys and Zs axes,  fl1,  fl2,  fl3,  fl4,  fr1,  fr2,  fr3, 
and  fr4 are the nonlinear magnetic force produced by the 
bearings (stator) and exerted on the rotor, and fdy, fdz, fdψ 
and fdθ  are terms for the imbalances that present in the 
system. It can be noticed from equation (1) that the 
imbalances act like external disturbances to the system 
which will cause the vibration to the rotor. The imbalance 
forces can be modeled as follows [9] 
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where: mo is the mass of unbalance, ε and τ are static and 
dynamic imbalances, κ and λ are initial phase values. 
 
2.2 Electromagnetic equations 
 
 There are two ways to model the dynamic of 
electromagnetic coils which are by using force-to-flux or 
force-to-current relation. For this model, as claimed in 
[10], the force-to-flux relation for the dynamic coil is used 
due to the fact that both the force and flux depend 
inversely to the time varying airgap length which will give 
a better system performance under feedback control.  The 
electromagnetic force fj produced by jth electromagnetic 
coils is expressed in term of the airgap flux 

jφ and the gap  
length gj as shown below   
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 OXs Ys Zs - fixed frame (stator) 
 GXr Yr Zr  - moving frame (rotor) 

Fig. 1   Cylindrical Horizontal Active Magnetic Bearing System 
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where: k is a constant and h is the width of  the 
electromagnetic pole. The electric circuit equation that 
relates the airgap flux jφ , the airgap length gj and the input 
voltage ej of the jth electromagnet is  
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where: N is the number of turn in each coil, R is the coil 
resistance, A is the area under one electromagnetic pole 
and µo = 4π × 10-7 H/m is the permeability of free space. 
Notice that equation (4) is valid by assuming that the speed 
e.m.f and the leakage inductance produced by the coil are 
negligibly small. 
 
2.3 Changes of state variables – transformation                                3. AMB model in state-space form 
       matrix 
 
 From the control point of view, it is preferable to have 
the gap deviations as the state variables of the system 
instead of the coordinates of the mass center, yaw and 
pitch angles of the rotor. This is due to the fact that the gap 
deviations are easier to be measured than the rotor mass 
center either by using sensors or by designing observers 
[8]. The relation between the jth airgap of the 
electromagnetic coils and the rotor can be expressed as 
follows: 
 
            ,    j = l1, ···, l4, r1, ···, r4     (5)

  
'joj gDg +=

where: Do is the steady state gap length at equilibrium and 
gj ' is the gap length deviation from steady state value Do. 
 

 
Based on Fig. 2 above which shows the exaggerated view 
of the movement of the rotor in z-axis, assuming the angle 
θ is small such that sin θ ≈ θ, the relation between the 

airgaps in the AMB with rotor mass centre coordinate can 
be related as follows: 
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With this equation a transformation matrix, T, can be 
established to perform the change the system variables. 
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 Equations (1), (2), (3), (4) and (7) can now be easily 
integrated to form the model of horizontal AMB system in 
state-space form. Let the 16 state variables and 8 inputs of 
the system to be defined as follows:  
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Then, equation (8) below is the representation of the AMB 
system in state-space form. 
 
               ),()()(),,()( tptttpt DBUxxAx ++=&        (8) 
 
It can be observed from this nonlinear model that the 
system matrix A (x, p, t) is dependent to the state variables 
and the time-varying speed, p, while the disturbance matrix 
D(p,t) is only dependent on p. In order to facilitate the 
process to develop of dynamic controller, the equation 
above can be partitioned as shown below  
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Fig. 2   Movement of rotor in z-axis 
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where  , [ ]33111 ,,, rlrl gggg ′′′′=x& [ ]33112 ,,, rlrl gggg &&&&& ′′′′=x  , 

[ ]21213 ,,, rrll φφφφ=x&  and [ ]21213 ,,, rrll φφφφ=x& . The 
elements of the matrices are shown in the appendix. 
 
4. AMB model as uncertain system 
 
 In order to synthesize a type of robust controller for this 
class of system, the AMB model derived in previous 
section will be treated as uncertain system in which 
deterministic approach to classify the system will be used. 
By using this approach, the AMB model can be 
decomposed into its nominal and uncertain parts as shown 
below  
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where ∆A(x,p,t) represents the uncertainty of the system 
matrix and D(p,t) is the disturbance matrix associated with 
speed dependent of imbalance. A and B are the nominal 
constant matrices. The decomposition into this 
deterministic form is possible due to the fact that the all the 
maximum and minimum values of state variables and rotor 
speed are known. The elements of the ∆A(x,p,t) and D(p,t) 
system and disturbance matrices, respectively, can be 
calculated based on these bounds. The minimum and 
maximum bounds of all the state variables and the rotor 
speed are as follows: 
 

mmxmm i 55.055.0 ≤≤− , for i = 1,2, 3, 4,  (11a) 
    , for i = 5, 6, 7, 8, (11b) sec/87.10 mxm i ≤≤
        , for i = 9, …, 16, (11c) WbxWb i

4100.100 −×≤≤
 
 and  
  .  (11d) sec/3142sec/0 radprad ≤≤
 
Then, by using these values and the other system 
parameter values as shown in Table 1 below, each element 
of the system and disturbance matrices can be calculated 
and specified in the following form: 
 
               ijijij atpxaa ≤≤ ),,(   (12a) 

                 jjj dtpdd ≤≤ ),(   (12b) 
 
for i = 1, …, 18, and j = 1, …, 18, where aij(x,p,t) and 
dj(p,t) are the element of A(x,p,t) and D(p,t) matrices 
respectively. The upper and lower bars indicate the 
maximum and minimum values of the elements. Since 
these bounds are known, the system matrix can be written 
in the following form: 
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Parameter for Horizontal AMB system [8][9] 

Parameter     Value [Unit] 

ss of Rotor  1.39 × 101     [kg] 
a of coil  1.532 × 10-3   [m2] 
ment of Inertia 
ut X 

 1.34 × 10-2  [kg.m2] 

ment of Inertia 
ut X 

 2.32 × 10-1  [kg.m2] 

ady airgap  5.50  × 10-4   [m] 
l Resistance  1.07  × 10     [Ω] 
l Inductance  2.85  × 10-1   [H] 
tance between 
ss centre to coil 

 1.30  × 10-1   [m] 

or radial 
entricity 
fficient 

 0.1g [N/m] 
 

tic imbalance  1.0 × 10-4  [m] 
namic 
alance 

 4.0 × 10-4  [rad] 

),,(), tptp x∆AA+=    (13) 

MB system model, it can be noticed that 
 matrix, D(p,t), only the maximum value 

e needed since these values represent the 
e values caused by the imbalance which 
ted from the system. By using the values 
en by (11), and the deterministic form of 
en by (13), the nominal and uncertain 
atrix, a well as the values of disturbance 

ted and given in the appendix. The norm 
 can also be calculated and the values are 

.105595.1,1003 34 ×=× D        (14) 

ture of the matrices, it can be shown that 
inty and disturbance matrices suffer 
ition which means that the elements of 
d disturbance matrices do not lie in the 
e input matrix B. Also, the mismatched 
hecked by using the rank test as shown 
e results agree with the aforementioned 
tion.  

] ≠ rank [B, ∆A(x,p,t)], 
] ≠ rank [B, D(p,t)].    (15) 

smatched condition, the input voltages of 
t have direct access to the mismatched 
his has made the design of the robust 
 eliminate the disturbance and to achieve 
ds system uncertainty a challenging 



process [3][11]. Only after overcoming this mismatched 
condition the system is guaranteed to achieve required 
stability and robust performance.   
 
5. Conclusion 
 
This paper concerns with the derivation of a mathematical 
model of a horizontal AMB system which is highly 
coupled and nonlinear. The derivation starts with the 
equation of motions of the rotor and the dynamic equation 
of electromagnetic coils. The integration of these nonlinear 
equations forms the state-space model of the system with 
16 states variables and eight inputs. The model then is 
treated as uncertain system by using deterministic 
approach in which it has been shown that the system 
inherits mismatched condition in its system and 
disturbance matrices. The final system model is suitable 
for the design of a class of dynamic controller, however, to 
eliminate the mismatched disturbance and to achieve 
robust system performance towards the mismatched 
system uncertainties will be great challenge for the design 
of controller. 
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